1
|
Woo JH, Kim KC, Kim HY, Kim IH, Kim SH, Lee K. Comparative toxicity of polyhexamethylene guanidine phosphate in three strains of rats. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00169-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
2
|
Wali S, Flores JR, Jaramillo AM, Goldblatt DL, Pantaleón García J, Tuvim MJ, Dickey BF, Evans SE. Immune Modulation to Improve Survival of Viral Pneumonia in Mice. Am J Respir Cell Mol Biol 2020; 63:758-766. [PMID: 32853024 PMCID: PMC7790135 DOI: 10.1165/rcmb.2020-0241oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Viral pneumonias remain global health threats, as exemplified in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, requiring novel treatment strategies both early and late in the disease process. We have reported that mice treated before or soon after infection with a combination of inhaled Toll-like receptor (TLR) 2/6 and 9 agonists (Pam2-ODN) are broadly protected against microbial pathogens including respiratory viruses, but the mechanisms remain incompletely understood. The objective of this study was to validate strategies for immune modulation in a preclinical model of viral pneumonia and determine their mechanisms. Mice were challenged with the Sendai paramyxovirus in the presence or absence of Pam2-ODN treatment. Virus burden and host immune responses were assessed to elucidate Pam2-ODN mechanisms of action and to identify additional opportunities for therapeutic intervention. Enhanced survival of Sendai virus pneumonia with Pam2-ODN treatment was associated with reductions in lung virus burden and with virus inactivation before internalization. We noted that mortality in sham-treated mice corresponded with CD8+ T-cell lung inflammation on days 11-12 after virus challenge, after the viral burden had declined. Pam2-ODN blocked this injurious inflammation by minimizing virus burden. As an alternative intervention, depleting CD8+ T cells 8 days after viral challenge also decreased mortality. Stimulation of local innate immunity within the lungs by TLR agonists early in disease or suppression of adaptive immunity by systemic CD8+ T-cell depletion late in disease improves outcomes of viral pneumonia in mice. These data reveal opportunities for targeted immunomodulation to protect susceptible human subjects.
Collapse
Affiliation(s)
- Shradha Wali
- UTHealth Graduate School of Biomedical Sciences and
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jose R. Flores
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ana M. Jaramillo
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David L. Goldblatt
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Michael J. Tuvim
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Burton F. Dickey
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott E. Evans
- UTHealth Graduate School of Biomedical Sciences and
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
3
|
Goldblatt DL, Flores JR, Valverde Ha G, Jaramillo AM, Tkachman S, Kirkpatrick CT, Wali S, Hernandez B, Ost DE, Scott BL, Chen J, Evans SE, Tuvim MJ, Dickey BF. Inducible epithelial resistance against acute Sendai virus infection prevents chronic asthma-like lung disease in mice. Br J Pharmacol 2020; 177:2256-2273. [PMID: 31968123 DOI: 10.1111/bph.14977] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Respiratory viral infections play central roles in the initiation, exacerbation and progression of asthma in humans. An acute paramyxoviral infection in mice can cause a chronic lung disease that resembles human asthma. We sought to determine whether reduction of Sendai virus lung burden in mice by stimulating innate immunity with aerosolized Toll-like receptor (TLR) agonists could attenuate the severity of chronic asthma-like lung disease. EXPERIMENTAL APPROACH Mice were treated by aerosol with 1-μM oligodeoxynucleotide (ODN) M362, an agonist of the TLR9 homodimer, and 4-μM Pam2CSK4 (Pam2), an agonist of the TLR2/6 heterodimer, within a few days before or after Sendai virus challenge. KEY RESULTS Treatment with ODN/Pam2 caused ~75% reduction in lung Sendai virus burden 5 days after challenge. The reduction in acute lung virus burden was associated with marked reductions 49 days after viral challenge in eosinophilic and lymphocytic lung inflammation, airway mucous metaplasia, lumenal mucus occlusion and hyperresponsiveness to methacholine. Mechanistically, ODN/Pam2 treatment attenuated the chronic asthma phenotype by suppressing IL-33 production by type 2 pneumocytes, both by reducing the severity of acute infection and by down-regulating Type 2 (allergic) inflammation. CONCLUSION AND IMPLICATIONS These data suggest that treatment of susceptible human hosts with aerosolized ODN and Pam2 at the time of a respiratory viral infection might attenuate the severity of the acute infection and reduce initiation, exacerbation and progression of asthma.
Collapse
Affiliation(s)
- David L Goldblatt
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jose R Flores
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriella Valverde Ha
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana M Jaramillo
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sofya Tkachman
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carson T Kirkpatrick
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shradha Wali
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Belinda Hernandez
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David E Ost
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jichao Chen
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott E Evans
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Tuvim
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Burton F Dickey
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Emergency repair of complicated abdominal wall hernias: WSES guidelines. Hernia 2019; 24:359-368. [PMID: 31407109 DOI: 10.1007/s10029-019-02021-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/04/2019] [Indexed: 01/29/2023]
Abstract
PURPOSE In July 2013, the World Society of Emergency Surgery (WSES) held the first Consensus Conference on emergency repair of abdominal wall hernias in adult patients with the intention of producing evidence-based guidelines to assist surgeons in the management of complicated abdominal wall hernias. Guidelines were updated in 2017 in keeping with varying clinical practice: benefits resulting from the increased use of biological prosthesis in the emergency setting were highlighted, as previously published in the World Journal of Emergency Surgery. This executive summary is intended to consolidate knowledge on the emergency management of complicated hernias by providing the broad readership with a practical and concise version of the original guidelines. METHODS This executive manuscript summarizes the WSES guidelines reporting on the emergency management of complicated abdominal wall hernias; statements are highlighted focusing the readers' attention on the main concepts presented in the original guidelines. CONCLUSIONS Emergency repair of complicated abdominal hernias remains one of the most common and challenging surgical emergencies worldwide. WSES aims to provide an essential version of the evidence-based guidelines focusing on the timing of intervention, laparoscopic approach, surgical repair following the Centers for Disease Control and Prevention (CDC) wound classification, antimicrobial prophylaxis and anesthesia in the emergency setting.
Collapse
|
5
|
Chiu CC, Wang YC, Huang WC, Chen YH, Hung SW, Huang YT, Chuang HL, Chang YC. Differences in Genetic Background Contribute to Pseudomonas Exotoxin A-Induced Hepatotoxicity in Rats. Toxins (Basel) 2017; 9:E224. [PMID: 28714885 PMCID: PMC5535171 DOI: 10.3390/toxins9070224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 01/31/2023] Open
Abstract
Pseudomonas aeruginosa exotoxin A (PEA) causes severe hepatotoxicity in experimental animals and is useful in investigations of immune-mediated liver injury. However, strain differences in the sensitivity to PEA-induced hepatotoxicity in rats remains be elucidated. In this study, we determined the severity of PEA-induced hepatotoxicity in six genetically different rat strains. Male LE (Long Evans), Wistar, F344, WKY, BN/SsN and LEW rats were administered a single intravenous injection of PEA (20 μg/kg). Significantly elevated serum ALT and AST levels, massive necrosis and hemorrhage, and numerous TUNEL-positive hepatocytes were observed in BN/SsN rats. In contrast, low levels of ALT and AST as well as mild changes in liver histopathology were observed in Wistar and F344 rats. Moderate levels of hepatic injuries were observed in LE, WKY, and LEW rats. Pro-inflammatory cytokines including TNF-α, IL-2 and IL-6 serum levels were markedly increased in BN/SsN rats compared to Wistar and F344 rats. However, the hepatic levels of low density lipoprotein receptor-related protein (LRP), which functions as the PEA receptor, were not significantly different in each strain. Taken together, we suggest that BN/SsN is the most sensitive rat strain, whereas Wistar and F344 were the most resistant rat strains to PEA-induced liver damage. The different genetic background of rat strains plays an important role in the susceptibility to PEA-induced epatotoxicity that may depend on immune-regulation but not LRP receptor levels.
Collapse
Affiliation(s)
- Chien-Chao Chiu
- Animal Technology Laboratories, Agricultural Technology Research Institute, Miaoli 350, Taiwan.
| | - Yu-Chih Wang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan.
| | - Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan.
| | - Yi-Hsun Chen
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan.
| | - Shao-Wen Hung
- Animal Technology Laboratories, Agricultural Technology Research Institute, Miaoli 350, Taiwan.
| | - Yen-Te Huang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei 115, Taiwan.
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei 115, Taiwan.
| | - Yi-Chih Chang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
6
|
Dua K, Hansbro NG, Hansbro PM. Steroid resistance and concomitant respiratory infections: A challenging battle in pulmonary clinic. EXCLI JOURNAL 2017; 16:981-985. [PMID: 28900378 PMCID: PMC5579404 DOI: 10.17179/excli2017-425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/17/2017] [Indexed: 12/02/2022]
Affiliation(s)
- Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology,Sydney, Ultimo NSW 2007, Australia
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW2308, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, J Lot 1 Kookaburra Circuit, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Nicole G. Hansbro
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW2308, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, J Lot 1 Kookaburra Circuit, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Philip M. Hansbro
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW2308, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, J Lot 1 Kookaburra Circuit, New Lambton Heights, Newcastle, NSW 2305, Australia
| |
Collapse
|
7
|
Rognlien AGW, Wollen EJ, Atneosen-Åsegg M, Saugstad OD. Temporal Patterns of Gene Expression Profiles in the Neonatal Mouse Lung after Hypoxia-Reoxygenation. Neonatology 2017; 111:45-54. [PMID: 27529351 DOI: 10.1159/000447322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 06/01/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND One out of four children with neonatal asphyxia has lung involvement. Still, there has been little research on injury mechanisms of hypoxia-reoxygenation in the neonatal lung. OBJECTIVES To make a temporal profile of the gene expression changes of 44 a priori selected genes after hypoxia-reoxygenation in the newborn mouse lung, and to compare the changes after hyperoxic and normoxic reoxygenation. METHODS Postnatal day 7 mice were randomized to 2-hour hypoxia (8% O2) and 30-min reoxygenation in either 60% O2 or air. After 0-72 h of observation, gene expression changes and protein concentrations in whole lung homogenates were examined. RESULTS Immediately after completed reoxygenation, 7 genes of mediators of inflammation were downregulated, and there was an antiapoptotic gene expression pattern. Three DNA glycosylases were downregulated, while genes involved in cell cycle renewal indicated both increased and decreased cell cycle arrest. Sod1 (T2.5h median H60: 1.01, H21: 0.88, p = 0.005; T5h median H60: 1.04, H21: 0.85, p = 0.038) and Il1b (T0h median H60: 0.86, H21: 1.08, p = 0.021) were significantly differentially expressed when comparing hyperoxic and normoxic reoxygenation. CONCLUSION In this newborn mouse lung hypoxia-reoxygenation model, we found downregulation of genes of mediators of inflammation, an antiapoptotic gene expression pattern, and downregulation of DNA glycosylases. Sod1 and Il1b were significantly differentially expressed when comparing reoxygenation using 60% O2 with air.
Collapse
Affiliation(s)
- Anne Gro W Rognlien
- Division of Paediatric and Adolescent Medicine, Department of Pediatric Research, University of Oslo, Oslo University Hospital HF, Oslo, Norway
| | | | | | | |
Collapse
|