1
|
Wang H, Wu Z, Zhao A, Wang Y, Li Q, Zhang L, Wang Z, Li T, Zhao J. Distinct patterns and processes of eukaryotic phytoplankton communities along a steep elevational gradient in highland rivers. ENVIRONMENTAL RESEARCH 2025; 275:121427. [PMID: 40113062 DOI: 10.1016/j.envres.2025.121427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Phytoplankton play a crucial role in biogeochemical cycling and aquatic food webs while also susceptible to environmental variations. However, their response to altitude gradients remains poorly understood. In this study, we applied a metabarcoding approach to explore eukaryotic phytoplankton community structure, co-occurrence networks, and assembly processes along a steep altitudinal gradient (590-4500 m) in the Nyang River and the lower reaches of the Yarlung Zangbo River on the Qinghai-Tibetan Plateau during dry and wet seasons. Using 18S rDNA sequencing, we obtained 2852 amplicon sequence variants. Our results demonstrated that Ochrophyta was the dominant taxon in the eukaryotic phytoplankton community across both seasons. Alpha diversity exhibited distinct seasonal patterns, decreasing monotonically with increasing altitude in the dry season whereas the highest diversity was observed at medium altitudes in the wet season. Phytoplankton co-occurrence networks became more topologically complex as species diversity increased. Among environmental factors, altitude (r = 0.62), water temperature (r = 0.52) and pH (r = 0.51) significantly influenced phytoplankton communities. Stochastic processes globally dominated phytoplankton community assembly (66 %) and became increasingly influential from dry season (51 %) to wet season (71 %). Their impact gradually increased from low altitude (57 %) to medium altitude (64 %), but deterministic processes overwhelming dominated community assembly at the higher altitude in both seasons (dry season: 95 %, wet season 71 %). In summary, these findings enhance our understanding of the spatial and temporal dynamics of eukaryotic phytoplankton communities in highland rivers and the maintenance of planktonic diversity along elevational gradients.
Collapse
Affiliation(s)
- Haotian Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Zhigang Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Aiwen Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Youxin Wang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Xizang University, Lhasa, 850000, People's Republic of China
| | - Qi Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Lin Zhang
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Zhong Wang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Xizang University, Lhasa, 850000, People's Republic of China; The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Tao Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China.
| | - Jindong Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China; School of Life Sciences, Peking University, Beijing, 100871, People's Republic of China
| |
Collapse
|
2
|
Mazzei V, Sullivan KL, Loftin K. Phytoplankton assemblage structure, drivers, and thresholds with a focus on harmful algal bloom ecology in the Lake Okeechobee system, Florida, USA. HARMFUL ALGAE 2025; 142:102744. [PMID: 39947844 DOI: 10.1016/j.hal.2024.102744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 05/09/2025]
Abstract
Untangling the complexities of harmful algal bloom (HAB) dynamics is an ongoing effort that requires a fundamental understanding of spatiotemporal phytoplankton patterns and the environmental filters through which assemblages are structured. To this aim, monthly field surveys were conducted from 2019 to 2021 at 21 sites in Lake Okeechobee, Florida - a large, shallow, eutrophic, and heavily managed lake with coastal connectivity that experiences intense and recurrent HABs. Phytoplankton assemblages were strongly spatially structured forming 7 distinct lake zones with significant dissimilarity in composition and total abundance. While successional patterns were not apparent across seasons or wet/dry periods, total phytoplankton abundance was significantly greater towards the end of the wet season. Distance-based linear models using 16 abiotic variables were used to identify significant explanatory variables of spatial and temporal patterns. The spatial model explained 93 % of the variability suggesting deterministic processes largely control spatial patterns. The temporal model explained only 48 % of the temporal variability suggesting stochasticity in lake-wide shifts in assemblages over time. However, the strong spatial structuring of assemblages may preclude lake-wide succession patterns. Total algal abundance metrics were inversely related to nitrate, orthophosphate, and total alkalinity, the strongest explanatory variables of assemblage patterns, suggesting a lag between peak resources and peak abundance as phytoplankton cycle "boom-to-bust" phases. Consistent with this inverse relationship, Threshold Indicator Taxa Analysis returned almost exclusively negative responder indicator taxa for all three explanatory variable gradients. The assemblage-level threshold defined the gradient boundary between boom- and bust-associated indicator taxa. These data contribute novel information about HABs ecology pertinent to management strategies.
Collapse
Affiliation(s)
| | | | - Keith Loftin
- U.S. Geological Survey, Lawrence, KS, 66049, USA
| |
Collapse
|
3
|
Luo A, Chen H, Gao X, Carvalho L, Zhang H, Yang J. The impact of rainfall events on dissolved oxygen concentrations in a subtropical urban reservoir. ENVIRONMENTAL RESEARCH 2024; 244:117856. [PMID: 38065391 DOI: 10.1016/j.envres.2023.117856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/13/2023] [Accepted: 12/01/2023] [Indexed: 12/25/2023]
Abstract
Understanding controls of dissolved oxygen (DO) concentrations in reservoirs is important as they are important for fisheries and a significant driver of greenhouse gas emissions. The latter is of global significance as IPCC inventories now require greenhouse gas emissions from artificial reservoirs to be included. Declines in dissolved oxygen (DO) concentrations in lakes and reservoirs have been linked to climate change and human activity. However, these effects can vary widely in any given region under various meteorological conditions. There is a clear need to know how changes in weather patterns affect DO in reservoirs by changing internal processes. Based on a six-year (2016-2021) high-frequency (twice a week) dataset from a shallow urban reservoir (Xinglinwan Reservoir) in subtropical China, the long-term (six years) and short-term (8-72-h) drivers of DO concentrations in surface waters were evaluated. Over the past six years, the concentration of DO has gradually decreased in the reservoir from 2016 to 2021. Multivariate adaptive regression spline (MARS) models were developed to identify the key factors explaining variability in DO and partial least squares path models (PLS-PM) were used to explore the short-term relationships between DO and environmental variables in rainy and dry (non-rain) periods, separately. We identified three key drivers operating on different time scales. First, the long-term decline of DO in Xinglinwan Reservoir from 2016 to 2021 was best explained by anthropogenic nutrient inputs. Second, rainy periods prior to sampling reduced DO concentrations indirectly by affecting the algal biomass and nutrient concentrations. This effect varied in complexity with the duration of the rainfall period. Third, water temperature best explained DO concentrations during dry periods, while wind reduced DO by reducing algal biomass. We conclude that anthropogenic nutrient and organic matter inputs drive long-term oxygen declines in urban subtropical reservoirs, while meteorological factors determine short-term variability in DO concentrations.
Collapse
Affiliation(s)
- Anqi Luo
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofei Gao
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | | | - Hongteng Zhang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
4
|
Wei Q, Xu Y, Ruan A. Spatial and temporal patterns of phytoplankton community succession and characteristics of realized niches in Lake Taihu, China. ENVIRONMENTAL RESEARCH 2024; 243:117896. [PMID: 38081348 DOI: 10.1016/j.envres.2023.117896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Understanding the dynamics and succession of phytoplankton in large lakes can help inform future lake management. The study analyzed phytoplankton community variations in Lake Taihu over a 21-year period, focusing on realized niches and their impact on succession. The study developed a niche periodic table with 32 niches, revealing responses to environmental factors and the optimal number of niches. Results showed that the phytoplankton in Lake Taihu showed significant spatial and temporal heterogeneity, with biomass decreasing as one moved from the northwest to the southeast and expanding towards central lake area, and towards autumn and winter. Different phytoplankton groups in Lake Taihu occupied realized niches shaped by temperature, nitrate, and phosphate. To predict the response of eutrophic freshwater lake ecosystems to human activities and climate change, it is critical to interpret the law of phytoplankton bloom and niche succession.
Collapse
Affiliation(s)
- Qi Wei
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Yaofei Xu
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Aidong Ruan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
5
|
Qin B, Zhang Y, Zhu G, Gao G. Eutrophication control of large shallow lakes in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163494. [PMID: 37068663 DOI: 10.1016/j.scitotenv.2023.163494] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 06/01/2023]
Abstract
Large shallow lake refers to a polymictic system that is often well mixed without stratification during summer. Similar to a small and deep lake, a large and shallow lake has a high nutrient retention rate. Differing from a small and deep lake, it has an extensive sediment-water interface and internal loading from sediment, which has led to high susceptibility to eutrophication. There are many large and shallow freshwater lakes in the middle and lower Yangtze River (MLYR), China, experienced eutrophication and cyanobacteria blooms. To address this issue, a variety of methods focused on in-lake physical and biogeochemical processes was explored. The main gains of these studies included: (1) shallow lakes in the floodplain of the Yangtze River are prone to eutrophication because of their high trophic conditions; (2) wind-induced waves determine sediment resuspension, downward dissolved oxygen penetration, and upward soluble reactive nutrient mobilization, while wind-driven currents regulate the spatial distribution of water quality metrics and algal blooms; (3) the low P loss of shallow lakes via sedimentation and high N loss via denitrification lead to a low N:P ratio and N and P colimitation, which demonstrated the significance of dual N and P reduction for eutrophication control in shallow lakes; (4) extensive submerged macrophyte could suppress internal loading in large, shallow waters, but nutrient loading must be reduced and water clarity must be increased; and (5) climate warming promotes cyanobacterial blooms through positive feedback to exacerbate eutrophication in shallow lakes. The lack of action to address the challenges of non-point source pollution and internal loading from the sediment has led to limited effectiveness of eutrophication control in large shallow lakes under climate warming. In the future, the management of large shallow eutrophic lakes in China must combine social sciences (economic development) with natural technology (pollution reduction) to achieve sustainability.
Collapse
Affiliation(s)
- Boqiang Qin
- Nanjing Institute of Geography & Limnology, Chinese Academy of Science, Nanjing, China; School of Geography and Oceanography, Nanjing University, Nanjing, China; School of Hydrology, Hohai University, Nanjing, China.
| | - Yunlin Zhang
- Nanjing Institute of Geography & Limnology, Chinese Academy of Science, Nanjing, China
| | - Guangwei Zhu
- Nanjing Institute of Geography & Limnology, Chinese Academy of Science, Nanjing, China
| | - Guang Gao
- Nanjing Institute of Geography & Limnology, Chinese Academy of Science, Nanjing, China
| |
Collapse
|
6
|
Deng J, Shan K, Shi K, Qian SS, Zhang Y, Qin B, Zhu G. Nutrient reduction mitigated the expansion of cyanobacterial blooms caused by climate change in Lake Taihu according to Bayesian network models. WATER RESEARCH 2023; 236:119946. [PMID: 37084577 DOI: 10.1016/j.watres.2023.119946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Although nutrient reduction has been used for lake eutrophication mitigation worldwide, the use of this practice alone has been shown to be less effective in combatting cyanobacterial blooms, primarily because of climate change. In addition, quantifying the climate change contribution to cyanobacterial blooms is difficult, further complicating efforts to set nutrient reduction goals for mitigating blooms in freshwater lakes. This study employed a continuous variable Bayesian modeling framework to develop a model to predict spring cyanobacterial bloom areas and frequencies (the responses) using nutrient levels and climatic factors as predictors. Our results suggested that both spring climatic factors (e.g., increasing temperature and decreasing wind speed) and nutrients (e.g., total phosphorus) played vital roles in spring blooms in Lake Taihu, with climatic factors being the primary drivers for both bloom areas and frequencies. Climate change in spring had a 90% probability of increasing the bloom area from 35 km2 to 180 km2 during our study period, while nutrient reduction limited the bloom area to 170 km2, which helped mitigate expansion of cyanobacterial blooms. For lake management, to ensure a 90% probability of the mean spring bloom areas remaining under 154 km2 (the 75th percentile of the bloom areas in spring), the total phosphorus should be maintained below 0.073 mg·L-1 under current climatic conditions, which is a 46.3% reduction from the current level. Our modeling approach is an effective method for deriving dynamic nutrient thresholds for lake management under different climatic scenarios and management goals.
Collapse
Affiliation(s)
- Jianming Deng
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Kun Shan
- Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Kun Shi
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Song S Qian
- Department of Environmental Sciences, University of Toledo, Toledo, Ohio OH 43606, USA
| | - Yunlin Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Guangwei Zhu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
7
|
Chai X, Zheng L, Liu J, Zhan J, Song L. Comparison of photosynthetic responses between haptophyte Phaeocystis globosa and diatom Skeletonema costatum under phosphorus limitation. Front Microbiol 2023; 14:1085176. [PMID: 36756351 PMCID: PMC9899818 DOI: 10.3389/fmicb.2023.1085176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
The diatom Skeletonema costatum and the haptophyte Phaeocystis globosa often form blooms in the coastal waters of the South China Sea. Skeletonema costatum commonly dominates in nutrient enrichment coastal waters, whereas P. globosa starts flourishing after the diatom blooms when phosphorus (P) is limited. Therefore, P limitation was proposed to be a critical factor affecting diatom-haptophyte transition. To elucidate the tolerance to P limitation in P. globosa compared with S. costatum, the effect of P limitation on their photosystem II (PSII) performance was investigated and their photosynthesis acclimation strategies in response to P limitation were evaluated. P limitation did not affect the growth of P. globosa over 7 days but decreased it for S. costatum. Correspondingly, the PSII activity of S. costatum was significantly inhibited by P limitation. The decline in PSII activity in S. costatum under P limitation was associated with the impairment of the oxygen-evolving complex (the donor side of PSII), the hindrance of electron transport from QA - to QB (the acceptor side of PSII), and the inhibition of electron transport to photosystem I (PSI). The 100% decrease in D1 protein level of S. costatum after P limitation for 6 days and PsbO protein level after 2 days of P limitation were attributed to its enhanced photoinhibition. In contrast, P. globosa maintained its photosynthetic activity with minor impairment of the function of PSII. With accelerated PSII repair and highly increased non-photochemical quenching (NPQ), P. globosa can avoid serious PSII damage under P limitation. On the contrary, S. costatum decreased its D1 restoration under P limitation, and the maximum NPQ value in S. costatum was only one-sixth of that in P. globosa. The present work provides extensive evidence that a close interaction exists between the tolerance to P limitation and photosynthetic responses of S. costatum and P. globosa.
Collapse
Affiliation(s)
- Xiaojie Chai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lingling Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jin Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiao Zhan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,*Correspondence: Jiao Zhan, ✉
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
8
|
Dauda S, Lombardi AT. Environmentally relevant copper concentrations stimulate photosynthesis in Monoraphidium sp. PHOTOSYNTHESIS RESEARCH 2023; 155:49-58. [PMID: 36266605 DOI: 10.1007/s11120-022-00976-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Microalgae require copper (Cu) in trace levels for their growth and metabolism, it is a vital component of certain metalloproteins. Although this element has been widely studied concerning microalgae physiology, the effects of environmentally relevant levels have been less studied. We studied the photosynthesis and growth of the Chlorophyte Monoraphidium sp. exposed to Cu ranging from low (1.7 nM) to high (589.0 nM) free Cu ions (Cu2+) concentrations. The growth rate was unaffected by Cu concentrations in the range of 1.7-7.4 nM Cu2+, but decreased beyond it. The relative maximum electron transport rate (rETRm), saturation irradiance (Ek), photochemical quenching (qP and qL), and PSII operating efficiency [Formula: see text] were stimulated in the 3.4-7.4 nM Cu2+ range, concentrations slightly higher than the control, whereas non-photochemical quenching (NPQ) gradually increased with increasing Cu2+. The photosystem II antenna size [Sigma (II)440] increased under high Cu (589.0 nM), which resulted in a decrease in the quinone A (QA) reduction time (tau). In contrast, the QA re-oxidation time was unaffected by Cu exposure. These findings show that a slight increase in Cu stimulated photosynthesis in Monoraphidium sp., whereas high Cu reduced photosynthesis and increased the dissipation of captured light energy. This research is a contribution to the understanding of the dynamic photo-physiological responses of Monoraphidium sp. to Cu ions.
Collapse
Affiliation(s)
- Suleiman Dauda
- Programa de Pós-Graduação em Ecologia e Recursos Naturais (PPGERN), Universidade Federal de São Carlos (UFSCar), São Carlos, SP, CEP 13565-905, Brazil.
- Departamento de Botânica, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, CEP 13565-905, Brazil.
| | - Ana Teresa Lombardi
- Departamento de Botânica, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, CEP 13565-905, Brazil
| |
Collapse
|
9
|
Synthetic periphyton as a model system to understand species dynamics in complex microbial freshwater communities. NPJ Biofilms Microbiomes 2022; 8:61. [PMID: 35869094 PMCID: PMC9307524 DOI: 10.1038/s41522-022-00322-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractPhototrophic biofilms, also known as periphyton, are microbial freshwater communities that drive crucial ecological processes in streams and lakes. Gaining a deep mechanistic understanding of the biological processes occurring in natural periphyton remains challenging due to the high complexity and variability of such communities. To address this challenge, we rationally developed a workflow to construct a synthetic community by co-culturing 26 phototrophic species (i.e., diatoms, green algae, and cyanobacteria) that were inoculated in a successional sequence to create a periphytic biofilm on glass slides. We show that this community is diverse, stable, and highly reproducible in terms of microbial composition, function, and 3D spatial structure of the biofilm. We also demonstrate the ability to monitor microbial dynamics at the single species level during periphyton development and how their abundances are impacted by stressors such as increased temperature and a herbicide, singly and in combination. Overall, such a synthetic periphyton, grown under controlled conditions, can be used as a model system for theory testing through targeted manipulation.
Collapse
|
10
|
Xiao M, Burford MA, Wood SA, Aubriot L, Ibelings BW, Prentice MJ, Galvanese EF, Harris TD, Hamilton DP. Schindler's legacy: from eutrophic lakes to the phosphorus utilization strategies of cyanobacteria. FEMS Microbiol Rev 2022; 46:fuac029. [PMID: 35749580 PMCID: PMC9629505 DOI: 10.1093/femsre/fuac029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/01/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
David Schindler and his colleagues pioneered studies in the 1970s on the role of phosphorus in stimulating cyanobacterial blooms in North American lakes. Our understanding of the nuances of phosphorus utilization by cyanobacteria has evolved since that time. We review the phosphorus utilization strategies used by cyanobacteria, such as use of organic forms, alternation between passive and active uptake, and luxury storage. While many aspects of physiological responses to phosphorus of cyanobacteria have been measured, our understanding of the critical processes that drive species diversity, adaptation and competition remains limited. We identify persistent critical knowledge gaps, particularly on the adaptation of cyanobacteria to low nutrient concentrations. We propose that traditional discipline-specific studies be adapted and expanded to encompass innovative new methodologies and take advantage of interdisciplinary opportunities among physiologists, molecular biologists, and modellers, to advance our understanding and prediction of toxic cyanobacteria, and ultimately to mitigate the occurrence of blooms.
Collapse
Affiliation(s)
- Man Xiao
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu, 210008, China
| | - Michele A Burford
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
| | - Susanna A Wood
- Coastal and Freshwater Group, Cawthron Institute, Nelson, 7010, New Zealand
| | - Luis Aubriot
- Phytoplankton Physiology and Ecology Group, Sección Limnología, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias; Universidad de la República, Montevideo, 11400, Uruguay
| | - Bas W Ibelings
- Department F.-A. Forel for Aquatic and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Geneva, 1290, Switzerland
| | - Matthew J Prentice
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
| | - Elena F Galvanese
- Laboratório de Análise e Síntese em Biodiversidade, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba-PR, 81531-998, Brazil
- Programa de Pós-graduação em Ecologia e Conservação, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba-PR, 80060-140, Brazil
| | - Ted D Harris
- Kansas Biological Survey and Center for Ecological Research, Lawrence, KS, 66047, United States
| | - David P Hamilton
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
11
|
Su PW, Lo SL. Satellite imagery: a way to monitor water quality for the future? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57022-57029. [PMID: 35723825 DOI: 10.1007/s11356-022-21524-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Monitoring water at high spatial and temporal resolutions is important for maintaining water quality because the cost of pollution remediation is often higher than the cost of early prevention or intervention. In recent decades, the availability and affordability of satellite images have regularly increased, thus supporting higher-frequency and lower-cost alternative methods for monitoring water quality. The core step in satellite remote sensing detection is inverse modeling, which is used to calibrate model parameters and enhance the similarity between the model and the real system being simulated. The reflectance values measured at water quality stations are extracted from atmosphere-corrected satellite imagery for analysis. However, various external environmental, hydrological, and meteorological factors affect the evaluation results, and the results obtained with different parameters can vary. This literature review shows that nonpoint-source pollution caused by stormwater runoff can also be monitored using satellite imagery. To improve the accuracy of satellite-based water quality prediction, the temporal resolution of field measurements can be increased, thus better considering the influence of seasonality. Then, the atmospheric correction module can be improved by using available atmospheric water content products. Moreover, because water surface ripples affect reflectance, wind speed and direction should be considered when comparing water quality scenes.
Collapse
Affiliation(s)
- Po-Wen Su
- Graduate Institute of Environmental Engineering, National Taiwan University, Chou-Shan Rd, 71, Taipei, 10673, Taiwan
| | - Shang-Lien Lo
- Graduate Institute of Environmental Engineering, National Taiwan University, Chou-Shan Rd, 71, Taipei, 10673, Taiwan.
- Water Innovation, Low Carbon and Environmental Sustainability Research Center, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
12
|
Shi X, Luo X, Jiao JJ, Zuo J. Dominance of evaporation on lacustrine groundwater discharge to regulate lake nutrient state and algal blooms. WATER RESEARCH 2022; 219:118620. [PMID: 35598468 DOI: 10.1016/j.watres.2022.118620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
As global threats to freshwater lakes, eutrophication and harmful algal blooms (HABs) are governed by various biogeochemical, climatological and anthropogenic processes. Groundwater is key to join these processes in regulating HABs, but the underlying mechanisms remain unclear. Here, we leveraged basin-wide field data of Lake Taihu (China's largest eutrophic lake) and global archives, and demonstrate the dominance of evaporation on lacustrine groundwater discharge (LGD) in shallow lakes. We extrapolated decadal LGD and the derived nutrient loadings and found that HABs promptly consume ubiquitous groundwater borne nutrients, leading lake water N: P ratios 2-3 months time lagged behind LGD N: P ratios. We conclude that evaporation dominated LGD is an unraveled but crucial regulator of nutrient states and HABs in shallow lakes, which advocates synergistical studies from both climatological and hydrogeological perspective when restoring lake ecosystems.
Collapse
Affiliation(s)
- Xiaoyan Shi
- Department of Earth Sciences, The University of Hong Kong, Hong Kong; The University of Hong Kong, Zhejiang Institution of Research and Innovation (ZIRI), Hangzhou, China
| | - Xin Luo
- Department of Earth Sciences, The University of Hong Kong, Hong Kong; The University of Hong Kong, Zhejiang Institution of Research and Innovation (ZIRI), Hangzhou, China
| | - Jiu Jimmy Jiao
- Department of Earth Sciences, The University of Hong Kong, Hong Kong; The University of Hong Kong, Zhejiang Institution of Research and Innovation (ZIRI), Hangzhou, China.
| | - Jinchao Zuo
- The University of Hong Kong, Zhejiang Institution of Research and Innovation (ZIRI), Hangzhou, China; The University of Hong Kong, Shenzhen Institution of Research and Innovation (SIRI), Shenzhen, China
| |
Collapse
|
13
|
Ren L, Ding K, Hu Z, Wang H, Qi N, Xu W. Processes and mechanisms of phosphorus mobility among sediment, water, and cyanobacteria under hydrodynamic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9354-9368. [PMID: 34505238 DOI: 10.1007/s11356-021-16255-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) has an important role in eutrophication and it is essential to explore the processes and mechanisms of P mobility in natural waters. In this study, laboratory experiments were conducted to simulate the SW system (sediment and water) and SAW system (sediment, algae, and water) under four hydrodynamic intensity conditions (static control, 50 rpm, 125 rpm, and 200 rpm treatments), to investigate P mobility. Results in SW system showed that sediment was an important source of P for overlying water, and the released total P (TP) increased with stronger hydrodynamic intensity, when P associated with metal pools (redox-sensitive P [BD-P] and meta-oxides bound P [NaOH-P]) were the most unstable and easier to migrate into the overlying water. Stronger hydrodynamic disturbances could enhance the processes including sediment resuspension, dissolution of particles, and release of P, when P mobility had a close relationship with redox conditions near sediment-water interface (SWI). Therefore, the release of TP, BD-P, and NaOH-P from sediment increased and decreased in the control and 50-200 rpm treatments over time. In SAW system, the release of TP significantly increased from sediment comparing to SW system, and the growth of Microcystis aeruginosa could selectively enhance the release of BD-P, NaOH-P, and organic P (OP). Meanwhile, the released P from sediment was quickly accumulated by algal cells. The maximum accumulation ability of P by cells, the highest photosynthetic efficiency, and the best growth of M. aeruginosa were observed in 125 rpm treatment. But with excessively strong hydrodynamic intensity (200 rpm treatment), the accumulation ability of P and alkaline phosphatase activity (APA) of M. aeruginosa was suppressed, which might hinder algal utilization of P and inhibit algal growth. Overall, our findings demonstrated the patterns of P mobility in natural ecosystems and could contribute to the understanding of P cycling.
Collapse
Affiliation(s)
- Lingxiao Ren
- College of Environmental Engineering, Nanjing Institute of Technology, 211167, Nanjing, People's Republic of China.
| | - Keqiang Ding
- College of Environmental Engineering, Nanjing Institute of Technology, 211167, Nanjing, People's Republic of China
| | - Zhixin Hu
- College of Environmental Engineering, Nanjing Institute of Technology, 211167, Nanjing, People's Republic of China
| | - Huiya Wang
- College of Environmental Engineering, Nanjing Institute of Technology, 211167, Nanjing, People's Republic of China
| | - Ning Qi
- College of Environment and Resources, Chongqing Technology and Business University, 400067, Chongqing, People's Republic of China
| | - Wei Xu
- College of Environmental Engineering, Nanjing Institute of Technology, 211167, Nanjing, People's Republic of China
| |
Collapse
|
14
|
Li J, Wang Y, Li W, Bhat SA, Wei Y, Deng Z, Hao X, Li F. Accumulation capability for cesium differs among bacterial species: A comprehensive study using bacteria isolated from freshwater and coastal sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118431. [PMID: 34743968 DOI: 10.1016/j.envpol.2021.118431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
The fate and behavior of radioactive cesium (Cs) in the water environment are of great concern. The involvement of bacteria regarding their accumulation capability for this element is the most fundamental factor that needs to be clarified even for exploring the interactions between many environmental factors that involve together in governing the transport and distribution of Cs. As the first systematical study that aimed to evaluate the accumulation capability of environmental bacteria for Cs, bacteria in the sediment of a freshwater reservoir and coastal water environment were isolated and multiplied for contact experiment with Cs under different temperature conditions (5, 25, and 35 °C). The accumulation concentration of Cs in bacteria from freshwater sediment varied in 3.95 × 10-6 to 5.68 × 10-4ng-Cs/cell, and that from coastal sediment in 1.52 × 10-6 to 7.41 × 10-4ng-Cs/cell, indicating obvious differences among bacterial species. Bacteria of coastal sediment possessed higher accumulation capability for Cs than bacteria from freshwater sediment, and temperature dependency was confirmed for bacteria from coastal sediment. The findings of this study have great reference value for better understanding and controlling the fate and behavior of radioactive Cs associated with bacteria in the water environment.
Collapse
Affiliation(s)
- Jiefeng Li
- Department of Architecture, Lu Liang University, Luliang, 033001, PR China.
| | - Yajie Wang
- Department of Life Science, Lu Liang University, Luliang, 033001, PR China; Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Wenjiao Li
- Graduate School of Global Environmental Studies, Kyoto University, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Sartaj Ahmad Bhat
- Department of Environmental Sciences, Government Degree College Anantnag, Khanabal, Jammu and Kashmir, 192101, India; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yongfen Wei
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Zhiyi Deng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Xiaodi Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering & Architecture, Beijing, 100044, PR China
| | - Fusheng Li
- Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
15
|
Florescu LI, Moldoveanu M, Parpală L, Pacioglu O. The plankton assemblages as potential bioindicators in the environmental conditions of Danube Delta. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00899-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Water quality drives the regional patterns of an algal metacommunity in interconnected lakes. Sci Rep 2021; 11:13601. [PMID: 34193969 PMCID: PMC8245656 DOI: 10.1038/s41598-021-93178-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
The metacommunity approach provides insights into how the biological communities are assembled along the environmental variations. The current study presents the importance of water quality on the metacommunity structure of algal communities in six river-connected lakes using long-term (8 years) monitoring datasets. Elements of metacommunity structure were analyzed to evaluate whether water quality structured the metacommunity across biogeographic regions in the riverine ecosystem. The algal community in all lakes was found to exhibit Clementsian or quasi-Clementsian structure properties such as significant turnover, grouped and species sorting indicating that the communities responded to the environmental gradient. Reciprocal averaging clearly classified the lakes into three clusters according to the geographical region in river flow (upstream, midstream, and downstream). The dispersal patterns of algal genera, including Aulacoseira, Cyclotella, Stephanodiscus, and Chlamydomonas across the regions also supported the spatial-based classification results. Although conductivity, chemical oxygen demand, and biological oxygen demand were found to be important variables (loading > |0.5|) of the entire algal community assembly, water temperature was a critical factor in water quality associated with community assembly in each geographical area. These results support the notion that the structure of algal communities is strongly associated with water quality, but the relative importance of variables in structuring algal communities differed by geological regions.
Collapse
|
17
|
Paerl HW. Tackling Harmful Cyanobacterial Blooms with Chinese Colleagues: We're All in the Same Boat. JOURNAL OF PHYCOLOGY 2020; 56:1398-1403. [PMID: 33460090 DOI: 10.1111/jpy.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/12/2020] [Indexed: 06/12/2023]
Abstract
Harmful cyanobacterial blooms (CyanoHABs) are a rapidly proliferating global problem, threatening the use and sustainability of our freshwater resources. In recent decades, the United States, China, and other developed and developing countries threatened by CyanoHAB expansion have established collaborative efforts aimed at mitigating and managing this environmental and human health problem. However, an escalating negative political climate and restrictive policies on scientific exchange threaten these efforts. In this Perspective, I point to progress that has been made to counter the CyanoHAB problem on U.S.-Chinese fronts through our collaborations, which have been mutually beneficial from research and academic perspectives. Much like global efforts now needed to control pandemics, we are all "in the same boat" when to comes to countering the threat CyanoHABs pose for drinkable, swimmable, and fishable freshwater supplies and human health.
Collapse
Affiliation(s)
- Hans W Paerl
- Institute of Marine Sciences, The University of North Carolina at Chapel Hill, Morehead City, North Carolina, 28557, USA
| |
Collapse
|
18
|
Cheng L, Kattel G, Xue B, Yao S, Li L, Liu J. Application of subfossil Bosmina and its δ 13C values in tracing the long-term food web dynamics of shallow eutrophic lakes: A case in Taihu Lake, southeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:138909. [PMID: 32388368 DOI: 10.1016/j.scitotenv.2020.138909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Cladoceran subfossil assemblages have been used successfully to trace the signals of long-term changes in lake eutrophication. However, their potential for reconstructing food webs has not yet been explored extensively. Here, we assess whether the stable carbon isotope analysis (SCIA) of subfossil Bosmina can be used to reconstruct the eutrophication and food web history of a shallow lake in southeast China. Two 210Pb-dated sediment cores were collected from the western and central parts of Taihu Lake, one of the largest eutrophic lakes in the region. Multiproxy analyses of the cores were performed, including of the subfossil Bosmina assemblages, stable carbon isotopes of subfossil Bosmina (δ13Cs-bos) and bulk sediment (δ13Corg), total organic carbon (TOC), loss on ignition (LOI), C/N, total nitrogen (TN), and total phosphorous (TP). Stable carbon isotopes of living algae (δ13Calg) and Bosmina (δ13Cl-bos) were also measured at the same sampling locations. The δ13Cs-bos gradually declined over time with reciprocal increases in the assemblages of subfossil Bosmina and total cladocerans and in the TOC, LOI, TN and TP in both cores. The δ13Calg and δ13Cl-bos values further revealed depleted 13C. The changes in the δ13Cs-bos in relation to the other proxies indicated rapid nutrient enrichment and a possible shift in the food web in Taihu Lake, providing new insight into the reconstruction of food webs and eutrophication in shallow lakes in southeast China.
Collapse
Affiliation(s)
- Longjuan Cheng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Shijingshan District (A), Beijing 100049, China
| | - Giri Kattel
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Department of Infrastructure Engineering, University of Melbourne, Victoria 3010, Australia; Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Bin Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Shuchun Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lingling Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Shijingshan District (A), Beijing 100049, China
| | - Jinliang Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Shijingshan District (A), Beijing 100049, China
| |
Collapse
|
19
|
Chen H, Lürling M. Calcium promotes formation of large colonies of the cyanobacterium Microcystis by enhancing cell-adhesion. HARMFUL ALGAE 2020; 92:101768. [PMID: 32113593 DOI: 10.1016/j.hal.2020.101768] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Large Microcystis colonies can lead to the rapid formation of surface accumulations, which are a globally significant environmental issue. Laboratory studies have shown that Ca2+ can quickly promote non-classical Microcystis colony formation via cell-adhesion, but our knowledge of the changes in the morphology of these colonies during subsequent long-term culture with Ca2+ is limited. In this study, a 72-day cultivation experiment was conducted to determine the long-term effects of Ca2+ on Microcystis colony formation. Laboratory results indicate that Ca2+ causes Microcystis to rapidly aggregate and form a colony through cell adhesion, then colony formation by cell-adhesion lost dominance, owing to the decrease in Ca2+ concentrations caused by precipitation/complexation. Although the initial colony morphology by cell adhesion is sparse, the newly divided cells, without separating from the mother cells, constantly fill the gaps in the original colony at Ca2+ concentrations >40 mg L-1 for a long time, which creates colonies on day 72 with a morphology similar to that of M. ichthyoblabe in Lake Taihu. If the Ca2+ levels in Lake Taihu continue to increase, Microcystis growth rate will decrease only slightly, while the colony proportion of total biovolume and biomass will increase. Moreover, higher Ca2+ concentrations do not affect microcystin content, but promote the content of bound extracellular polysaccharides (bEPS), enabling formation of larger colonies, which may promote Microcystis surface accumulation.
Collapse
Affiliation(s)
- Huaimin Chen
- College of Environment, Hohai University, No. 1 Xikang Road, Nanjing, 210098, PR China; Aquatic Ecology & Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands.
| | - Miquel Lürling
- Aquatic Ecology & Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
20
|
Du XP, Cai ZH, Zuo P, Meng FX, Zhu JM, Zhou J. Temporal Variability of Virioplankton during a Gymnodinium catenatum Algal Bloom. Microorganisms 2020; 8:microorganisms8010107. [PMID: 31940944 PMCID: PMC7023004 DOI: 10.3390/microorganisms8010107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/18/2019] [Accepted: 01/10/2020] [Indexed: 01/02/2023] Open
Abstract
Viruses are key biogeochemical engines in the regulation of the dynamics of phytoplankton. However, there has been little research on viral communities in relation to algal blooms. Using the virMine tool, we analyzed viral information from metagenomic data of field dinoflagellate (Gymnodinium catenatum) blooms at different stages. Species identification indicated that phages were the main species. Unifrac analysis showed clear temporal patterns in virioplankton dynamics. The viral community was dominated by Siphoviridae, Podoviridae, and Myoviridae throughout the whole bloom cycle. However, some changes were observed at different phases of the bloom; the relatively abundant Siphoviridae and Myoviridae dominated at pre-bloom and peak bloom stages, while at the post-bloom stage, the members of Phycodnaviridae and Microviridae were more abundant. Temperature and nutrients were the main contributors to the dynamic structure of the viral community. Some obvious correlations were found between dominant viral species and host biomass. Functional analysis indicated some functional genes had dramatic response in algal-associated viral assemblages, especially the CAZyme encoding genes. This work expands the existing knowledge of algal-associated viruses by characterizing viral composition and function across a complete algal bloom cycle. Our data provide supporting evidence that viruses participate in dinoflagellate bloom dynamics under natural conditions.
Collapse
Affiliation(s)
- Xiao-Peng Du
- The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhong-Hua Cai
- The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ping Zuo
- The School of Geography and Ocean Science, Nanjing University, Nanjing 210000, China;
| | - Fan-Xu Meng
- Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310000, China
| | - Jian-Ming Zhu
- The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jin Zhou
- The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
21
|
Krichen E, Rapaport A, Le Floc'h E, Fouilland E. Demonstration of facilitation between microalgae to face environmental stress. Sci Rep 2019; 9:16076. [PMID: 31690754 PMCID: PMC6831635 DOI: 10.1038/s41598-019-52450-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/14/2019] [Indexed: 11/29/2022] Open
Abstract
Positive interactions such as facilitation play an important role during the biological colonization and species succession in harsh or changing environments. However, the direct evidence of such ecological interaction in microbial communities remains rare. Using common freshwater microalgae isolated from a High Rate Algal Pond HRAP treating wastewaters, we investigated with both experimental and modeling approaches the direct facilitation between two algal strains during the colonization phase. Our results demonstrate that the first colonization by microalgae under a severe chemical condition arose from the rapid growth of pioneer species such as Chlorella sorokiniana, which facilitated the subsequent colonization of low growth specialists such as Scenedesmus pectinatus. The pioneer species rapidly depleted the total available ammonia nitrogen favoring the specialist species initially inhibited by free ammonia toxicity. This latter species ultimately dominated the algal community through competitive exclusion under low nutrient conditions. We show that microbial successions are not only regulated by climatic conditions but also by interactions between species based on the ability to modify their growth conditions. We suggest that facilitation within the aquatic microbial communities is a widespread ecological interaction under a vast range of environmental stress.
Collapse
Affiliation(s)
- Emna Krichen
- MARBEC, Univ. Montpellier, CNRS, IFREMER, IRD, Sète, France
- MISTEA, Univ. Montpellier, INRA, SupAgro, Montpellier, France
- ADEME, Agence de l'environnement et de la Maîtrise de l'Energie, 20 avenue du Grésillé, BP 90406, 49004, Angers, Cedex 01, France
| | - Alain Rapaport
- MISTEA, Univ. Montpellier, INRA, SupAgro, Montpellier, France
| | | | - Eric Fouilland
- MARBEC, Univ. Montpellier, CNRS, IFREMER, IRD, Sète, France.
| |
Collapse
|
22
|
Su X, Steinman AD, Oudsema M, Hassett M, Xie L. The influence of nutrients limitation on phytoplankton growth and microcystins production in Spring Lake, USA. CHEMOSPHERE 2019; 234:34-42. [PMID: 31203039 DOI: 10.1016/j.chemosphere.2019.06.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/22/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
Due to excessive loadings of nitrogen (N) and phosphorus (P), frequent blooms of harmful cyanobacteria and their associated cyanotoxins pose serious threats to recreational usage and human health. However, whether cyanobacteria growth and toxin production are limited by N, P, or both N + P is still not clear. Thus, we conducted a nutrient enrichment bioassay in situ in Spring Lake, a eutrophic lake in west Michigan, USA, to examine the influence of nutrient limitation on the proliferation of algal blooms and the production of microcystins (MC). N or P addition alone resulted in a slight increase in the concentration of chlorophyll-a (Chl-a), suggesting a positive effect on phytoplankton growth, but alone, neither were sufficient to induce algal blooms. In contrast, the combination of N and P had a significant and positive influence on phytoplankton growth and MC production. Compared to controls, the N + P treatment resulted in high concentrations of Chl-a and MC, as well as high pH and dissolved oxygen. In addition, significant increases were observed in different MC analogues for each treatment; the highest concentrations of intracellular MC-LR, -RR, -YR, and TMC (total MC) were found in the N + P treatment with values of 9.16, 6.10, 2.57, and 17.82 μg/L, respectively. This study suggests that at least in this temperate coastal lake, cyanobacterial blooms and associated MC are influenced more by combined N and P enrichment than by N or P alone, indicating that managing both nutrients is important for effectively reducing algal blooms and MC production.
Collapse
Affiliation(s)
- Xiaomei Su
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Sciences, Nanjing, 210036, China
| | - Alan D Steinman
- Annis Water Resources Institute, Grand Valley State University, Muskegon, MI, 49441, USA
| | - Maggie Oudsema
- Annis Water Resources Institute, Grand Valley State University, Muskegon, MI, 49441, USA
| | - Michael Hassett
- Annis Water Resources Institute, Grand Valley State University, Muskegon, MI, 49441, USA
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
23
|
Li H, Alsanea A, Barber M, Goel R. High-throughput DNA sequencing reveals the dominance of pico- and other filamentous cyanobacteria in an urban freshwater Lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 661:465-480. [PMID: 30677691 DOI: 10.1016/j.scitotenv.2019.01.141] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
The current study presents findings related to algal blooms in a fresh water lake, which has been experiencing severe cyanobacterial blooms (CyanoHABs). Primarily, picocyanobacteria belonging to the genus Synechococcus and filamentous cyanobacterial group belonging to Aphanizomenon and Dolichospermum dominated top water column during non-bloom and bloom periods respectively. The dominance of Synechococcus in early summer informs that blooming in Utah Lake starts in early summer and then later is taken over by other bloom-forming cyanobacteria, such as species belonging to the genus Aphanizomenon. A strong negative correlation (r = -0.9, p < 0.001) was found between the occurrence of Aphanizomenon and Synechococcus which correlates very well with the fact that the blooms of these two different cyanobacteria never coexisted. The predominance of cyanobacteria in 2017 was attributed more to temperature (r = 0.18, p < 0.001). The Actinobacteria was negatively correlated with primary production and high chlorophyll a concentration. Flavobacterium and Limnohabitans were the main phytoplankton colonizers and predators detected that could secrete extracellular enzymes to degrade algal exudates (such as proteins and polysaccharides). Additionally, cyanotoxins producers Microcystis aeruginosa and Planktothrix accounted for up to 12.43% and 7.04% of total cyanobacteria abundance during blooms. The relative abundance of chloroplast reads was overall lower than the cyanobacteria reads, except for the May 5th sampling in 2017. There was inter-annual variability in the bloom-associated heterotrophic bacterial populations, but these populations were consistent with bloom-associated bacterial populations found in other lakes. Community diversity analysis for both Shannon and Simpson indices indicated lower community diversity during the bloom period. The beta diversity conducted by PCoA and UPGMA trees suggested the significant temporal rather than spatial impacts on shaping the phytoplankton community structures during the summer season.
Collapse
Affiliation(s)
- Hanyan Li
- Department of Civil and Environmental Engineering, University of Utah, UT, USA
| | - Anwar Alsanea
- Department of Civil and Environmental Engineering, University of Utah, UT, USA
| | - Michael Barber
- Department of Civil and Environmental Engineering, University of Utah, UT, USA
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, UT, USA.
| |
Collapse
|
24
|
Deng J, Paerl HW, Qin B, Zhang Y, Zhu G, Jeppesen E, Cai Y, Xu H. Climatically-modulated decline in wind speed may strongly affect eutrophication in shallow lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1361-1370. [PMID: 30248859 DOI: 10.1016/j.scitotenv.2018.07.208] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 05/20/2023]
Abstract
Surface wind speed has declined significantly globally. However, the response of aquatic systems to decreasing wind speeds has received little attention. We examined the effects of a long-term decrease in wind speed on shallow, eutrophic Lake Taihu, China's third largest lake, by combining high-frequency monitoring, long-term meteorological and water quality data with short-term laboratory sediment nutrient release experiments. The annual mean wind speed showed a significant decreasing trend and the maximum continuous days with wind speed <3 m/s increased significantly from 1996 to 2017. The high-frequency monitoring data showed that bottom water hypoxia occurred occasionally in summer and autumn. The water quality data combined with the experimental results suggest that lower wind speed and longer low wind duration can enhance the release of phosphorus (P) from the sediments and increase nitrogen (N) losses, likely via denitrification, because a longer stability period leads to lower dissolved oxygen concentrations near the lake bottom. The results of Bayesian functional Linear regression with Sparse Step functions (Bliss) indicated that wind speed during spring and summer strongly affected chlorophyll a (Chla) concentrations in the summer by enhancing the release of nutrients from the sediments. The results of the structural equation models indicated that declined wind speed might increase phytoplankton biomass (as Chla) by altering nutrient availability. Increasing water temperatures and decreasing wind speeds synergistically enhance water column stability, which may offset some of the immediate benefits of reductions in external nutrient loading by enhancing internal loading. Given predicted global change, it will become increasingly important to reduce the external nutrient loading for overall improvement of water quality in this and other shallow eutrophic lakes.
Collapse
Affiliation(s)
- Jianming Deng
- Taihu Lake Laboratory Ecosystem Research Station, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hans W Paerl
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, United States; College of Environment, Hohai University, Nanjing 210098, China
| | - Boqiang Qin
- Taihu Lake Laboratory Ecosystem Research Station, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yunlin Zhang
- Taihu Lake Laboratory Ecosystem Research Station, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangwei Zhu
- Taihu Lake Laboratory Ecosystem Research Station, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Erik Jeppesen
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yongjiu Cai
- Taihu Lake Laboratory Ecosystem Research Station, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai Xu
- Taihu Lake Laboratory Ecosystem Research Station, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Li D, Wu N, Tang S, Su G, Li X, Zhang Y, Wang G, Zhang J, Liu H, Hecker M, Giesy JP, Yu H. Factors associated with blooms of cyanobacteria in a large shallow lake, China. ENVIRONMENTAL SCIENCES EUROPE 2018; 30:27. [PMID: 30148024 PMCID: PMC6096964 DOI: 10.1186/s12302-018-0152-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/11/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Eutrophication of freshwater systems can result in blooms of phytoplankton, in many cases cyanobacteria. This can lead to shifts in structure and functions of phytoplankton communities adversely affecting the quality of drinking water sources, which in turn impairs public health. Relationships between structures of phytoplankton communities and concentrations of the toxicant, microcystin-leucine-arginine (MC-LR), have not been well examined in large shallow lakes. The present study investigated phytoplankton communities at seven locations from January to December of 2015 in Tai Lake, and relationships between structures and diversities of phytoplankton communities and water quality parameters, including concentrations of MC-LR and metals, were analyzed. RESULTS A total of 124 taxa of phytoplankton were observed, and the predominant taxa were Microcystis sp. and Dolichospermum flos-aquae of Cyanophyta and Planctonema sp. of Chlorophyta. The greatest diversities of phytoplankton communities, as indicated by species richness, Simpson, Shannon-Wiener, the Berger and Parker, and the Pielou evenness indices, were observed in spring. Furthermore, productivity of phytoplankton was significantly and negatively correlated with diversities. These results demonstrated that Simpson, Shannon-Wiener, the Berger and Parker, and the Pielou evenness indices of phytoplankton communities were significantly related to trophic status and overall primary productivity in Tai Lake. In addition, temperature of surface water, pH, permanganate index, biochemical oxygen demand, total phosphorus, arsenic, total nitrogen/total phosphorous ratio, and MC-LR were the main factors associated with structures of phytoplankton communities in Tai Lake. CONCLUSION The present study provided helpful information on phytoplankton community structure and diversity in Tai Lake from January to December of 2015. Our findings demonstrated that Simpson, Shannon-Wiener, the Berger and Parker, and the Pielou evenness indices could be used to assess and monitor for status and trends in water quality of Tai Lake. In addition, MC-LR was one of the main factors associated with structures of phytoplankton communities in Tai Lake. The findings may help to address important ecological questions about the impact of a changing environment on biodiversity of lake ecosystems and the control of algae bloom. Further studies are needed to explore the relationship between MC-LR and phytoplankton communities in the laboratory.
Collapse
Affiliation(s)
- Di Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046 China
- Jiangsu Environmental Monitoring Center, Nanjing, Jiangsu 210036 China
| | - Naicheng Wu
- Department of Hydrology and Water Resources Management, Kiel University, Kiel, 24118 Germany
| | - Song Tang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021 China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
| | - Xuwen Li
- Jiangsu Environmental Monitoring Center, Nanjing, Jiangsu 210036 China
| | - Yong Zhang
- Jiangsu Environmental Monitoring Center, Nanjing, Jiangsu 210036 China
| | - Guoxiang Wang
- School of the Environment, Nanjing Normal University, Nanjing, Jiangsu 210023 China
| | - Junyi Zhang
- Wuxi Environmental Monitoring Center, Wuxi, Jiangsu 214000 China
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046 China
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3 Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5C3 Canada
| | - John P. Giesy
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046 China
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N5B3 Canada
- Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 USA
- School of Biological Sciences, University of Hong Kong, Hong Kong, SAR China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046 China
| |
Collapse
|
26
|
Fricke A, Pey A, Gianni F, Lemée R, Mangialajo L. Multiple stressors and benthic harmful algal blooms (BHABs): Potential effects of temperature rise and nutrient enrichment. MARINE POLLUTION BULLETIN 2018; 131:552-564. [PMID: 29886982 DOI: 10.1016/j.marpolbul.2018.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/07/2018] [Accepted: 04/07/2018] [Indexed: 06/08/2023]
Abstract
Blooms of Ostreopsis cf. ovata, causing health incidence and mass human intoxications in the Mediterranean, gained special attention over the past decades. To study the potential effects of temperature and nutrient enrichment on this benthic dinoflagellate and other associated microalgae in situ, a multifactorial experiment was set up along a temperature gradient of a heat pump system in Monaco. Microalgae were quantified in experimental units, in the natural biofilm and in the water column. No significant interaction was observed between temperature and nutrients. A species- and bloom phase-dependent effect of the increased temperature was recorded, while the nutrient enrichment had a significant effect only at the end of the experiment (when cell abundances were low). Temperature effects were also visible in the biofilm and the surrounding water. The observed assemblages were mainly driven by changes in abundances of Ostreopsis cf. ovata and Actinocyclus sp., affected in different ways.
Collapse
Affiliation(s)
- A Fricke
- Université Côte d'Azur, CNRS, ECOMERS, Parc Valrose 28, Nice 06108, France; Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche sur mer, France; Instituto Argentino de Oceanografía (IADO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Florida 4750, Bahía Blanca, B8000FWB, n/a, Argentina.
| | - A Pey
- Université Côte d'Azur, CNRS, ECOMERS, Parc Valrose 28, Nice 06108, France
| | - F Gianni
- Université Côte d'Azur, CNRS, ECOMERS, Parc Valrose 28, Nice 06108, France; Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche sur mer, France
| | - R Lemée
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche sur mer, France
| | - L Mangialajo
- Université Côte d'Azur, CNRS, ECOMERS, Parc Valrose 28, Nice 06108, France; Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche sur mer, France
| |
Collapse
|
27
|
Ferencz B, Dawidek J, Toporowska M. Instability of Water Quality of a Shallow, Polymictic, Flow-Through Lake. WATER, AIR, AND SOIL POLLUTION 2018; 229:141. [PMID: 29681668 PMCID: PMC5906509 DOI: 10.1007/s11270-018-3724-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
This paper describes catchment processes that favor the trophic instability of a shallow polymictic lake, in which a shift from eutrophy to hypertrophy occurs rapidly. In the lake, in 2007, the winter discharge maximum and an intensive precipitation (monthly sums exceeded 60 mm) in a vegetation season were observed. In 2007, the cyanobacterial blooms disappeared and the water trophy decreased. Total phosphorus (TP) was the main factor determining the high trophic status of the lake. The TP retention resulted from a quick flow of two inflows: QI1 (r = 0.64) and QI2 (0.56), and the base flow of tributary 1 (0.62). A significant negative correlation between TP and precipitation (r = - 0.54) was observed. Both the surface and the groundwater inflow of I4 showed a positive correlation with the retention of PO4 (r = 0.67 and r = 0.60, respectively), whereas the outlet discharge determined RNO3 (r = 0.57). The trophy of Lake Syczyńskie was determined by the relationship between nutrient input and export, expressed as the ionic retention, Carlson's trophic state index (TSI), and phytoplankton abundance. The results showed that many factors influence the stability of water quality in small, polymictic lakes. However, in the studied lake, intense precipitation and winter discharge maxima (particularly base flow) prevented summer cyanobacterial blooms.
Collapse
Affiliation(s)
- Beata Ferencz
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences, 13Akademicka St, 20-950 Lublin, Poland
| | - Jarosław Dawidek
- Department of Hydrology, Maria Curie-Skłodowska University, Aleja Kraśnicka 2 cd, 20-718 Lublin, Poland
| | - Magdalena Toporowska
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences, 13Akademicka St, 20-950 Lublin, Poland
| |
Collapse
|
28
|
Chen Z, Zhang J, Li R, Tian F, Shen Y, Xie X, Ge Q, Lu Z. Metatranscriptomics analysis of cyanobacterial aggregates during cyanobacterial bloom period in Lake Taihu, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4811-4825. [PMID: 29198031 DOI: 10.1007/s11356-017-0733-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
Molecular mechanism of interaction between the bloom-forming cyanobacterial species and attached microbios within cyanobacterial aggregates has not been elucidated yet and understanding of which would help to unravel the cyanobacteria bloom-forming mechanism. In this study, we profiled the metabolically active community by high-throughput metatranscriptome sequencing from cyanobacterial aggregates during cyanobacterial bloom period in Lake Taihu, China. A total of 308 million sequences were obtained using the HiSeq 2500 sequencing platform, which provided a great sequence coverage to carry out the in-depth taxonomic classification, functional classification, and metabolic pathway analysis of the cyanobacterial aggregates. The results show that bacteria dominated in cyanobacterial aggregates, accounting for more than 96.66% of total sequences. Microcystis was the most abundant genus, accounted for 26.80% of total assigned sequences at the genus level in cyanobacterial aggregates community; however, Proteobacteria (46.20%) was found to be as the most abundant active bacterial populations at the phylum level. More importantly, nitrogen, phosphonate, and phosphinate metabolism which associated with eutrophication were found in this study. Especially, the enzymes and organisms relating to denitrification and anammox of nitrogen metabolism, which reduced nitrogen concentration by reducing nitrate to nitrogen to inhibit the eutrophication, were first discovered in Lake Taihu during cyanobacterial bloom period. The present study provides a snapshot of metatranscriptome for cyanobacterial aggregates in Lake Taihu and demonstrates that cyanobacterial aggregates could play a key role in the nitrogen cycle in eutrophic water.
Collapse
Affiliation(s)
- Zhenzhu Chen
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Sipailou No.2, Nanjing, 210096, China
- Medical Engineering Office of Wuxi Municipal People's Hospital, Wuxi, Jiangsu, 214023, China
| | - Junyi Zhang
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Sipailou No.2, Nanjing, 210096, China
- Wuxi Environmental Monitoring Centre, Wuxi, China
| | - Rui Li
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Sipailou No.2, Nanjing, 210096, China
| | - Fei Tian
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Sipailou No.2, Nanjing, 210096, China
| | - Yanting Shen
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Sipailou No.2, Nanjing, 210096, China
| | - Xueying Xie
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Sipailou No.2, Nanjing, 210096, China
| | - Qinyu Ge
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Sipailou No.2, Nanjing, 210096, China.
| | - Zuhong Lu
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Sipailou No.2, Nanjing, 210096, China
| |
Collapse
|
29
|
Jalil A, Li Y, Du W, Wang W, Wang J, Gao X, Khan HOS, Pan B, Acharya K. The role of wind field induced flow velocities in destratification and hypoxia reduction at Meiling Bay of large shallow Lake Taihu, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:591-602. [PMID: 29021095 DOI: 10.1016/j.envpol.2017.09.095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/23/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
UNLABELLED Wind induced flow velocity patterns and associated thermal destratification can drive to hypoxia reduction in large shallow lakes. The effects of wind induced hydrodynamic changes on destratification and hypoxia reduction were investigated at the Meiling bay (N 31° 22' 56.4″, E 120° 9' 38.3″) of Lake Taihu, China. Vertical flow velocity profile analysis showed surface flow velocities consistency with the wind field and lower flow velocity profiles were also consistent (but with delay response time) when the wind speed was higher than 6.2 m/s. Wind field and temperature found the control parameters for hypoxia reduction and for water quality conditions at the surface and bottom profiles of lake. The critical temperature for hypoxia reduction at the surface and the bottom profile was ≤24.1C° (below which hypoxic conditions were found reduced). Strong prevailing wind field (onshore wind directions ESE, SE, SSE and E, wind speed ranges of 2.4-9.1 m/s) reduced the temperature (22C° to 24.1C°) caused reduction of hypoxia at the near surface with a rise in water levels whereas, low to medium prevailing wind field did not supported destratification which increased temperature resulting in increased hypoxia. Non-prevailing wind directions (offshore) were not found supportive for the reduction of hypoxia in study area due to less variable wind field. Daytime wind field found more variable (as compared to night time) which increased the thermal destratification during daytime and found supportive for destratification and hypoxia reduction. The second order exponential correlation found between surface temperature and Chlorophyll-a (R2: 0.2858, Adjusted R-square: 0.2144 RMSE: 4.395), Dissolved Oxygen (R2: 0.596, Adjusted R-square: 0.5942, RMSE: 0.3042) concentrations. The findings of the present study reveal the driving mechanism of wind induced thermal destratification and hypoxic conditions, which may further help to evaluate the wind role in eutrophication process and algal blooms formation in shallow water environments. OUTCOME Wind field is the key control factor for thermal destratification and hypoxia reduction. 24.1C° is the critical/threshold temperature for hypoxia, Chlorophyll-a and NH3-N concentrations of the shallow freshwater lake.
Collapse
Affiliation(s)
- Abdul Jalil
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Wei Du
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Wencai Wang
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Jianwei Wang
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiaomeng Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China
| | | | - Baozhu Pan
- Laboratory Base of Eco-hydraulic Engineering in Arid Area, Xi'an University of Technology, Xi'an, 710048, China
| | - Kumud Acharya
- Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, NV 89119, USA
| |
Collapse
|
30
|
Walls JT, Wyatt KH, Doll JC, Rubenstein EM, Rober AR. Hot and toxic: Temperature regulates microcystin release from cyanobacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:786-795. [PMID: 28826116 DOI: 10.1016/j.scitotenv.2017.08.149] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 05/23/2023]
Abstract
The mechanisms regulating toxin release by cyanobacteria are poorly understood despite the threat cyanotoxins pose to water quality and human health globally. To determine the potential for temperature to regulate microcystin release by toxin-producing cyanobacteria, we evaluated seasonal patterns of water temperature, cyanobacteria biomass, and extracellular microcystin concentration in a eutrophic freshwater lake dominated by Planktothrix agardhii. We replicated seasonal variation in water temperature in a concurrent laboratory incubation experiment designed to evaluate cause-effect relationships between temperature and toxin release. Lake temperature ranged from 3 to 27°C and cyanobacteria biomass increased with warming up to 18°C, but declined rapidly thereafter with further increases in temperature. Extracellular microcystin concentration was tightly coupled with temperature and was most elevated between 20 and 25°C, which was concurrent with the decline in cyanobacteria biomass. A similar trend was observed in laboratory incubations where productivity-specific microcystin release was most elevated between 20 and 25°C and then declined sharply at 30°C. We applied generalized linear mixed modeling to evaluate the strength of water temperature as a predictor of cyanobacteria abundance and microcystin release, and determined that warming≥20°C would result in a 36% increase in microcystin release when Chlorophyll a was ≤50μgl-1. These results show a temperature threshold for toxin release in P. agardhii, which demonstrates a potential to use water temperature to forecast bloom severity in eutrophic lakes where blooms can persist year-round with varying degrees of toxicity.
Collapse
Affiliation(s)
- Jeremy T Walls
- Department of Biology, Ball State University, Muncie, Indiana 47306, USA
| | - Kevin H Wyatt
- Department of Biology, Ball State University, Muncie, Indiana 47306, USA
| | - Jason C Doll
- Department of Biology, Ball State University, Muncie, Indiana 47306, USA
| | - Eric M Rubenstein
- Department of Biology, Ball State University, Muncie, Indiana 47306, USA
| | - Allison R Rober
- Department of Biology, Ball State University, Muncie, Indiana 47306, USA.
| |
Collapse
|
31
|
Sun JY, Song Y, Ma ZP, Zhang HJ, Yang ZD, Cai ZH, Zhou J. Fungal community dynamics during a marine dinoflagellate (Noctiluca scintillans) bloom. MARINE ENVIRONMENTAL RESEARCH 2017; 131:183-194. [PMID: 29017729 DOI: 10.1016/j.marenvres.2017.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
Contamination and eutrophication have caused serious ecological events (such as algal bloom) in coastal area. During this ecological process, microbial community structure is critical for algal bloom succession. The diversity and composition of bacteria and archaea communities in algal blooms have been widely investigated; however, those of fungi are poorly understood. To fill this gap, we used pyrosequencing and correlation approaches to assess fungal patterns and associations during a dinoflagellate (Noctiluca scintillans) bloom. Phylum level fungal types were predominated by Ascomycota, Chytridiomycota, Mucoromycotina, and Basidiomycota. At the genus level drastic changes were observed with Hysteropatella, Malassezia and Saitoella dominating during the initial bloom stage, while Malassezia was most abundant (>50%) during onset and peak-bloom stages. Saitoella and Lipomyces gradually became more abundant and, in the decline stage, contributed almost 70% of sequences. In the terminal stage of the bloom, Rozella increased rapidly to a maximum of 50-60%. Fungal population structure was significantly influenced by temperature and substrate (N and P) availability (P < 0.05). Inter-specific network analyses demonstrated that Rozella and Saitoella fungi strongly impacted the ecological trajectory of N. scintillans. The functional prediction show that symbiotrophic fungi was dominated in the onset stage; saprotroph type was the primary member present during the exponential growth period; whereas pathogentroph type fungi enriched in decline phase. Overall, fungal communities and functions correlated significantly with N. scintillans processes, suggesting that they may regulate dinoflagellate bloom fates. Our results will facilitate deeper understanding of the ecological importance of marine fungi and their roles in algal bloom formation and collapse.
Collapse
Affiliation(s)
- Jing-Yun Sun
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China; School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu Province, PR China
| | - Yu Song
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Zhi-Ping Ma
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Huai-Jing Zhang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Zhong-Duo Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu Province, PR China; The Provincial Education Key Laboratory of Screening, Evaluation and Advanced Processing of Traditional Chinese Medicine and Tibetan Medicine, School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu Province, PR China
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China.
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China.
| |
Collapse
|
32
|
Spatial and Temporal Variations in Environmental Variables in Relation to Phytoplankton Community Structure in a Eutrophic River-Type Reservoir. WATER 2017. [DOI: 10.3390/w9100754] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Thao TY, Linh DTN, Si VC, Carter TW, Hill RT. Isolation and Selection of Microalgal Strains from Natural Water Sources in Viet Nam with Potential for Edible Oil Production. Mar Drugs 2017; 15:E194. [PMID: 28644408 PMCID: PMC5532636 DOI: 10.3390/md15070194] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/11/2017] [Accepted: 06/14/2017] [Indexed: 11/22/2022] Open
Abstract
Industrial vegetable oil production in Viet Nam depends on oil seeds and crude plant oils that are currently more than 90% imported. As the first step in investigating the feasibility of using microalgae to provide Viet Nam with a domestic source of oil for food and edible oil industries, fifty lipid-producing microalgae were isolated and characterized. The microalgae were isolated from water sources ranging from freshwater to brackish and marine waters from a wide geographic distribution in Viet Nam. Initial analyses showed that 20 of the 50 strains had good growth rates, produced high biomass and had high lipid content, ranging up to 50% of dry weight biomass. 18S rRNA gene sequence analyses of the 50 strains showed a great diversity in this assemblage of microalgae, comprising at least 38 species and representatives of 25 genera: Chlamydomonas, Poterioochromonas, Scenedesmus, Desmodesmus, Chlorella, Bracteacoccus, Monoraphidium, Selenastrum, Acutodesmus, Mychonastes, Ankistrodesmus, Kirchneriella, Raphidocelis, Dictyosphaerium, Coelastrella, Schizochlamydella, Oocystidium, Nannochloris, Auxenochlorella, Chlorosarcinopsis, Stichococcus, Picochlorum, Prasinoderma, Chlorococcum, and Marvania. Some of the species are closely related to well-known lipid producers such as Chlorella sorokiniana, but some other strains are not closely related to the strains found in public sequence databases and likely represent new species. Analysis of oil quality showed that fatty acid profiles of the microalgal strains were very diverse and strain-dependent. Fatty acids in the microalgal oils comprised saturated fatty acids (SFAs), poly-unsaturated fatty acids (PUFAs), and mono-unsaturated fatty acids (MUFAs). The main SFA was palmitic acid. MUFAs and PUFAs were dominated by oleic acid, and linoleic and linolenic acids, respectively. Some strains were especially rich in the essential fatty acid α-linolenic acid (ALA), which comprised more than 20% of the fatty acids in these strains. Other strains had fatty acid compositions similar to that of palm oil. Several strains have been selected on the basis of their suitable fatty acid profiles and high lipid content for further chemical and physical characterization, toxicity and organoleptic tests of their oils, and for scale-up.
Collapse
Affiliation(s)
- Tran Yen Thao
- Research Institute for Oil and Oil Plants (IOOP), Ministry of Industry and Trade (MOIT), Ho Chi Minh City 71-175, Vietnam.
| | - Dinh Thi Nhat Linh
- Research Institute for Oil and Oil Plants (IOOP), Ministry of Industry and Trade (MOIT), Ho Chi Minh City 71-175, Vietnam.
| | - Vo Chi Si
- Research Institute for Oil and Oil Plants (IOOP), Ministry of Industry and Trade (MOIT), Ho Chi Minh City 71-175, Vietnam.
| | - Taylor W Carter
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science, Columbus Center Suite 236, 701 East Pratt Street, Baltimore, MD 21202, USA.
| | - Russell T Hill
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science, Columbus Center Suite 236, 701 East Pratt Street, Baltimore, MD 21202, USA.
| |
Collapse
|
34
|
Temporal and Spatial Dynamics of Phytoplankton Primary Production in Lake Taihu Derived from MODIS Data. REMOTE SENSING 2017. [DOI: 10.3390/rs9030195] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Zhang Y, Shi K, Liu J, Deng J, Qin B, Zhu G, Zhou Y. Meteorological and hydrological conditions driving the formation and disappearance of black blooms, an ecological disaster phenomena of eutrophication and algal blooms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:1517-1529. [PMID: 27396313 DOI: 10.1016/j.scitotenv.2016.06.244] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
Potentially toxic black blooms can disrupt drinking water treatment plants and have fatal effects on aquatic ecosystems; therefore, lake management is required to determine whether conditions are favorable for the formation and disappearance of black blooms in water supply sources. Long-term climate background, short-term thresholds of meteorological and hydrological conditions, and the duration of harmful algal blooms (HABs) were investigated as factors affecting the formation and disappearance of black blooms in hyper-eutrophic Lake Taihu. Long-term climate warming (0.31°C/decade), decreases in wind speed (0.26m/s per decade) and air pressure (0.16hPa/decade), and the increase in the meteorological index of black blooms (3.6days/decade) in Lake Taihu over the past 51years provided climate conditions conducive to the formation and occurrence of black blooms. A total of 16 black bloom events with an area larger than 0.1km(2) were observed from 2007 to 2014. Several critical thresholds for short-term meteorological and hydrological conditions were determined for the formation of black blooms, including a five-day average air temperature above 25°C, a five-day average wind speed <2.6m/s, average precipitation of five consecutive days close to 0, and continuous HAB accumulation for >5days. Heavy precipitation events, sudden cooling, and large wind disturbances were the driving factors of black blooms' disappearance. The use of a coupling model that combines the remote sensing of HABs with environmental, meteorological, and hydrological observations could permit an adequate and timely response to black blooms in drinking water sources.
Collapse
Affiliation(s)
- Yunlin Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Kun Shi
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Junjie Liu
- Jiangsu Hydrology and Water Resources Investigation Bureau, Nanjing 210029, China
| | - Jianming Deng
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guangwei Zhu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongqiang Zhou
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Zhang Y, Yao X, Qin B. A critical review of the development, current hotspots, and future directions of Lake Taihu research from the bibliometrics perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:12811-12821. [PMID: 27189448 DOI: 10.1007/s11356-016-6856-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 05/09/2016] [Indexed: 06/05/2023]
Abstract
Lake Taihu, as the important drinking water source of the Yangtze River Delta urban agglomeration and the third largest freshwater lake in China, has experienced serious lake eutrophication and water quality deterioration in the past three decades. Growing scientific, political, and public attention has been given to the water quality of Lake Taihu. This study aimed to conduct a comparative quantitative and qualitative analysis of the development, current hotspots, and future directions of Lake Taihu research using a bibliometric analysis of eight well-studied lakes (Lake Taihu, Lake Baikal, Lake Biwa, Lake Erie, Lake Michigan, Lake Ontario, Lake Superior and Lake Victoria) around the world based on the Science Citation Index (SCI) database. A total of 1582 papers discussing Lake Taihu research were published in 322 journals in the past three decades. However, the first paper about Lake Taihu research was not found in the SCI database until 1989, and there were only zero, one, or two papers each year from 1989 to 1995. There had been rapid development in Lake Taihu research since 1996 and a sharp increase in papers since 2005. A keyword analysis showed that "sediment," "eutrophication", "Microcystis aeruginosa", "cyanobacterial blooms", and "remote sensing" were the most frequently used keywords of the study subject. Owing to its significant impact on aquatic ecosystems, a crucial emphasis has been placed on climate change recently. In addition, the future focuses of research directions, including (1) environmental effects of physical processes; (2) nutrient cycles and control and ecosystem responses; (3) cyanobacteria bloom monitoring, causes, forecast and management; (4) eutrophication and climate change interactions; and (5) ecosystem degradation mechanism and ecological practice of lake restoration, are presented based on the keyword analysis. Through multidisciplinary fields (physics, chemistry, and biology) cross and synthesis study of Lake Taihu, the development of shallow lake limnology will be largely promoted.
Collapse
Affiliation(s)
- Yunlin Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, P. R. China.
| | - Xiaolong Yao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, P. R. China
| |
Collapse
|
37
|
Weckström J, Liao M, Yu G, Amsinck S, Kauppila T, Qin B, Zhu G, Sarvala J, Weckström K, Tarvainen M, Kirkkala T, Nurminen L, Ventelä AM. Responses of Aquatic Ecosystems to Environmental Changes in Finland and China. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Paerl HW, Otten TG. Duelling 'CyanoHABs': unravelling the environmental drivers controlling dominance and succession among diazotrophic and non-N2 -fixing harmful cyanobacteria. Environ Microbiol 2015; 18:316-24. [PMID: 26310611 DOI: 10.1111/1462-2920.13035] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/20/2015] [Indexed: 11/27/2022]
Abstract
Eutrophication often manifests itself by increased frequencies and magnitudes of cyanobacterial harmful algal blooms (CyanoHABs) in freshwater systems. It is generally assumed that nitrogen-fixing cyanobacteria will dominate when nitrogen (N) is limiting and non-N2 fixers dominate when N is present in excess. However, this is rarely observed in temperate lakes, where N2 fixers often bloom when N is replete, and non-fixers (e.g. Microcystis) dominate when N concentrations are lowest. This review integrates observations from previous studies with insights into the environmental factors that select for CyanoHAB groups. This information may be used to predict how nutrient reduction strategies targeting N, phosphorus (P) or both N and P may alter cyanobacterial community composition. One underexplored concern is that as N inputs are reduced, CyanoHABs may switch from non-N2 fixing to diazotrophic taxa, with no net improvement in water quality. However, monitoring and experimental observations indicate that in eutrophic systems, minimizing both N and P loading will lead to the most significant reductions in total phytoplankton biomass without this shift occurring, because successional patterns appear to be strongly driven by physical factors, including temperature, irradiance and hydrology. Notably, water temperature is a primary driver of cyanobacterial community succession, with warming favouring non-diazotrophic taxa.
Collapse
Affiliation(s)
- Hans W Paerl
- Institute of Marine Sciences, The University of North Carolina at Chapel Hill, Morehead City, NC, 28557, USA
| | - Timothy G Otten
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| |
Collapse
|
39
|
Wu T, Qin B, Brookes JD, Shi K, Zhu G, Zhu M, Yan W, Wang Z. The influence of changes in wind patterns on the areal extension of surface cyanobacterial blooms in a large shallow lake in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 518-519:24-30. [PMID: 25747360 DOI: 10.1016/j.scitotenv.2015.02.090] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 05/19/2023]
Abstract
It has been hypothesized that climate change will induce the areal extension of cyanobacterial blooms. However, this hypothesis lacks field-based observation. In the present study both long-term historical data and short-term field measurement were used to identify the importance of changes in wind patterns on the cyanobacterial bloom in Lake Taihu (China), a large, shallow, eutrophic lake located in a subtropical zone. The cyanobacterial bloom mainly composed of Microcystis spp. recurred frequently throughout the year. The regression analysis of multi-year satellite image data extracted by the Floating Algae Index revealed that both the annual mean monthly maximum cyanobacterial bloom area (MMCBA) increased year by year from 2000 to 2011, while the contemporaneous cyanobacterial biomass showed no significant change. However, the correlation analysis shows that MMCBA was negatively correlated with wind speed. Our short-term field measurements indicated that the influence of wind on surface cyanobacterial blooms is that the Chlorophyll-a (Chla) concentration is fully mixing throughout the water column when the wind speed exceed 7 m s(-1). At lower wind speeds, there was vertical stratification of Chla with high surface concentrations and an increase in bloom area. The regression analysis of wind speed indicates that the climate has changed over the last decade. Lake Taihu has become increasingly calm, with the decrease of strong wind frequency between 2000 and 2011, corresponding to the increase in the MMCBA over time. Therefore, we conclude that changes in wind patterns related to climate change have favored the increase of cyanobacterial blooms in Lake Taihu.
Collapse
Affiliation(s)
- Tingfeng Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China.
| | - Boqiang Qin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China.
| | - Justin D Brookes
- Department of Environmental Biology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Kun Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
| | - Guangwei Zhu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
| | - Mengyuan Zhu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
| | - Wenming Yan
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, Jiangsu 210098, China
| | - Zhen Wang
- Department of Environmental Science and Engineering, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
40
|
Long-term changes in cyanobacteria populations in lake kinneret (sea of galilee), Israel: an eco-physiological outlook. Life (Basel) 2015; 5:418-31. [PMID: 25664964 PMCID: PMC4390860 DOI: 10.3390/life5010418] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 12/04/2022] Open
Abstract
The long-term record of cyanobacteria abundance in Lake Kinneret (Sea of Galilee), Israel, demonstrates changes in cyanobacteria abundance and composition in the last five decades. New invasive species of the order Nostocales (Aphanizomenon ovalisporum and Cylindrospermopsis raciborskii) became part of the annual phytoplankton assemblage during summer-autumn. Concomitantly, bloom events of Microcystis sp. (Chroococcales) during winter-spring intensified. These changes in cyanobacteria pattern may be partly attributed to the management policy in Lake Kinneret’s vicinity and watershed aimed to reduce effluent discharge to the lake and partly to climate changes in the region; i.e., increased water column temperature, less wind and reduced precipitation. The gradual decrease in the concentration of total and dissolved phosphorus and total and dissolved nitrogen and an increase in alkalinity, pH and salinity, combined with the physiological features of cyanobacteria, probably contributed to the success of cyanobacteria. The data presented here indicate that the trend of the continuous decline of nutrients may not be sufficient to reduce and to control the abundance and proliferation of toxic and non-toxic cyanobacteria.
Collapse
|