1
|
Matboli M, El-Attar NE, Abdelbaky I, Khaled R, Saad M, Ghani AMA, Barakat E, Guirguis RNM, Khairy E, Hamady S. Unveiling NLR pathway signatures: EP300 and CPN60 markers integrated with clinical data and machine learning for precision NASH diagnosis. Cytokine 2025; 188:156882. [PMID: 39923301 DOI: 10.1016/j.cyto.2025.156882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND Given the increasing prevalence of metabolic dysfunction-associated fatty liver disease (MAFLD) and non-alcoholic steatohepatitis (NASH), there is a critical need for accurate non-invasive early diagnostic markers. OBJECTIVE This study aimed to validate NLRP3-related RNA signatures (EP300, CPN60, and ITGB1 mRNAs, miR-6881-5p, and LncRNA-RABGAP1L-DT-206) using an integrated molecular approach and advanced machine-learning algorithms to identify robust biomarkers for early diagnosis of NASH. METHODS A cohort of 237 participants (117 Healthy controls, 60 MAFLD, 120 NASH) was utilized. Twenty-five demographic, clinical, and molecular features were collected from each participant. Various machine learning models were trained on the dataset. RESULTS The Random Forest algorithm emerged as the most effective classifier. The model identified nine key features: EP300 mRNA, CPN60 mRNA, AST, D. bilirubin, Albumin, GGT, HbA1c, HOMA-IR, and BMI, achieving an impressive 97 % accuracy in distinguishing NASH from non-NASH cases. CONCLUSION The integration of molecular, clinical, and demographic data with machine learning algorithms provides a highly accurate method for the early diagnosis of NASH. This model holds promise for early detection in individuals at risk of progressing to cirrhosis or liver cancer and may aid in identifying new therapeutic targets for managing NASH.
Collapse
Affiliation(s)
- Marwa Matboli
- Medical biochemistry and molecular biology department, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Molecular biology Research Lab. Faculty of Oral and Dental Medicine, Misr International University, Egypt.
| | - Noha E El-Attar
- Information System Department, Faculty of Computers and Artificial Intelligence, Benha University, Benha City, Egypt; Bioinformatics department, Faculty of Artificial Intelligence, Delta University for Science and Technology, Gamasa, 35712,Egypt.
| | - Ibrahim Abdelbaky
- Artificial Intelligence Department, Faculty of Computers and Artificial Intelligence, Benha University, Benha, City, Egypt.
| | - Radwa Khaled
- Biotechnology/Biomolecular Chemistry Department, Faculty of Science, Cairo University
| | - Maha Saad
- Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt.
| | | | - Eman Barakat
- Tropical Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | | | - Eman Khairy
- Medical biochemistry and molecular biology department, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah 23890, Saudi Arabia.
| | - Shaimaa Hamady
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt.
| |
Collapse
|
2
|
Faulconnier Y, Pawlowski K, Chambon C, Durand D, Pires J, Leroux C. Liver transcriptome and proteome are modulated by nutrient restriction in early lactation cows challenged with intramammary lipopolysaccharide. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101326. [PMID: 39303391 DOI: 10.1016/j.cbd.2024.101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
The objective was to evaluate the effects of nutrient restriction on liver function 24 h after an intramammary lipopolysaccharide (LPS) challenge in early lactation cows using transcriptomic and proteomic analyses. Multiparous Holstein cows were fed a lactation diet (CONT, n = 8) throughout the study or were switched to a diet diluted with barley straw (48 % DM) for 96 h (REST, n = 8) starting at 24 (18 to 30) days in milk. At 72 h, a healthy rear mammary quarter was infused with 50 μg of LPS in all cows. Blood and liver biopsies were collected at 96 h, corresponding to 24 h after LPS challenge. Liver transcriptome was analyzed with a 44 K bovine microarray and proteome by LC MS/MS. Transcriptomic and proteomic data were analyzed using GeneSpring (moderated t-test with Westfall-Young correction) and the "between subject design", respectively. Data mining was performed using Panther and Pathway Studio software. By design, the negative energy balance was -68 and -37 MJ/d in REST and CONT, respectively. Plasma non-esterified FAs, and β-hydroxybutyrate were significantly greater in REST compared to CONT, which is consistent with 96 h of nutrient restriction in REST and ketosis induction. We detected 77 and 91 differentially expressed genes at mRNA and protein levels, respectively, between CONT and REST. Genes involved in fatty acid synthesis (e.g.: ACAT, FASN, SCD) were downregulated in REST, whereas those involved in fatty acid oxidation, detoxification, cholesterol synthesis, lipoprotein lipid secretion, and gluconeogenesis (e.g.: ACAD, CPT1A, CPT1B, CPT2) were upregulated. Differentially abundant mRNAs and proteins were consistent with negative energy balance and plasma metabolite concentrations, and reflected a state of intense lipomobilization, glucose deficit and ketogenesis in REST cows. Nutrient restriction did not change in deep liver expression of genes directly involved in immune function 24 h after an intramammary LPS challenge.
Collapse
Affiliation(s)
- Yannick Faulconnier
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Karol Pawlowski
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France; Warsaw University of Life Sciences, Faculty of Veterinary Medicine, Department of Pathology and Veterinary Diagnostics, Poland
| | - Christophe Chambon
- INRAE, Plateforme d'Exploration du Métabolisme, composante protéomique PFEMcp, F-63122 Saint-Genès Champanelle, France
| | - Denys Durand
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - José Pires
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Christine Leroux
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France; Department of Food Science and Technology, University of California, Davis, CA, USA.
| |
Collapse
|
3
|
Zhang C, Chen T, Li Z, Lu Q, Luo X, Cai S, Zhou J, Ren J, Cui J. DSCI: a database of synthetic biology components for innate immunity and cell engineering decision-making processes. ADVANCED BIOTECHNOLOGY 2024; 2:29. [PMID: 39883249 PMCID: PMC11740867 DOI: 10.1007/s44307-024-00036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 01/31/2025]
Abstract
Although significant progress of clinical strategy has been made in gene editing and cell engineering in immunotherapy, it is now apparent that design and modification in terms of complex signaling pathways and motifs on medical synthetic biology are still full of challenges. Innate immunity, the first line of host defense against pathogens, is critical for anti-pathogens immune response as well as regulating durable and protective T cell-mediated anti-tumor responses. Here, we introduce DSCI (Database of Synthetic Biology Components for Innate Immunity, https://dsci.renlab.cn/ ), a web-accessible and integrative database that provides better insights and strategies for innate immune signaling circuit design in biosynthesis. Users can interactively navigate comprehensive and carefully curated components resources that presented as visualized signaling motifs that participate in innate immunity. The current release of DSCI incorporates 1240 independent components and more than 4000 specific entries contextually annotated from public literature with experimental verification. The data integrated into DSCI includes the components of pathways, relationships between regulators, signal motifs based on regulatory cascades, and loop graphs, all of which have been comprehensively annotated to help guide modifications to gene circuits. With the support of DSCI, users can easily obtain guidance of gene circuits construction to make decision of cell engineering based on innate immunity. DSCI not only provides comprehensive and specialized resource on the biological components of innate immune synthesis, but also serves as a useful tool to offer modification or generation strategies for medical synthetic biology.
Collapse
Affiliation(s)
- Chenqiu Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Tianjian Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Zhiyu Li
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Qing Lu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Xiaotong Luo
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Sihui Cai
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Jie Zhou
- State Key Laboratory of Membrane Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100101, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, 100101, China
| | - Jian Ren
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
| |
Collapse
|
4
|
Schubert E, Mun K, Larsson M, Panagiotou S, Idevall-Hagren O, Svensson C, Punga T. Complex regulation of mitochondrial signaling by human adenovirus minor capsid protein VI. J Virol 2024; 98:e0035624. [PMID: 38837380 PMCID: PMC11265209 DOI: 10.1128/jvi.00356-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/11/2024] [Indexed: 06/07/2024] Open
Abstract
The controlled release of mitochondrial content into the cytosol has emerged as one of the key steps in mitochondrial signaling. In particular, the release of mitochondrial DNA (mtDNA) into the cytosol has been shown to activate interferon beta (IFN-β) gene expression to execute the innate immune response. In this report, we show that human adenovirus type 5 (HAdV-C5) infection induces the release of mtDNA into the cytosol. The release of mtDNA is mediated by the viral minor capsid protein VI (pVI), which localizes to mitochondria. The presence of the mitochondrial membrane proteins Bak and Bax are needed for the mtDNA release, whereas the viral E1B-19K protein blocked pVI-mediated mtDNA release. Surprisingly, the pVI-mediated mtDNA release did not increase but inhibited the IFN-β gene expression. Notably, the pVI expression caused mitochondrial leakage of the HSP60 protein. The latter prevented specific phosphorylation of the interferon regulatory factor 3 (IRF3) needed for IFN-β gene expression. Overall, we assign a new mitochondria and IFN-β signaling-modulating function to the HAdV-C5 minor capsid protein VI. IMPORTANCE Human adenoviruses (HAdVs) are common pathogens causing various self-limiting diseases, including conjunctivitis and the common cold. HAdVs need to interfere with multiple cellular signaling pathways during the infection to gain control over the host cell. In this study, we identified human adenovirus type 5 (HAdV-C5) minor capsid protein VI as a factor modulating mitochondrial membrane integrity and mitochondrial signaling. We show that pVI-altered mitochondrial signaling impedes the cell's innate immune response, which may benefit HAdV growth. Overall, our study provides new detailed insights into the HAdV-mitochondria interactions and signaling. This knowledge is helpful when developing new anti-viral treatments against pathogenic HAdV infections and improving HAdV-based therapeutics.
Collapse
Affiliation(s)
- Erik Schubert
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kwangchol Mun
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mårten Larsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | - Catharina Svensson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Scott MA, Woolums AR, Karisch BB, Harvey KM, Capik SF. Impact of preweaning vaccination on host gene expression and antibody titers in healthy beef calves. Front Vet Sci 2022; 9:1010039. [PMID: 36225796 PMCID: PMC9549141 DOI: 10.3389/fvets.2022.1010039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The impact of preweaning vaccination for bovine respiratory viruses on cattle health and subsequent bovine respiratory disease morbidity has been widely studied yet questions remain regarding the impact of these vaccines on host response and gene expression. Six randomly selected calves were vaccinated twice preweaning (T1 and T3) with a modified live vaccine for respiratory pathogens and 6 randomly selected calves were left unvaccinated. Whole blood samples were taken at first vaccination (T1), seven days later (T2), at revaccination and castration (T3), and at weaning (T4), and utilized for RNA isolation and sequencing. Serum from T3 and T4 was analyzed for antibodies to BRSV, BVDV1a, and BHV1. Sequenced RNA for all 48 samples was bioinformatically processed with a HISAT2/StringTie pipeline, utilizing reference guided assembly with the ARS-UCD1.2 bovine genome. Differentially expressed genes were identified through analyzing the impact of time across all calves, influence of vaccination across treatment groups at each timepoint, and the interaction of time and vaccination. Calves, regardless of vaccine administration, demonstrated an increase in gene expression over time related to specialized proresolving mediator production, lipid metabolism, and stimulation of immunoregulatory T-cells. Vaccination was associated with gene expression related to natural killer cell activity and helper T-cell differentiation, enriching for an upregulation in Th17-related gene expression, and downregulated genes involved in complement system activity and coagulation mechanisms. Type-1 interferon production was unaffected by the influence of vaccination nor time. To our knowledge, this is the first study to evaluate mechanisms of vaccination and development in healthy calves through RNA sequencing analysis.
Collapse
Affiliation(s)
- Matthew A. Scott
- Veterinary Education, Research, and Outreach Center, Texas A&M University and West Texas A&M University, Canyon, TX, United States
| | - Amelia R. Woolums
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Brandi B. Karisch
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Kelsey M. Harvey
- Prairie Research Unit, Mississippi State University, Prairie, MS, United States
| | - Sarah F. Capik
- Texas A&M AgriLife Research, Texas A&M University System, Amarillo, TX, United States
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
6
|
Dolinski AC, Homola JJ, Jankowski MD, Robinson JD, Owen JC. Differential gene expression reveals host factors for viral shedding variation in mallards ( Anas platyrhynchos) infected with low-pathogenic avian influenza virus. J Gen Virol 2022; 103:10.1099/jgv.0.001724. [PMID: 35353676 PMCID: PMC10519146 DOI: 10.1099/jgv.0.001724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intraspecific variation in pathogen shedding impacts disease transmission dynamics; therefore, understanding the host factors associated with individual variation in pathogen shedding is key to controlling and preventing outbreaks. In this study, ileum and bursa of Fabricius tissues of wild-bred mallards (Anas platyrhynchos) infected with low-pathogenic avian influenza (LPAIV) were evaluated at various post-infection time points to determine genetic host factors associated with intraspecific variation in viral shedding. By analysing transcriptome sequencing data (RNA-seq), we found that LPAIV-infected wild-bred mallards do not exhibit differential gene expression compared to uninfected birds, but that gene expression was associated with cloacal viral shedding quantity early in the infection. In both tissues, immune gene expression was higher in high/moderate shedding birds compared to low shedding birds, and significant positive relationships with viral shedding were observed. In the ileum, expression for host genes involved in viral cell entry was lower in low shedders compared to moderate shedders at 1 day post-infection (DPI), and expression for host genes promoting viral replication was higher in high shedders compared to low shedders at 2 DPI. Our findings indicate that viral shedding is a key factor for gene expression differences in LPAIV-infected wild-bred mallards, and the genes identified in this study could be important for understanding the molecular mechanisms driving intraspecific variation in pathogen shedding.
Collapse
Affiliation(s)
- Amanda C. Dolinski
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Jared J. Homola
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Mark D. Jankowski
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
- U.S. Environmental Protection Agency, Region 10, Seattle,
WA 98101
| | - John D. Robinson
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Jennifer C. Owen
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
- Department of Large Animal Clinical Sciences, Michigan
State University, East Lansing, MI, USA
| |
Collapse
|
7
|
Zhang X, Feng WH. Porcine Reproductive and Respiratory Syndrome Virus Evades Antiviral Innate Immunity via MicroRNAs Regulation. Front Microbiol 2022; 12:804264. [PMID: 34975824 PMCID: PMC8714953 DOI: 10.3389/fmicb.2021.804264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most important diseases in pigs, leading to significant economic losses in the swine industry worldwide. MicroRNAs (miRNAs) are small single-stranded non-coding RNAs involved in regulating gene expressions at the post-transcriptional levels. A variety of host miRNAs are dysregulated and exploited by PRRSV to escape host antiviral surveillance and help virus infection. In addition, PRRSV might encode miRNAs. In this review, we will summarize current progress on how PRRSV utilizes miRNAs for immune evasions. Increasing knowledge of the role of miRNAs in immune evasion will improve our understanding of PRRSV pathogenesis and help us develop new treatments for PRRSV-associated diseases.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory of Soil Microbiology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen-Hai Feng
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory of Soil Microbiology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Chathuranga K, Weerawardhana A, Dodantenna N, Lee JS. Regulation of antiviral innate immune signaling and viral evasion following viral genome sensing. Exp Mol Med 2021; 53:1647-1668. [PMID: 34782737 PMCID: PMC8592830 DOI: 10.1038/s12276-021-00691-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/15/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
A harmonized balance between positive and negative regulation of pattern recognition receptor (PRR)-initiated immune responses is required to achieve the most favorable outcome for the host. This balance is crucial because it must not only ensure activation of the first line of defense against viral infection but also prevent inappropriate immune activation, which results in autoimmune diseases. Recent studies have shown how signal transduction pathways initiated by PRRs are positively and negatively regulated by diverse modulators to maintain host immune homeostasis. However, viruses have developed strategies to subvert the host antiviral response and establish infection. Viruses have evolved numerous genes encoding immunomodulatory proteins that antagonize the host immune system. This review focuses on the current state of knowledge regarding key host factors that regulate innate immune signaling molecules upon viral infection and discusses evidence showing how specific viral proteins counteract antiviral responses via immunomodulatory strategies.
Collapse
Affiliation(s)
- Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Asela Weerawardhana
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea.
| |
Collapse
|
9
|
Albadawy R, Agwa SHA, Khairy E, Saad M, El Touchy N, Othman M, Matboli M. Clinical Significance of HSPD1/MMP14/ITGB1/miR-6881-5P/Lnc-SPARCL1-1:2 RNA Panel in NAFLD/NASH Diagnosis: Egyptian Pilot Study. Biomedicines 2021; 9:1248. [PMID: 34572434 PMCID: PMC8472260 DOI: 10.3390/biomedicines9091248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Non-alcoholic steatohepatitis ((NASH) is the progressive form of (non-alcoholic fatty liver disease) (NAFLD), which can progress to liver cirrhosis and hepatocellular carcinoma. There is no available reliable non-invasive diagnostic tool to diagnose NASH, and still the liver biopsy is the gold standard in diagnosis. In this pilot study, we aimed to evaluate the Nod-like receptor (NLR) signaling pathway related RNA panel in the diagnosis of NASH. METHODS Bioinformatics analysis was done, with retrieval of the HSPD1/MMP14/ITGB1/miR-6881-5P/Lnc-SPARCL1-1:2 RNA panel based on the relation to the NLR-signaling pathway. Hepatitis serum markers, lipid profile, NAFLD score and fibrosis score were assessed in the patients' sera. Reverse transcriptase real time polymerase chain reaction (RT-PCR) was done to assess the relative expression of the RNA panel among patients who had NAFLD without steatosis, NAFLD with simple steatosis, NASH and healthy controls. RESULTS We observed up-regulation of Lnc-SPARCL1-1:2 lncRNA that led to upregulation of miR-6881-5P with a subsequent increase in levels of HSPD1, MMP14, and ITGB1 mRNAs. In addition, ROC curve analysis was done, with discriminative cutoff values that aided discrimination between NASH cases and control, and also between NAFLD, simple steatosis and NASH. CONCLUSION This pilot study concluded that HSPD1/MMP14/ITGB1/miR-6881-5P/Lnc-SPARCL1-1:2 panel expression has potential in the diagnosis of NASH, and also differentiation between NAFLD, simple steatosis and NASH cases.
Collapse
Affiliation(s)
- Reda Albadawy
- Department of Gastroentrology, Hepatology & Infectious Disease, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Sara H. A. Agwa
- Molecular Genomics Unit, Clinical Pathology Department, Medical Ain Shams Research Institute (MASRI), School of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Eman Khairy
- Medicinal Biochemistry and Molecular Biology Department, School of Medicine, Ain Shams University, Cairo 11566, Egypt;
| | - Maha Saad
- Biochemistry Department, Faculty of Medicine, Modern University for Technology and Information, Cairo 11382, Egypt;
| | - Naglaa El Touchy
- Department of Gastroentrology, Hepatology & Infectious Disease, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Mohamed Othman
- Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Marwa Matboli
- Medicinal Biochemistry and Molecular Biology Department, School of Medicine, Ain Shams University, Cairo 11566, Egypt;
| |
Collapse
|
10
|
Chang X, Shi X, Zhang X, Chen J, Fan X, Yang Y, Wang L, Wang A, Deng R, Zhou E, Zhang G. miR-382-5p promotes porcine reproductive and respiratory syndrome virus (PRRSV) replication by negatively regulating the induction of type I interferon. FASEB J 2020; 34:4497-4511. [PMID: 32037657 DOI: 10.1096/fj.201902031rrr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Previous studies have indicated that inhibition of type I interferon production may be an important reason for porcine reproductive and respiratory syndrome virus (PRRSV) to achieve immune escape, revealing the mechanism of inhibiting the production of type I interferon will help design novel strategies for controlling PRRS. Here, we found that PRRSV infection upregulated the expression of miR-382-5p, which in turn inhibited polyI:C-induced the production of type I interferon by targeting heat shock protein 60 (HSP60), thus facilitating PRRSV replication in MARC-145 cells. Furthermore, we found that HSP60 could interact with mitochondrial antiviral signaling protein (MAVS), an important signal transduction protein for inducing production of type I interferon, and promote polyI:C-mediated the production of type I interferon in a MAVS-dependent manner. Finally, we also found that HSP60 could inhibit PRRSV replication in a MAVS-dependent manner, which indicated that HSP60 was a novel antiviral protein against PRRSV replication. In conclusion, the study demonstrated that miR-382-5p was upregulated during PRRSV infection and may promote PRRSV replication by negatively regulating the production of type I interferon, which also indicated that miR-382-5p and HSP60 might be the potential therapeutic targets for anti-PRRSV.
Collapse
Affiliation(s)
- Xiaobo Chang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xibao Shi
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xiaozhuan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Jing Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiaomin Fan
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yuanhao Yang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Li Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Aiping Wang
- Department of Bioengineering, Zhengzhou University, Zhengzhou, China
| | - Ruiguang Deng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Enmin Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Department of Bioengineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Chen PG, Guan YJ, Zha GM, Jiao XQ, Zhu HS, Zhang CY, Wang YY, Li HP. Swine IRF3/IRF7 attenuates inflammatory responses through TLR4 signaling pathway. Oncotarget 2017; 8:61958-61968. [PMID: 28977918 PMCID: PMC5617478 DOI: 10.18632/oncotarget.18740] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/22/2017] [Indexed: 01/22/2023] Open
Abstract
To explore the role of IRF3/IRF7 during inflammatory responses, we investigated the effects of swine IRF3/IRF7 on TLR4 signaling pathway and inflammatory factors expression in porcine kidney epithelial PK15 cell lines. We successfully constructed eukaryotic vectors PB-IRF3 and PB-IRF7, transfected these vectors into PK15 cells and observed GFP under a fluorescence microscope. In addition, RT-PCR was also used to detect transfection efficiency. We found that IRF3/IRF7 was efficiently overexpressed in PK15 cells. Moreover, we evaluated the effects of IRF3/IRF7 on the TLR4 signaling pathway and inflammatory factors by RT-PCR. Transfected cells were treated with lipopolysaccharide (LPS) alone, or in combination with a TBK1 inhibitor (LiCl). We revealed that IRF3/IRF7 enhanced IFNα production, and decreased IL-6 mRNA expression. Blocking the TBK1 pathway, inhibited the changes in IFNα, but not IL-6 mRNA. This illustrated that IRF3/IRF7 enhanced IFNα production through TLR4/TBK1 signaling pathway and played an anti-inflammatory role, while IRF3/IRF7 decreased IL-6 expression independent of the TBK1 pathway. Trends in MyD88, TRAF6, TBK1 and NFκB mRNA variation were similar in all treatments. LPS increased MyD88, TRAF6, TBK1 and NFκB mRNA abundance in PBR3/PBR7 and PBv cells, while LiCl blocked the LPS-mediated effects. The levels of these four factors in PBR3/PBR7 cells were higher than those in PBv. These results demonstrated that IRF3/IRF7 regulated the inflammatory response through the TLR4 signaling pathway. Overexpression of swine IRF3/IRF7 in PK15 cells induced type I interferons production, and attenuated inflammatory responses through TLR4 signaling pathway.
Collapse
Affiliation(s)
- Pei-Ge Chen
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yan-Jing Guan
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guang-Ming Zha
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xian-Qin Jiao
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - He-Shui Zhu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Cheng-Yu Zhang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yue-Ying Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - He-Ping Li
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Jeong DE, Lee D, Hwang SY, Lee Y, Lee JE, Seo M, Hwang W, Seo K, Hwang AB, Artan M, Son HG, Jo JH, Baek H, Oh YM, Ryu Y, Kim HJ, Ha CM, Yoo JY, Lee SJV. Mitochondrial chaperone HSP-60 regulates anti-bacterial immunity via p38 MAP kinase signaling. EMBO J 2017; 36:1046-1065. [PMID: 28283579 DOI: 10.15252/embj.201694781] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
Mitochondria play key roles in cellular immunity. How mitochondria contribute to organismal immunity remains poorly understood. Here, we show that HSP-60/HSPD1, a major mitochondrial chaperone, boosts anti-bacterial immunity through the up-regulation of p38 MAP kinase signaling. We first identify 16 evolutionarily conserved mitochondrial components that affect the immunity of Caenorhabditis elegans against pathogenic Pseudomonas aeruginosa (PA14). Among them, the mitochondrial chaperone HSP-60 is necessary and sufficient to increase resistance to PA14. We show that HSP-60 in the intestine and neurons is crucial for the resistance to PA14. We then find that p38 MAP kinase signaling, an evolutionarily conserved anti-bacterial immune pathway, is down-regulated by genetic inhibition of hsp-60, and up-regulated by increased expression of hsp-60 Overexpression of HSPD1, the mammalian ortholog of hsp-60, increases p38 MAP kinase activity in human cells, suggesting an evolutionarily conserved mechanism. Further, cytosol-localized HSP-60 physically binds and stabilizes SEK-1/MAP kinase kinase 3, which in turn up-regulates p38 MAP kinase and increases immunity. Our study suggests that mitochondrial chaperones protect host eukaryotes from pathogenic bacteria by up-regulating cytosolic p38 MAPK signaling.
Collapse
Affiliation(s)
- Dae-Eun Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Dongyeop Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Sun-Young Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Yujin Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Jee-Eun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Mihwa Seo
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Wooseon Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Keunhee Seo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Ara B Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Murat Artan
- Information Technology Convergence Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Heehwa G Son
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Jay-Hyun Jo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Haeshim Baek
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Young Min Oh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Youngjae Ryu
- Research Division, Korea Brain Research Institute, Daegu, Korea
| | - Hyung-Jun Kim
- Research Division, Korea Brain Research Institute, Daegu, Korea
| | - Chang Man Ha
- Research Division, Korea Brain Research Institute, Daegu, Korea
| | - Joo-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Seung-Jae V Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea .,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea.,Information Technology Convergence Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| |
Collapse
|
13
|
Li G, Li M, Liang X, Xiao Z, Zhang P, Shao M, Peng F, Chen Y, Li Y, Chen Z. Identifying DCN and HSPD1 as Potential Biomarkers in Colon Cancer Using 2D-LC-MS/MS Combined with iTRAQ Technology. J Cancer 2017; 8:479-489. [PMID: 28261350 PMCID: PMC5332900 DOI: 10.7150/jca.17192] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/29/2016] [Indexed: 12/31/2022] Open
Abstract
Colon cancer is one of the most common types of gastrointestinal cancers and the fourth cause of cancer death worldwide. To discover novel diagnostic biomarkers for colon cancer and investigate potential mechanisms of oncogenesis, quantitative proteomic approach using iTRAQ-tagging and 2D-LC-MS/MS was performed to characterize proteins alterations in colon cancer and non-neoplastic colonic mucosa (NNCM) using laser capture microdissection-harvested from the two types of tissues, respectively. As a result, 188 DEPs were identified, and the differential expression of two DEPs (DCN and HSPD1) was further verified by Western blotting and immunohistochemistry. KEGG pathway analysis disclosed that the DEPs were related to signaling pathways associated with cancer; furthermore, DCN and HSPD1 are in the relative central hub position among protein-protein interaction subnetwork of the DEPs. The results not only shed light on the mechanism by the DEPs contributed to colonic carcinogenesis, but also showed that DCN and HSPD1 are novel potential biomarkers for the diagnosis of colon cancer.
Collapse
Affiliation(s)
- Guoqing Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacy and Life Science, University of South China, Hengyang 421001, Hunan, China
| | - Maoyu Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xujun Liang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zhefeng Xiao
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Pengfei Zhang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Meiying Shao
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Fang Peng
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yongheng Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuanyuan Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.; Medical College, Guangxi University of Science and Technology, Liuzhou 545005, Guangxi, China
| | - Zhuchu Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
14
|
da Luz CM, Boyles MSP, Falagan-Lotsch P, Pereira MR, Tutumi HR, de Oliveira Santos E, Martins NB, Himly M, Sommer A, Foissner I, Duschl A, Granjeiro JM, Leite PEC. Poly-lactic acid nanoparticles (PLA-NP) promote physiological modifications in lung epithelial cells and are internalized by clathrin-coated pits and lipid rafts. J Nanobiotechnology 2017; 15:11. [PMID: 28143572 PMCID: PMC5282631 DOI: 10.1186/s12951-016-0238-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/03/2016] [Indexed: 02/07/2023] Open
Abstract
Background Poly-lactic acid nanoparticles (PLA-NP) are a type of polymeric NP, frequently used as nanomedicines, which have advantages over metallic NP such as the ability to maintain therapeutic drug levels for sustained periods of time. Despite PLA-NP being considered biocompatible, data concerning alterations in cellular physiology are scarce. Methods We conducted an extensive evaluation of PLA-NP biocompatibility in human lung epithelial A549 cells using high throughput screening and more complex methodologies. These included measurements of cytotoxicity, cell viability, immunomodulatory potential, and effects upon the cells’ proteome. We used non- and green-fluorescent PLA-NP with 63 and 66 nm diameters, respectively. Cells were exposed with concentrations of 2, 20, 100 and 200 µg/mL, for 24, 48 and 72 h, in most experiments. Moreover, possible endocytic mechanisms of internalization of PLA-NP were investigated, such as those involving caveolae, lipid rafts, macropinocytosis and clathrin-coated pits. Results Cell viability and proliferation were not altered in response to PLA-NP. Multiplex analysis of secreted mediators revealed a low-level reduction of IL-12p70 and vascular epidermal growth factor (VEGF) in response to PLA-NP, while all other mediators assessed were unaffected. However, changes to the cells’ proteome were observed in response to PLA-NP, and, additionally, the cellular stress marker miR155 was found to reduce. In dual exposures of staurosporine (STS) with PLA-NP, PLA-NP enhanced susceptibility to STS-induced cell death. Finally, PLA-NP were rapidly internalized in association with clathrin-coated pits, and, to a lesser extent, with lipid rafts. Conclusions These data demonstrate that PLA-NP are internalized and, in general, tolerated by A549 cells, with no cytotoxicity and no secretion of pro-inflammatory mediators. However, PLA-NP exposure may induce modification of biological functions of A549 cells, which should be considered when designing drug delivery systems. Moreover, the pathways of PLA-NP internalization we detected could contribute to the improvement of selective uptake strategies. Electronic supplementary material The online version of this article (doi:10.1186/s12951-016-0238-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camila Macedo da Luz
- Laboratory of Bioengineering and in Vitro Toxicology, Directory of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality and Technology (INMETRO), Duque De Caxias, RJ, Brazil
| | - Matthew Samuel Powys Boyles
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria.,Heriot-Watt University, Edinburg, UK
| | - Priscila Falagan-Lotsch
- Laboratory of Bioengineering and in Vitro Toxicology, Directory of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality and Technology (INMETRO), Duque De Caxias, RJ, Brazil
| | - Mariana Rodrigues Pereira
- Laboratory of Chemical Signaling in Nervous System, Biology Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Henrique Rudolf Tutumi
- Laboratory of Bioengineering and in Vitro Toxicology, Directory of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality and Technology (INMETRO), Duque De Caxias, RJ, Brazil
| | - Eidy de Oliveira Santos
- Laboratory of Bioengineering and in Vitro Toxicology, Directory of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality and Technology (INMETRO), Duque De Caxias, RJ, Brazil.,Laboratory of Biochemistry, State University Center of West Zone (UEZO), Rio de Janeiro, RJ, Brazil
| | - Nathalia Balthazar Martins
- Laboratory of Bioengineering and in Vitro Toxicology, Directory of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality and Technology (INMETRO), Duque De Caxias, RJ, Brazil
| | - Martin Himly
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Aniela Sommer
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Ilse Foissner
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Albert Duschl
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - José Mauro Granjeiro
- Laboratory of Bioengineering and in Vitro Toxicology, Directory of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality and Technology (INMETRO), Duque De Caxias, RJ, Brazil.,Dental School, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Paulo Emílio Corrêa Leite
- Laboratory of Bioengineering and in Vitro Toxicology, Directory of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality and Technology (INMETRO), Duque De Caxias, RJ, Brazil. .,, Av. Nossa Senhora das Gracas 50, LABET - Dimav, Predio 27, Duque de Caxias, Xerem, Rio de Janeiro, 25250-020, Brazil.
| |
Collapse
|
15
|
Ren Y, Khan FA, Pandupuspitasari NS, Li S, Hao X, Chen X, Xiong J, Yang L, Fan M, Zhang S. Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Modulates Interferon-β Expression Mainly Through Attenuating Interferon-Regulatory Factor 3 Phosphorylation. DNA Cell Biol 2016; 35:489-97. [PMID: 27314873 DOI: 10.1089/dna.2016.3283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) that emerged from classic PRRSV causes more severe damage to the swine industry. The earlier reports indicating inhibition of interferon-β (IFN-β) expression by PRRSV through total blockage of IFN-regulatory factor 3 (IRF3) nuclear translocation made us investigate the mechanism of IFN-β expression in HP-PRRSV infection. For this purpose, the IRF3 nuclear translocation in the control group [Poly (I:C)] and test group [Poly (I:C)+HP-PRRSV] was detected by immunofluorescence, and the results showed that IRF3 nuclear translocation in cells with PRRSV was weaker than cells without PRRSV, which was different from the previous study. In addition, the IFN-β mRNA and protein expression was observed to be inhibited by HP-PRRSV along with decreased IRF3 mRNA and total protein, and IRF3 nuclear translocation of test group was suppressed in MARC-145 and porcine alveolar macrophage cells in comparison with the control group. The quantity of phosphorylated IRF3 protein was also reduced after HP-PRRSV infection. However, CREB-binding protein (CBP) expression did not change between the control and test group. These results indicate that the inhibition of IFN-β expression is mainly due to the quantitative change in the amount of phosphorylated IRF3 in the cytoplasm, but not dependent on the complete blockage of IRF3 nuclear translocation or the restraining of CBP expression in the nucleus by HP-PRRSV.
Collapse
Affiliation(s)
- Yuwei Ren
- 1 Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University , Wuhan, China
| | - Faheem Ahmed Khan
- 1 Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University , Wuhan, China
| | - Nuruliarizki Shinta Pandupuspitasari
- 1 Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University , Wuhan, China
| | - Shuaifeng Li
- 1 Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University , Wuhan, China
| | - Xingjie Hao
- 1 Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University , Wuhan, China
| | - Xing Chen
- 1 Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University , Wuhan, China
| | - Jiajun Xiong
- 1 Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University , Wuhan, China
| | - Liguo Yang
- 1 Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University , Wuhan, China
| | - Mingxia Fan
- 2 Key Laboratory of Animal Center, Renmin Hospital of Wuhan University , Wuhan, China
| | - Shujun Zhang
- 1 Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University , Wuhan, China
| |
Collapse
|
16
|
Wei D, Li NL, Zeng Y, Liu B, Kumthip K, Wang TT, Huo D, Ingels JF, Lu L, Shang J, Li K. The Molecular Chaperone GRP78 Contributes to Toll-like Receptor 3-mediated Innate Immune Response to Hepatitis C Virus in Hepatocytes. J Biol Chem 2016; 291:12294-309. [PMID: 27129228 DOI: 10.1074/jbc.m115.711598] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 01/26/2023] Open
Abstract
Toll-like receptor-3 (TLR3) senses double-stranded RNA intermediates produced during hepatitis C virus (HCV) replication, leading to activation of interferon regulatory factor-3 (IRF3) and NF-κB and subsequent antiviral and proinflammatory responses. Yet, how this TLR3-dependent pathway operates in hepatocytes is unclear. Upon fractionating cultured hepatocytes into various cellular organelles, we observed that TLR3 predominantly resides in endolysosomes of hepatocytes. To determine the critical regulators of TLR3 signaling in response to HCV infection in human hepatocytes, we isolated endolysosome fractions from mock-infected and HCV-infected hepatoma Huh7.5 cells that had been reconstituted for TLR3 expression, separated these fractions on two-dimensional gels, and identified up-regulated/down-regulated proteins by mass spectrometry. Approximately a dozen of cellular proteins were found to be differentially expressed in endolysosome fractions following HCV infection. Of these, expression of several molecular chaperone proteins was elevated. Knockdown of one of these chaperones, glucose-regulated protein 78 kDa (GRP78), compromised TLR3-dependent induction of interferon-stimulated genes and chemokines following HCV infection or poly(I:C) stimulation in cultured hepatocytes. Consistent with this finding, GRP78 depletion impaired TLR3-mediated establishment of an antiviral state. Mechanistically, although TLR3 trafficking to endolysosomes was not affected, phosphorylated IRF3 diminished faster following GRP78 knockdown. Remarkably, GRP78 transcript was significantly up-regulated in liver biopsies of chronic hepatitis C patients as compared with normal liver tissues. Moreover, the GRP78 expression level correlated with that of RANTES (regulated upon activation, normal T-cell expressed and secreted) and CXCL10, two inflammatory chemokines most frequently elevated in HCV-infected liver. Altogether, our data suggest that GRP78 contributes to TLR3-mediated, IRF3-dependent innate immune response to HCV in hepatocytes.
Collapse
Affiliation(s)
- Dahai Wei
- From the Departments of Microbiology, Immunology and Biochemistry and
| | - Nan L Li
- From the Departments of Microbiology, Immunology and Biochemistry and
| | - Yanli Zeng
- the Department of Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Baoming Liu
- From the Departments of Microbiology, Immunology and Biochemistry and
| | | | - Tony T Wang
- the SRI International, Harrisonburg, Virginia 22802, and
| | - Dezheng Huo
- the Department of Public Health Sciences, University of Chicago, Chicago, Illinois 60637
| | - Jesse F Ingels
- Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Lu Lu
- Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Jia Shang
- the Department of Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Kui Li
- From the Departments of Microbiology, Immunology and Biochemistry and
| |
Collapse
|