1
|
Kumar A, Ashawat MS, Pandit V, Kumar P. Bioelectronic Medicines-A Novel Approach of Therapeutics in Current Epoch. Curr Pharm Des 2025; 31:163-178. [PMID: 39313906 DOI: 10.2174/0113816128326489240827100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/19/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Bioelectronic medicines aim to diagnose and treat a wide range of illnesses and ailments, including cancer, rheumatoid arthritis, inflammatory bowel disease, obesity, diabetes, asthma, paralysis, blindness, bleeding, ischemia, organ transplantation, cardiovascular disease, and neurodegenerative diseases. The focus of bioelectronic medicine is on electrical signaling of the nervous system. Understanding the nervous system's regulatory roles and developing technologies that record, activate, or inhibit neural signaling to influence particular biological pathways. OBJECTIVE Bioelectronic medicine is an emerging therapeutic option with the interconnection between molecular medicine, neuroscience, and bioengineering. The creation of nerve stimulating devices that communicate with both the central and peripheral nervous systems has the potential to completely transform how we treat disorders. Although early clinical applications have been largely effective across entire nerves, the ultimate goal is to create implantable, miniature closed-loop systems that can precisely identify and modulate individual nerve fibers to treat a wide range of disorders. METHODOLOGY The data bases such as PubMed, and Clinicaltrial.gov.in were searched for scientific research, review and clinical trials on bioelectronic medicine. CONCLUSION The field of bioelectronic medicine is trending at present. In recent years, researchers have extended the field's applications, undertaken promising clinical trials, and begun delivering therapies to patients, thus creating the groundwork for significant future advancements. Countries and organizations must collaborate across industries and regions to establish an atmosphere and guidelines that foster the advancement of the field and the fulfillment of its prospective advantages.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Pharmaceutics, Laureate Institute of Pharmacy, Kathog, Jwalamukhi, H.P., India
| | - Mahendra Singh Ashawat
- Department of Pharmaceutics, Laureate Institute of Pharmacy, Kathog, Jwalamukhi, H.P., India
| | - Vinay Pandit
- Department of Pharmaceutics, Laureate Institute of Pharmacy, Kathog, Jwalamukhi, H.P., India
| | - Pravin Kumar
- Department of Pharmaceutics, Laureate Institute of Pharmacy, Kathog, Jwalamukhi, H.P., India
| |
Collapse
|
2
|
Dwivedi SD, Yadav K, Bhoi A, Sahu KK, Sangwan N, Singh D, Singh MR. Targeting Pathways and Integrated Approaches to Treat Rheumatoid Arthritis. Crit Rev Ther Drug Carrier Syst 2024; 41:87-102. [PMID: 38305342 DOI: 10.1615/critrevtherdrugcarriersyst.2023044719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic symmetrical systemic disorder that not only affects joints but also other organs such as heart, lungs, kidney, and liver. Approximately there is 0.5%-1% of the total population affected by RA. RA pathogenesis still remains unclear due to which its appropriate treatment is a challenge. Further, multitudes of factors have been reported to affect its progression i.e. genetic factor, environmental factor, immune factor, and oxidative factor. Therapeutic approaches available for the treatment of RA include NSAIDs, DMARDs, enzymatic, hormonal, and gene therapies. But most of them provide the symptomatic relief without treating the core of the disease. This makes it obligatory to explore and reach the molecular targets for cure and long-term relief from RA. Herein, we attempt to provide extensive overlay of the new targets for RA treatment such as signaling pathways, proteins, and receptors affecting the progression of the disease and its severity. Precise modification in these targets such as suppressing the notch signaling pathway, SIRT 3 protein, Sphingosine-1-phosphate receptor and stimulating the neuronal signals particularly efferent vagus nerve and SIRT 1 protein may offer long term relief and potentially diminish the chronicity. To target or alter the novel molecules and signaling pathway a specific delivery system is required such as liposome, nanoparticles and micelles and many more. Present review paper discusses in detail about novel targets and delivery systems for treating RA.
Collapse
Affiliation(s)
- Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Krishna Yadav
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India
| | - Anita Bhoi
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Keshav Kant Sahu
- School of studies in biotechnology, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India
| | - Neelam Sangwan
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India; National Centre for Natural Resources, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - Manju Rawat Singh
- University Institute of pharmacy, Pt.Ravishankar Shukla University, Raipur.(C.G.) 2. National centre for natural resources, Pt. Ravishankar Shukla University, Raipur
| |
Collapse
|
3
|
Das S, Ghosh B, Sahoo RN, Nayak AK. Recent Advancements in Bioelectronic Medicine: A Review. Curr Drug Deliv 2024; 21:1445-1459. [PMID: 38173212 DOI: 10.2174/0115672018286832231218112557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Bioelectronic medicine is a multidisciplinary field that combines molecular medicine, neurology, engineering, and computer science to design devices for diagnosing and treating diseases. The advancements in bioelectronic medicine can improve the precision and personalization of illness treatment. Bioelectronic medicine can produce, suppress, and measure electrical activity in excitable tissue. Bioelectronic devices modify specific neural circuits using electrons rather than pharmaceuticals and uses of bioelectronic processes to regulate the biological processes underlining various diseases. This promotes the potential to address the underlying causes of illnesses, reduce adverse effects, and lower costs compared to conventional medication. The current review presents different important aspects of bioelectronic medicines with recent advancements. The area of bioelectronic medicine has a lot of potential for treating diseases, enabling non-invasive therapeutic intervention by regulating brain impulses. Bioelectronic medicine uses electricity to control biological processes, treat illnesses, or regain lost capability. These new classes of medicines are designed by the technological developments in the detection and regulation of electrical signaling methods in the nervous system. Peripheral nervous system regulates a wide range of processes in chronic diseases; it involves implanting small devices onto specific peripheral nerves, which read and regulate the brain signaling patterns to achieve therapeutic effects specific to the signal capacity of a particular organ. The potential for bioelectronic medicine field is vast, as it investigates for treatment of various diseases, including rheumatoid arthritis, diabetes, hypertension, paralysis, chronic illnesses, blindness, etc.
Collapse
Affiliation(s)
- Sudipta Das
- Department of Pharmaceutics, Netaji Subhas Chandra Bose Institute of Pharmacy, Chakdaha, Nadia - 741222, West Bengal, India
| | - Baishali Ghosh
- Department of Pharmaceutics, Netaji Subhas Chandra Bose Institute of Pharmacy, Chakdaha, Nadia - 741222, West Bengal, India
| | - Rudra Narayan Sahoo
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| |
Collapse
|
4
|
Kim YE, Lee JH, Lee EJ, Kim DH, Jeong MR, Hong S, Lee CK, Yoo B, Youn J, Chang EJ, Kim YG. The Expression of the Alpha7 Nicotinic Acetylcholine Receptor and the Effect of Smoking in Curdlan-Administered SKG Mice. Biomedicines 2023; 11:2757. [PMID: 37893130 PMCID: PMC10603960 DOI: 10.3390/biomedicines11102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Nicotine, an abundant molecule in tobacco, has immunomodulatory effects on inflammatory diseases, primarily due to the activation of alpha7 nicotinic acetylcholine receptor (α7 nAChR). We aim to evaluate the expression of the α7 nAChR+ cells in joint tissue and the effect of smoking on immune cells and peripheral arthritis in curdlan-administered SKG mice, a murine model of spondyloarthropathy (SpA). The SKG mice were injected with curdlan two times at 2-week intervals and were divided into two groups; one exposed to cigarette smoke and the other not exposed. We found that the α7 nAChR+ cells increased in the joint tissue of curdlan-administered SKG mice compared to in the wild type. Furthermore, the peripheral arthritis scores and histological scores for synovial inflammation were lower in smoke-exposed curdlan-administered SKG mice than in mice not exposed to smoke. Immunofluorescence staining of the α7 nAChR+ and IL-17A+ cells was lower in the synovia of smoke-exposed mice than the control mice. The proportions of α7 nAChR+IL-17A+ and α7 nAChR+IL-17A+FOXP3+ cells also decreased in the synovia of smoke-exposed mice compared with the controls. We observed an increase in the α7 nAChR+ cells within the joint tissue of curdlan-administered SKG mice and that cigarette smoke had an influence on both peripheral arthritis and immune cell population, especially α7 nAChR+ cells. Thus, exposure to cigarette smoke after arthritogenic stimuli may have an anti-arthritogenic effect in curdlan-administered SKG mice.
Collapse
Affiliation(s)
- Young-Eun Kim
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Jae-Hyun Lee
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Eun-Ju Lee
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Do Hoon Kim
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Mi Ryeong Jeong
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Seokchan Hong
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Chang-Keun Lee
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Bin Yoo
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Jeehee Youn
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea;
| | - Eun-Ju Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Yong-Gil Kim
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| |
Collapse
|
5
|
Hone AJ, McIntosh JM. Nicotinic acetylcholine receptors: Therapeutic targets for novel ligands to treat pain and inflammation. Pharmacol Res 2023; 190:106715. [PMID: 36868367 PMCID: PMC10691827 DOI: 10.1016/j.phrs.2023.106715] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) have been historically defined as ligand-gated ion channels and function as such in the central and peripheral nervous systems. Recently, however, non-ionic signaling mechanisms via nAChRs have been demonstrated in immune cells. Furthermore, the signaling pathways where nAChRs are expressed can be activated by endogenous ligands other than the canonical agonists acetylcholine and choline. In this review, we discuss the involvement of a subset of nAChRs containing α7, α9, and/or α10 subunits in the modulation of pain and inflammation via the cholinergic anti-inflammatory pathway. Additionally, we review the most recent advances in the development of novel ligands and their potential as therapeutics.
Collapse
Affiliation(s)
- Arik J Hone
- School of Biological Sciences University of Utah, Salt Lake City, UT, USA; MIRECC, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - J Michael McIntosh
- School of Biological Sciences University of Utah, Salt Lake City, UT, USA; Department of Psychiatry, University of Utah, Salt Lake City, UT, USA; George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Papke RL, Quadri M, Gulsevin A. Silent agonists for α7 nicotinic acetylcholine receptors. Pharmacol Res 2023; 190:106736. [PMID: 36940890 DOI: 10.1016/j.phrs.2023.106736] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
We discuss models for the activation and desensitization of α7 nicotinic acetylcholine receptors (nAChRs) and the effects of efficacious type II positive allosteric modulators (PAMs) that destabilize α7 desensitized states. Type II PAMs such as PNU-120596 can be used to distinguish inactive compounds from silent agonists, compounds that produce little or no channel activation but stabilize the non-conducting conformations associated with desensitization. We discuss the effects of α7 nAChRs in cells of the immune system and their roles in modulating inflammation and pain through what has come to be known as the cholinergic anti-inflammatory system (CAS). Cells controlling CAS do not generate ion channel currents but rather respond to α7 drugs by modulating intracellular signaling pathways analogous to the effects of metabotropic receptors. Metabotropic signaling by α7 receptors appears to be mediated by receptors in nonconducting conformations and can be accomplished by silent agonists. We discuss electrophysiological structure-activity relationships for α7 silent agonists and their use in cell-based and in vivo assays for CAS regulation. We discuss the strongly desensitizing partial agonist GTS-21 and its effectiveness in modulation of CAS. We also review the properties of the silent agonist NS6740, which is remarkably effective at maintaining α7 receptors in PAM-sensitive desensitized states. Most silent agonists bind to sites overlapping those for orthosteric agonists, but some appear to bind to allosteric sites. Finally, we discuss α9⁎ nAChRs and their potential role in CAS, and ligands that will be useful in defining and distinguishing the specific roles of α7 and α9 in CAS.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267 Gainesville, FL 32610 USA (RLP); Olon S.p.A., Strada Rivoltana, Km 6/7 - 20053 Rodano (MI) - ITALY (MQ); Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA, 37212 (AG).
| | - Marta Quadri
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267 Gainesville, FL 32610 USA (RLP); Olon S.p.A., Strada Rivoltana, Km 6/7 - 20053 Rodano (MI) - ITALY (MQ); Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA, 37212 (AG)
| | - Alican Gulsevin
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267 Gainesville, FL 32610 USA (RLP); Olon S.p.A., Strada Rivoltana, Km 6/7 - 20053 Rodano (MI) - ITALY (MQ); Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA, 37212 (AG)
| |
Collapse
|
7
|
Tae HS, Adams DJ. Nicotinic acetylcholine receptor subtype expression, function, and pharmacology: Therapeutic potential of α-conotoxins. Pharmacol Res 2023; 191:106747. [PMID: 37001708 DOI: 10.1016/j.phrs.2023.106747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
The pentameric nicotinic acetylcholine receptors (nAChRs) are typically classed as muscle- or neuronal-type, however, the latter has also been reported in non-neuronal cells. Given their broad distribution, nAChRs mediate numerous physiological and pathological processes including synaptic transmission, presynaptic modulation of transmitter release, neuropathic pain, inflammation, and cancer. There are 17 different nAChR subunits and combinations of these subunits produce subtypes with diverse pharmacological properties. The expression and role of some nAChR subtypes have been extensively deciphered with the aid of knock-out models. Many nAChR subtypes expressed in heterologous systems are selectively targeted by the disulfide-rich α-conotoxins. α-Conotoxins are small peptides isolated from the venom of cone snails, and a number of them have potential pharmaceutical value.
Collapse
|
8
|
Abstract
The α7-type nicotinic acetylcholine receptor is one of the most unique and interesting of all the members of the cys-loop superfamily of ligand-gated ion channels. Since it was first identified initially as a binding site for α-bungarotoxin in mammalian brain and later as a functional homomeric receptor with relatively high calcium permeability, it has been pursued as a potential therapeutic target for numerous indications, from Alzheimer disease to asthma. In this review, we discuss the history and state of the art for targeting α7 receptors, beginning with subtype-selective agonists and the basic pharmacophore for the selective activation of α7 receptors. A key feature of α7 receptors is their rapid desensitization by standard "orthosteric" agonist, and we discuss insights into the conformational landscape of α7 receptors that has been gained by the development of ligands binding to allosteric sites. Some of these sites are targeted by positive allosteric modulators that have a wide range of effects on the activation profile of the receptors. Other sites are targeted by direct allosteric agonist or antagonists. We include a perspective on the potential importance of α7 receptors for metabotropic as well as ionotropic signaling. We outline the challenges that exist for future development of drugs to target this important receptor and approaches that may be considered to address those challenges. SIGNIFICANCE STATEMENT: The α7-type nicotinic acetylcholine receptor (nAChR) is acknowledged as a potentially important therapeutic target with functional properties associated with both ionotropic and metabotropic signaling. The functional properties of α7 nAChR can be regulated in diverse ways with the variety of orthosteric and allosteric ligands described in this review.
Collapse
Affiliation(s)
- Roger L Papke
- Departments of Pharmacology and Therapeutics (R.L.P) and Chemistry (N.A.H.), University of Florida, Gainesville, FL
| | - Nicole A Horenstein
- Departments of Pharmacology and Therapeutics (R.L.P) and Chemistry (N.A.H.), University of Florida, Gainesville, FL
| |
Collapse
|
9
|
Hajiasgharzadeh K, Khabbazi A, Mokhtarzadeh A, Baghbanzadeh A, Asadzadeh Z, Adlravan E, Baradaran B. Cholinergic anti-inflammatory pathway and connective tissue diseases. Inflammopharmacology 2021; 29:975-986. [PMID: 34125373 DOI: 10.1007/s10787-021-00812-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/24/2021] [Indexed: 11/29/2022]
Abstract
Connective tissue diseases (CTDs) consist of an extensive range of heterogeneous medical conditions, which are caused by immune-mediated chronic inflammation and influences the various connective tissues of the body. They include rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, vasculitis, Sjögren's syndrome, Behcet's disease, and many other autoimmune CTDs. To date, several anti-inflammatory approaches have been developed to reduce the severity of inflammation or its subsequent organ manifestations. As a logical mechanism to harnesses the undesired inflammation, some studies investigated the role of the intrinsic cholinergic anti-inflammatory pathway (CAP) in the modulation of chronic inflammation. Many different experimental and clinical models have been developed to evaluate the therapeutic significance of the CAP in CTDs. On the other hand, an issue that is less emphasized in this regard is the presence of autonomic neuropathy in CTDs, which influences the efficiency of CAP in such clinical settings. This condition occurs during CTDs and is a well-known complication of patients suffering from them. The advantages and limitations of CAP in the control of inflammatory responses and its possible therapeutic benefits in the treatment of CTDs are the main subjects of the current study. Therefore, this narrative review article is provided based on the recent findings of the complicated role of CAP in CTDs which were retrieved by searching Science Direct, PubMed, Google Scholar, and Web of Science. It seems that delineating the complex influences of CAP would be of great interest in designing novel surgical or pharmacological therapeutic strategies for CTDs therapy.
Collapse
Affiliation(s)
- Khalil Hajiasgharzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614756, Tabriz, Iran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614756, Tabriz, Iran.
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Elham Adlravan
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran. .,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Afrashteh Nour M, Hajiasgharzadeh K, Kheradmand F, Asadzadeh Z, Bolandi N, Baradaran B. Nicotinic acetylcholine receptors in chemotherapeutic drugs resistance: An emerging targeting candidate. Life Sci 2021; 278:119557. [PMID: 33930371 DOI: 10.1016/j.lfs.2021.119557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
There is no definitive cure for cancer, and most of the current chemotherapy drugs have limited effects due to the development of drug resistance and toxicity at high doses. Therefore, there is an ongoing need for identifying the causes of chemotherapeutic resistance, and it will be possible to develop innovative treatment approaches based on these novel targeting candidates. Cigarette smoking is known to be one of the main causes of resistance to chemotherapeutic agents. Nicotine as a component of cigarette smoke is an exogenous activator of nicotinic acetylcholine receptors (nAChRs). It can inhibit apoptosis, increase cell proliferation and cell survival, reducing the cytotoxic effects of chemotherapy drugs and cause a reduced therapeutic response. Recent studies have demonstrated that nAChRs and their downstream signaling pathways have considerable implications in different cancer's initiation, progression, and chemoresistance. In some previous studies, nAChRs have been targeted to obtain better efficacies for chemotherapeutics. Besides, nAChRs-based therapies have been used in combination with chemotherapy drugs to reduce the side effects. This strategy requires lower doses of chemotherapy drugs compared to the conditions that must be used alone. Here, we discussed the experimental and clinical studies that show the nAChRs involvement in response to chemotherapy agents. Also, controversies relating to the effects of nAChR on chemotherapy-induced apoptosis are in our focus in this review article. Delineating the complex influences of nAChRs would be of great interest in establishing new effective chemotherapy regimens.
Collapse
Affiliation(s)
- Mina Afrashteh Nour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Khalil Hajiasgharzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Kheradmand
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nadia Bolandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Gaidhani N, Tucci FC, Kem WR, Beaton G, Uteshev VV. Therapeutic efficacy of α7 ligands after acute ischaemic stroke is linked to conductive states of α7 nicotinic ACh receptors. Br J Pharmacol 2021; 178:1684-1704. [PMID: 33496352 DOI: 10.1111/bph.15392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Targeting α7 nicotinic ACh receptors (nAChRs) in neuroinflammatory disorders including acute ischaemic stroke holds significant therapeutic promise. However, therapeutically relevant signalling mechanisms remain unidentified. Activation of neuronal α7 nAChRs triggers ionotropic signalling, but there is limited evidence for it in immunoglial tissues. The α7 ligands which are effective in reducing acute ischaemic stroke damage promote α7 ionotropic activity, suggesting a link between their therapeutic effects for treating acute ischaemic stroke and activation of α7 conductive states. EXPERIMENTAL APPROACH This hypothesis was tested using a transient middle cerebral artery occlusion (MCAO) model of acute ischaemic stroke, NS6740, a known selective non-ionotropic agonist of α7 nAChRs and 4OH-GTS-21, a partial α7 agonist. NS6740-like ligands exhibiting low efficacy/potency for ionotropic activity will be referred to as non-ionotropic agonists or "metagonists". KEY RESULTS 4OH-GTS-21, used as a positive control, significantly reduced neurological deficits and brain injury after MCAO as compared to vehicle and NS6740. By contrast, NS6740 was ineffective in identical assays and reversed the effects of 4OH-GTS-21 when these compounds were co-applied. Electrophysiological recordings from acute hippocampal slices obtained from NS6740-injected animals demonstrated its remarkable brain availability and protracted effects on α7 nAChRs as evidenced by sustained (>8 h) alterations in α7 ionotropic responsiveness. CONCLUSION AND IMPLICATIONS These results suggest that α7 ionotropic activity may be obligatory for therapeutic efficacy of α7 ligands after acute ischaemic stroke yet, highlight the potential for selective application of α7 ligands to disease states based on their mode of receptor activation.
Collapse
Affiliation(s)
- Nikhil Gaidhani
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Fabio C Tucci
- Epigen Biosciences, Inc., San Diego, California, USA
| | - William R Kem
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Graham Beaton
- Epigen Biosciences, Inc., San Diego, California, USA
| | - Victor V Uteshev
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
12
|
Pucci S, Fasoli F, Moretti M, Benfante R, Di Lascio S, Viani P, Daga A, Gordon TJ, McIntosh M, Zoli M, Clementi F, Gotti C. Choline and nicotine increase glioblastoma cell proliferation by binding and activating α7- and α9- containing nicotinic receptors. Pharmacol Res 2020; 163:105336. [PMID: 33276105 DOI: 10.1016/j.phrs.2020.105336] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022]
Abstract
Glioblastomas (GBMs), the most frequent and aggressive human primary brain tumours, have altered cell metabolism, and one of the strongest indicators of malignancy is an increase in choline compounds. Choline is also a selective agonist of some neuronal nicotinic acetylcholine receptor (nAChR) subtypes. As little is known concerning the expression of nAChR in glioblastoma cells, we analysed in U87MG human grade-IV astrocytoma cell line and GBM5 temozolomide-resistant glioblastoma cells selected from a cancer stem cell-enriched culture, molecularly, pharmacologically and functionally which nAChR subtypes are expressed and,whether choline and nicotine can affect GBM cell proliferation. We found that U87MG and GBM5 cells express similar nAChR subtypes, and choline and nicotine increase their proliferation rate and activate the anti-apoptotic AKT and pro-proliferative ERK pathways. These effects are blocked by the presence of non-cell-permeable peptide antagonists selective for α7- and α9-containing nicotinic receptors. siRNA-mediated silencing of α7 or α9 subunit expression also selectively prevents the effects of nicotine and choline on GBM cell proliferation. Our findings indicate that nicotine and choline activate the signalling pathways involved in the proliferation of GBM cells, and that these effects are mediated by α7 and α9-containing nAChRs. This suggests that these nicotinic receptors may contribute to the aggressive behaviour of this tumor and may indicate new therapeutic strategies against high-grade human brain tumours.
Collapse
Affiliation(s)
- Susanna Pucci
- CNR, Institute of Neuroscience, Milan, Italy; NeuroMi Milan Center for Neuroscience, University of Milano-Bicocca, Italy; Hunimed University, Via Rita Levi-Montalcini 4, 20090 Pieve Emanuele (MI), Italy
| | - Francesca Fasoli
- CNR, Institute of Neuroscience, Milan, Italy; NeuroMi Milan Center for Neuroscience, University of Milano-Bicocca, Italy
| | - Milena Moretti
- CNR, Institute of Neuroscience, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Roberta Benfante
- CNR, Institute of Neuroscience, Milan, Italy; NeuroMi Milan Center for Neuroscience, University of Milano-Bicocca, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Paola Viani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Antonio Daga
- Cellular Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Thomas J Gordon
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Michael McIntosh
- Department of Biology, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA; Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology (CfNN), University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Francesco Clementi
- CNR, Institute of Neuroscience, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Cecilia Gotti
- CNR, Institute of Neuroscience, Milan, Italy; NeuroMi Milan Center for Neuroscience, University of Milano-Bicocca, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
13
|
Godin JR, Roy P, Quadri M, Bagdas D, Toma W, Narendrula-Kotha R, Kishta OA, Damaj MI, Horenstein NA, Papke RL, Simard AR. A silent agonist of α7 nicotinic acetylcholine receptors modulates inflammation ex vivo and attenuates EAE. Brain Behav Immun 2020; 87:286-300. [PMID: 31874200 PMCID: PMC7604877 DOI: 10.1016/j.bbi.2019.12.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are best known to function as ligand-gated ion channels in the nervous system. However, recent evidence suggests that nicotine modulates inflammation by desensitizing non-neuronal nAChRs, rather than by inducing channel opening. Silent agonists are molecules that selectively induce the desensitized state of nAChRs while producing little or no channel opening. A silent agonist of α7 nAChRs has recently been shown to reduce inflammation in an animal model of inflammatory pain. The objective of this study was to determine whether a silent agonist of α7 nAChRs can also effectively modulate inflammation and disease manifestation in an animal model of multiple sclerosis. We first evaluated the effects of various nAChR ligands and of an α7 nAChR-selective silent agonist, 1-ethyl-4-(3-(bromo)phenyl)piperazine (m-bromo PEP), on the modulation of mouse bone marrow-derived monocyte/macrophage (BMDM) numbers, phenotype and cytokine production. The non-competitive antagonist mecamylamine and the silent agonist m-bromo PEP reduced pro-inflammatory BMDM numbers by affecting their viability and proliferation. Both molecules also significantly reduced cytokine production by mouse BMDMs and significantly ameliorated disease in experimental autoimmune encephalomyelitis. Finally, m-bromo PEP also reduced chronic inflammatory pain in mice. Taken together, our results further support the hypothesis that nAChRs may modulate inflammation via receptor desensitization rather than channel opening. α7 nAChR-selective silent agonists may thus be a novel source of anti-inflammatory compounds that could be used for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Jean-Rémi Godin
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada
| | - Patrick Roy
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada
| | - Marta Quadri
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, FL, USA,Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL, USA
| | - Deniz Bagdas
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Wisam Toma
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Nicole A. Horenstein
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, FL, USA
| | - Roger L. Papke
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL, USA
| | - Alain R. Simard
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada,Northern Ontario School of Medicine, Sudbury, ON, Canada,Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada,Department of Biology, Laurentian University, Sudbury, ON, Canada,Corresponding author at: Northern Ontario School of Medicine, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada. (A.R. Simard)
| |
Collapse
|
14
|
Papke RL, Lindstrom JM. Nicotinic acetylcholine receptors: Conventional and unconventional ligands and signaling. Neuropharmacology 2020; 168:108021. [PMID: 32146229 PMCID: PMC7610230 DOI: 10.1016/j.neuropharm.2020.108021] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/05/2020] [Accepted: 02/25/2020] [Indexed: 12/28/2022]
Abstract
Postsynaptic nAChRs in the peripheral nervous system are critical for neuromuscular and autonomic neurotransmission. Pre- and peri-synaptic nAChRs in the brain modulate neurotransmission and are responsible for the addictive effects of nicotine. Subtypes of nAChRs in lymphocytes and non-synaptic locations may modulate inflammation and other cellular functions. All AChRs that function as ligand-gated ion channels are formed from five homologous subunits organized to form a central cation channel whose opening is regulated by ACh bound at extracellular subunit interfaces. nAChR subtype subunit composition can range from α7 homomers to α4β2α6β2β3 heteromers. Subtypes differ in affinities for ACh and other agonists like nicotine and in efficiencies with which their channels are opened and desensitized. Subtypes also differ in affinities for antagonists and for positive and negative allosteric modulators. Some agonists are "silent" with respect to channel opening, and AChRs may be able to signal metabotropic pathways by releasing G-proteins independent of channel opening. Electrophysiological studies that can resolve single-channel openings and molecular genetic approaches have allowed characterization of the structures of ligand binding sites, the cation channel, and the linkages between them, as well as the organization of AChR subunits and their contributions to function. Crystallography and cryo-electron-microscopy are providing increasing insights into the structures and functions of AChRs. However, much remains to be learned about both AChR structure and function, the in vivo functional roles of some AChR subtypes, and the development of better pharmacological tools directed at AChRs to treat addiction, pain, inflammation, and other medically important issues. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, P.O. Box 100267, Gainesville, FL, 32610-0267, USA.
| | - Jon M Lindstrom
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Toma W, Ulker E, Alqasem M, AlSharari SD, McIntosh JM, Damaj MI. Behavioral and Molecular Basis of Cholinergic Modulation of Pain: Focus on Nicotinic Acetylcholine Receptors. Curr Top Behav Neurosci 2020; 45:153-166. [PMID: 32468494 DOI: 10.1007/7854_2020_135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) have emerged as a novel therapeutic strategy for pain and inflammatory disorders. In particular, α4β2∗, α7, and α9α10 nAChR subtypes have been investigated as potential targets to treat pain. The nAChRs are distributed on the pain transmission pathways, including central and peripheral nervous systems and immune cells as well. Several agonists for α4β2∗ nAChR subtypes have been investigated in multiple animal pain models with promising results. However, studies in human indicated a narrow therapeutic window for α4β2∗ agonists. Furthermore, animal studies suggest that using agonists for α7 nAChR subtype and antagonists for α9α10 nAChR subtypes are potential novel therapies for chronic pain management, including inflammatory and neuropathic pain. More recently, alternative nAChRs ligands such as positive allosteric modulators and silent agonists have shown potential to develop into new treatments for chronic pain.
Collapse
Affiliation(s)
- Wisam Toma
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Esad Ulker
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Mashael Alqasem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shakir D AlSharari
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - J Michael McIntosh
- Departments of Psychiatry and Biology, University of Utah, Salt Lake City, UT, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
16
|
Blunt CEW, Dougherty DA. Binding Interactions of NS6740, a Silent Agonist of the α7 Nicotinic Acetylcholine Receptor. Mol Pharmacol 2019; 96:212-218. [PMID: 31175182 DOI: 10.1124/mol.119.116244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/28/2019] [Indexed: 11/22/2022] Open
Abstract
The α7 nicotinic acetylcholine receptor (nAChR) is a potential drug target for the treatment of a number of neurologic and inflammatory disorders. Silent agonists are an emerging class of drugs that bind to the receptor but do not open the channel. Instead they shift the receptor to a desensitized state. Silent agonists may be able to target a subset of α7 nAChR-mediated signaling processes. Here we use noncanonical amino acid mutagenesis to characterize the binding to α7 by the silent agonist 1,4-diazabicyclo[3.2.2]nonan-4-yl(5-(3-(trifluoromethyl)phenyl)furan-2-yl)methanone (NS6740). We find that, like α7 agonists, NS6740 forms a cation-π interaction with Y115 (TyrA). We also showed that NS6740 makes a novel hydrogen bond to TyrA. This interaction is necessary for the silent agonist activity of NS6740; when the hydrogen bond is blocked, silent agonist NS6740 converts to a conventional partial agonist and appreciably opens the channel in the absence of a positive allosteric modulator (EC50 150 nM). SIGNIFICANCE STATEMENT: Noncanonical amino acids were used to show that a hydrogen bond to tyrosine (Y115) is required for silent agonist activity of NS6740 at the α7 nicotinic acetylcholine receptor.
Collapse
Affiliation(s)
- Catriona E W Blunt
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Dennis A Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| |
Collapse
|
17
|
Toma W, Kyte SL, Bagdas D, Jackson A, Meade JA, Rahman F, Chen ZJ, Del Fabbro E, Cantwell L, Kulkarni A, Thakur GA, Papke RL, Bigbee JW, Gewirtz DA, Damaj MI. The α7 nicotinic receptor silent agonist R-47 prevents and reverses paclitaxel-induced peripheral neuropathy in mice without tolerance or altering nicotine reward and withdrawal. Exp Neurol 2019; 320:113010. [PMID: 31299179 DOI: 10.1016/j.expneurol.2019.113010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/05/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
Abstract
Various antitumor drugs, including paclitaxel, frequently cause chemotherapy-induced peripheral neuropathy (CIPN) that can be sustained even after therapy has been completed. The current work was designed to evaluate R-47, an α7 nAChR silent agonist, in our mouse model of CIPN. R-47 was administered to male C57BL/6J mice prior to and during paclitaxel treatment. Additionally, we tested if R-47 would alter nicotine's reward and withdrawal effects. The H460 and A549 non-small cell lung cancer (NSCLC) cell lines were exposed to R-47 for 24-72 h, and tumor-bearing NSG mice received R-47 prior to and during paclitaxel treatment. R-47 prevents and reverses paclitaxel-induced mechanical hypersensitivity in mice in an α7 nAChR-dependent manner. No tolerance develops following repeated administration of R-47, and the drug lacks intrinsic rewarding effects. Additionally, R-47 neither changes the rewarding effect of nicotine in the Conditioned Place Preference test nor enhances mecamylamine-precipitated withdrawal. Furthermore, R-47 prevents paclitaxel-mediated loss of intraepidermal nerve fibers and morphological alterations of microglia in the spinal cord. Moreover, R-47 does not increase NSCLC cell viability, colony formation, or proliferation, and does not interfere with paclitaxel-induced growth arrest, DNA fragmentation, or apoptosis. Most importantly, R-47 does not increase the growth of A549 tumors or interfere with the antitumor activity of paclitaxel in tumor-bearing mice. These studies suggest that R-47 could be a viable and efficacious approach for the prevention and treatment of CIPN that would not interfere with the antitumor activity of paclitaxel or promote lung tumor growth.
Collapse
Affiliation(s)
- Wisam Toma
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America.
| | - S Lauren Kyte
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD, United States of America
| | - Deniz Bagdas
- Department of Psychiatry, Yale University School of Medicine, Yale Tobacco Center of Regulatory Science, New Haven, CT, United States of America
| | - Asti Jackson
- Department of Psychiatry, Yale University School of Medicine, Yale Tobacco Center of Regulatory Science, New Haven, CT, United States of America
| | - Julie A Meade
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Faria Rahman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Zhi-Jian Chen
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Egidio Del Fabbro
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States of America; Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Lucas Cantwell
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States of America
| | - Abhijit Kulkarni
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States of America
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States of America
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - John W Bigbee
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America; Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, United States of America
| |
Collapse
|
18
|
Capó-Vélez CM, Delgado-Vélez M, Báez-Pagán CA, Lasalde-Dominicci JA. Nicotinic Acetylcholine Receptors in HIV: Possible Roles During HAND and Inflammation. Cell Mol Neurobiol 2018; 38:1335-1348. [PMID: 30008143 PMCID: PMC6133022 DOI: 10.1007/s10571-018-0603-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022]
Abstract
Infection with the human immunodeficiency virus (HIV) remains a threat to global health. Since its discovery, many efforts have been directed at understanding the mechanisms and consequences of infection. Although there have been substantial advances since the advent of antiretroviral therapy, there are still complications that significantly compromise the health of infected patients, particularly, chronic inflammation and HIV-associated neurocognitive disorders (HAND). In this review, a new perspective is addressed in the field of HIV, where the alpha7 nicotinic acetylcholine receptor (α7-nAChR) is the protagonist. We comprehensively discuss the available evidence implicating α7-nAChRs in the context of HIV and provide possible explanations about its role in HAND and inflammation in both the central nervous system and the periphery.
Collapse
Affiliation(s)
- Coral M Capó-Vélez
- Department of Biology, University of Puerto Rico, Río Piedras Campus, PO Box 23360, San Juan, PR, 00931, USA.,Molecular Sciences Research Center, San Juan, PR, 00926, USA
| | - Manuel Delgado-Vélez
- Department of Biology, University of Puerto Rico, Río Piedras Campus, PO Box 23360, San Juan, PR, 00931, USA.,Molecular Sciences Research Center, San Juan, PR, 00926, USA
| | - Carlos A Báez-Pagán
- Department of Biology, University of Puerto Rico, Río Piedras Campus, PO Box 23360, San Juan, PR, 00931, USA.,Department of Physical Sciences, University of Puerto Rico, Río Piedras Campus, PO Box 23323, San Juan, PR, 00931, USA
| | - José A Lasalde-Dominicci
- Department of Biology, University of Puerto Rico, Río Piedras Campus, PO Box 23360, San Juan, PR, 00931, USA. .,Molecular Sciences Research Center, San Juan, PR, 00926, USA.
| |
Collapse
|
19
|
Schaller SJ, Nagashima M, Schönfelder M, Sasakawa T, Schulz F, Khan MAS, Kem WR, Schneider G, Schlegel J, Lewald H, Blobner M, Jeevendra Martyn JA. GTS-21 attenuates loss of body mass, muscle mass, and function in rats having systemic inflammation with and without disuse atrophy. Pflugers Arch 2018; 470:1647-1657. [PMID: 30006848 DOI: 10.1007/s00424-018-2180-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/19/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022]
Abstract
Muscle changes of critical illness are attributed to systemic inflammatory responses and disuse atrophy. GTS-21 (3-(2,4-dimethoxy-benzylidene)anabaseine), also known as DMBX-A) is a synthetic derivative of the natural product anabaseine that acts as an agonist at α7-acetylcholine receptors (α7nAChRs). Hypothesis tested was that modulation of inflammation by agonist GTS-21 (10 mg/kg b.i.d. intraperitoneally) will attenuate body weight (BW) and muscle changes. Systemic sham inflammation was produced in 125 rats by Cornyebacterium parvum (C.p.) or saline injection on days 0/4/8. Seventy-four rats had one immobilized-limb producing disuse atrophy. GTS-21 effects on BW, tibialis muscle mass (TMM), and function were assessed on day 12. Systemically, methemoglobin levels increased 26-fold with C.p. (p < 0.001) and decreased significantly (p < 0.033) with GTS-21. Control BW increased (+ 30 ± 9 g, mean ± SD) at day 12, but decreased with C.p. and superimposed disuse (p = 0.005). GTS-21 attenuated BW loss in C.p. (p = 0.005). Compared to controls, TMM decreased with C.p. (0.43 ± 0.06 g to 0.26 ± 0.03 g) and with superimposed disuse (0.18 ± 0.04 g); GTS-21 ameliorated TMM loss to 0.32 ± 0.04 (no disuse, p = 0.028) and to 0.22 ± 0.03 (with disuse, p = 0.004). Tetanic tensions decreased with C.p. or disuse and GTS-21 attenuated tension decrease in animals with disuse (p = 0.006) and in animals with C.p. and disuse (p = 0.029). C.p.-induced 11-fold increased muscle α7nAChR expression was decreased by > 60% with GTS-21 treatment. In conclusion, GTS-21 modulates systemic inflammation, evidenced by both decreased methemoglobin levels and decrease of α7nAChR expression, and mitigates inflammation-mediated loss of BW, TMM, fiber size, and function.
Collapse
Affiliation(s)
- Stefan J Schaller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children®-Boston, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA.
- Klinik für Anaesthesiologie, Klinikum rechts der Isar, Technische Universität München, Ismaningertr. 22, 81675, Munich, Germany.
| | - Michio Nagashima
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children®-Boston, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
- Department of Intensive Care Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Martin Schönfelder
- Institute of Exercise Biology, Technische Universität München, Georg-Brauchle-Ring 60/62, 80992, Munich, Germany
| | - Tomoki Sasakawa
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children®-Boston, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
- Department of Anesthesiology and Critical Care Medicine, Asahikawa Medical University, 1 Chome-1-1 Midorigaoka Higashi 2 Jō, Asahikawa-shi, Hokkaidō, 078-8802, Japan
| | - Fabian Schulz
- Klinik für Anaesthesiologie, Klinikum rechts der Isar, Technische Universität München, Ismaningertr. 22, 81675, Munich, Germany
| | - Mohammed A S Khan
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children®-Boston, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
| | - William R Kem
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, P.O. Box 100267, Gainesville, FL, 32610-0267, USA
| | - Gerhard Schneider
- Klinik für Anaesthesiologie, Klinikum rechts der Isar, Technische Universität München, Ismaningertr. 22, 81675, Munich, Germany
| | - Jürgen Schlegel
- Institute of Pathology, Technische Universität München, Ismaningerstr. 22, 81675, Munich, Germany
| | - Heidrun Lewald
- Klinik für Anaesthesiologie, Klinikum rechts der Isar, Technische Universität München, Ismaningertr. 22, 81675, Munich, Germany
| | - Manfred Blobner
- Klinik für Anaesthesiologie, Klinikum rechts der Isar, Technische Universität München, Ismaningertr. 22, 81675, Munich, Germany
| | - J A Jeevendra Martyn
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children®-Boston, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
| |
Collapse
|
20
|
Papke RL, Peng C, Kumar A, Stokes C. NS6740, an α7 nicotinic acetylcholine receptor silent agonist, disrupts hippocampal synaptic plasticity. Neurosci Lett 2018; 677:6-13. [PMID: 29679680 DOI: 10.1016/j.neulet.2018.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/29/2018] [Accepted: 04/16/2018] [Indexed: 01/06/2023]
Abstract
Long-term potentiation (LTP) in the dentate gyrus was previously shown to be enhanced by nicotine, an effect dependent on both homomeric α7 and heteromeric α2β2 nicotinic acetylcholine receptors (nAChR). In our experiments, bath-applied nicotine produced no significant enhancement of LTP. The α7 nAChR silent agonist NS6740, a weak activator of α7 nAChR ion channels but an effective modulator of the cholinergic anti-inflammatory pathway, decreased LTP and, additionally, produced a substantial reduction in the baseline synaptic function prior to the high frequency stimulation used to induce LTP. The effects of NS6740 on the various ligand-gated ion channels associated with the generation and modulation of dentate LTP were evaluated with receptors expressed in Xenopus oocytes. A 60 s pre-application of 5 μM NS6740 to α7 receptors blocked the response to subsequent applications of acetylcholine (ACh). In contrast, the responses of α2β2 nAChR to control applications of ACh were not significantly affected by NS6740. Likewise, responses of cells expressing GluR1 + GluR2 AMPA-type glutamate receptor subunits or GABAA α1, β2, and γ2L subunits to control agonist applications (100 μM kainic acid or 10 μM GABA, respectively), were unaffected by NS6740. The effects of NS6740 on α7 were inconsistent with simple antagonism since, while unresponsive to ACh, the receptors exposed to NS6740 were effectively activated by the positive allosteric modulator PNU-120596. The results support the hypothesis that NS6740 switches the mode of α7 signaling in a channel-independent manner that can reduce synaptic function.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, FL 32610, United States.
| | - Can Peng
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, FL 32610, United States
| | - Ashok Kumar
- Department of Neuroscience, University of Florida, PO Box 100244, Gainesville, FL 32610, United States
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, FL 32610, United States
| |
Collapse
|
21
|
Yang EJ, Sekhon S, Beck KM, Bhutani T, Koo J. Neuromodulation in Inflammatory Skin Disease. Dermatol Ther (Heidelb) 2018; 8:1-4. [PMID: 29427206 PMCID: PMC5825332 DOI: 10.1007/s13555-018-0227-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Indexed: 11/24/2022] Open
Abstract
Inflammatory skin diseases are difficult to treat because of a lack of available treatment options for severe disease. However, recent advances have shown that vagus nerve stimulation can be used to decrease inflammation and reduce disease severity in rheumatoid arthritis and inflammatory bowel disease. Changes in cytokine profiles observed in these studies are similar to those seen with use of biologics in inflammatory skin disease, suggesting that they act along similar pathways to disrupt chronic inflammation and treat inflammatory disease. This commentary explores the existing evidence demonstrating the efficacy of neuromodulation in inflammatory disease, and outlines reasons why these findings could translate to the dermatology setting to treat inflammatory skin disease.
Collapse
Affiliation(s)
- Eric J Yang
- Department of Dermatology, University of California-San Francisco, San Francisco, CA, USA.
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| | - Sahil Sekhon
- Department of Dermatology, University of California-San Francisco, San Francisco, CA, USA
| | - Kristen M Beck
- Department of Dermatology, University of California-San Francisco, San Francisco, CA, USA
| | - Tina Bhutani
- Department of Dermatology, University of California-San Francisco, San Francisco, CA, USA
| | - John Koo
- Department of Dermatology, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
22
|
Kabbani N, Nichols RA. Beyond the Channel: Metabotropic Signaling by Nicotinic Receptors. Trends Pharmacol Sci 2018; 39:354-366. [PMID: 29428175 DOI: 10.1016/j.tips.2018.01.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 01/01/2023]
Abstract
The α7 nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel (LGIC) that plays an important role in cellular calcium signaling and contributes to several neurological diseases. Agonist binding to the α7 nAChR induces fast channel activation followed by inactivation and prolonged desensitization while triggering long-lasting calcium signaling. These activities foster neurotransmitter release, synaptic plasticity, and somatodendritic regulation in the brain. We discuss here the ability of α7 nAChRs to operate in ionotropic (α7i) and metabotropic (α7m) modes, leading to calcium-induced calcium release (CICR) and G protein-associated inositol trisphosphate (IP3)-induced calcium release (IICR), respectively. Metabotropic activity extends the spatial and temporal aspects of calcium signaling by the α7 channel beyond its ionotropic limits, persisting into the desensitized state. Delineation of the ionotropic and metabotropic properties of the α7 nAChR will provide definitive indicators of moment-to-moment receptor functional status that will, in turn, spearhead new drug development.
Collapse
Affiliation(s)
- Nadine Kabbani
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Robert A Nichols
- Department of Cell and Molecular Biology, University of Hawai'i at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
23
|
Bagdas D, Gurun MS, Flood P, Papke RL, Damaj MI. New Insights on Neuronal Nicotinic Acetylcholine Receptors as Targets for Pain and Inflammation: A Focus on α7 nAChRs. Curr Neuropharmacol 2018; 16:415-425. [PMID: 28820052 PMCID: PMC6018191 DOI: 10.2174/1570159x15666170818102108] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/20/2017] [Accepted: 08/16/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Nicotine and nicotinic acetylcholine receptors (nAChRs) have been explored for the past three decades as targets for pain control. The aim of this review is to introduce readers particularly to α7 nAChRs in a perspective of pain and its modulation. METHODS Developments for α7 nAChR modulators and recent animal studies related to pain are reviewed. RESULTS Accumulating evidences suggest that selective ligands for α7 nAChRs hold promise in the treatment of chronic pain conditions as they lack many of side effects associated with other nicotinic receptor types. CONCLUSION This review provides the reader recent insights on α7 nAChRs from structure and function to the latest findings on the pharmacology and therapeutic targeting of these receptors for the treatment of pain and inflammation.
Collapse
Affiliation(s)
- Deniz Bagdas
- Address correspondence to this author at the Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613; Tel/Fax: +1-804-828-9256; E-mail:
| | | | | | | | | |
Collapse
|
24
|
Hone AJ, McIntosh JM. Nicotinic acetylcholine receptors in neuropathic and inflammatory pain. FEBS Lett 2017; 592:1045-1062. [PMID: 29030971 DOI: 10.1002/1873-3468.12884] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/22/2017] [Accepted: 10/05/2017] [Indexed: 01/11/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are actively being investigated as therapeutic targets for the treatment of pain and inflammation, but despite more than 30 years of research, there are currently no FDA-approved analgesics that are specific for these receptors. Much of the initial research effort focused on the α4β2 nAChR subtype, but more recently, additional subtypes have been identified as promising new leads and include α6β4, α7, and α9-containing nAChRs. This Review will focus on the distribution of these nAChRs in the cell types involved in neuropathic pain and inflammation and the activity of currently available nicotinic ligands.
Collapse
Affiliation(s)
- Arik J Hone
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - J Michael McIntosh
- Department of Biology, University of Utah, Salt Lake City, UT, USA.,Department of Psychiatry, University of Utah, Salt Lake City, UT, USA.,George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| |
Collapse
|
25
|
Koopman FA, van Maanen MA, Vervoordeldonk MJ, Tak PP. Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis. J Intern Med 2017; 282:64-75. [PMID: 28547815 DOI: 10.1111/joim.12626] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Imbalance in the autonomic nervous system (ANS) has been observed in many established chronic autoimmune diseases, including rheumatoid arthritis (RA), which is a prototypic immune-mediated inflammatory disease (IMID). We recently discovered that autonomic dysfunction precedes and predicts arthritis development in subjects at risk of developing seropositive RA. In addition, RA patients with relatively high vagus nerve tone (higher parasympathetic parameters, measured by heart rate variability) respond better to antirheumatic therapies. Together, these data suggest that the ANS may control inflammation in humans. This notion is supported by experimental studies in animal models of RA. We have found that stimulation of the so-called cholinergic anti-inflammatory pathway by efferent electrical vagus nerve stimulation (VNS) or pharmacological activation of the alpha7 subunit of nicotinic acetylcholine receptors (α7nAChR) improves clinical signs and symptoms of arthritis, reduces cytokine production and protects against progressive joint destruction. Conversely, increased arthritis activity was observed in alpha7nAChR knockout mice. These studies together with previous work in animal models of sepsis and other forms of inflammation provided the rationale for an experimental clinical trial in patients with RA. We could for the first time show that an implantable vagus nerve stimulator inhibits peripheral blood cytokine production in humans. VNS significantly inhibited TNF and IL-6 production and improved RA disease severity, even in some patients with therapy-resistant disease. This work strongly supports further studies using a bioelectronic approach to treat RA and other IMIDs.
Collapse
Affiliation(s)
- F A Koopman
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - M A van Maanen
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - M J Vervoordeldonk
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands.,Galvani Bioelectronics, Stevenage, UK
| | - P P Tak
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands.,GlaxoSmithKline, Stevenage, UK.,University of Cambridge, Cambridge, UK.,Ghent University, Ghent, Belgium
| |
Collapse
|
26
|
Lang SC, Harre U, Purohit P, Dietel K, Kienhöfer D, Hahn J, Baum W, Herrmann M, Schett G, Mielenz D. Neurodegeneration Enhances the Development of Arthritis. THE JOURNAL OF IMMUNOLOGY 2017; 198:2394-2402. [PMID: 28188247 DOI: 10.4049/jimmunol.1601472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/11/2017] [Indexed: 12/24/2022]
Abstract
The prevalence of neurodegenerative disease and arthritis increases with age. Despite both processes being associated with immune activation and inflammation, little is known about the mechanistic interactions between neurodegenerative disease and arthritis. In this article, we show that tau-transgenic (tau-tg) mice that develop neurodegenerative disease characterized by deposition of tau tangles in the brain are highly susceptible to developing arthritis. Already at steady-state conditions, tau-tg mice exhibit peripheral immune activation that is manifested by higher numbers of granulocytes, plasmablasts, and inflammatory Ly6Chi CCR2+ monocytes, as well as increased levels of proinflammatory cytokines, such as TNF-α and IL-17. Upon induction of collagen-induced arthritis (CIA), tau-tg mice displayed an increased incidence and an earlier onset of CIA that was associated with a more pronounced inflammatory cytokine response. Furthermore, induction of CIA led to significantly elevated numbers of Iba-1-expressing cells in the brain, indicative of microglia activation, and the formation of anti-tau Abs in tau-tg mice. These changes were accompanied by the resolution of tau tangles and significantly decreased neurodegenerative pathology. In summary, these data show that neurodegenerative disease enhances the development of arthritis. In addition, arthritis, once induced, triggers innate immune responses in the brain, leading to resolution of neurodegenerative changes.
Collapse
Affiliation(s)
- Stefanie C Lang
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany; and
| | - Ulrike Harre
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany; and
| | - Pavitra Purohit
- Division of Molecular Immunology, Department of Internal Medicine 3, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Katharina Dietel
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany; and
| | - Deborah Kienhöfer
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany; and
| | - Jonas Hahn
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany; and
| | - Wolfgang Baum
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany; and
| | - Martin Herrmann
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany; and
| | - Georg Schett
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany; and
| | - Dirk Mielenz
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany; and .,Division of Molecular Immunology, Department of Internal Medicine 3, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| |
Collapse
|
27
|
Jiao ZY, Wu J, Liu C, Wen B, Zhao WZ, Du XL. Nicotinic α7 receptor inhibits the acylation stimulating protein‑induced production of monocyte chemoattractant protein‑1 and keratinocyte‑derived chemokine in adipocytes by modulating the p38 kinase and nuclear factor‑κB signaling pathways. Mol Med Rep 2016; 14:2959-66. [PMID: 27572255 PMCID: PMC5042795 DOI: 10.3892/mmr.2016.5630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 07/12/2016] [Indexed: 01/11/2023] Open
Abstract
Obesity is associated with chronic low-grade inflammation, which is characterized by increased infiltration of macrophages into adipose tissue. Acylation stimulating protein (ASP) is an adipokine derived from the immune complement system, which constitutes a link between adipocytes and macrophages, and is involved in energy homeostasis and inflammation. The purpose of the present study was to preliminarily investigate in vitro, whether functional α7nAChR in adipocytes may suppress ASP-induced inflammation and determine the possible signaling mechanism. Studies have reported associations between the expression of α7 nicotinic acetylcholine receptor (α7nAChR) and obesity, insulin resistance and diabetes. Additionally, α7nAChRs are important peripheral mediators of chronic inflammation, which is a key contributor to health problems in obesity. The primary aim of the present study was to evaluate the impact of exogenous ASP and α7nAChR on macrophage infiltration in adipose tissue and to examine the potential underlying molecular mechanism. Western blot analysis revealed that recombinant ASP increased the expression levels of monocyte chemoattractant protein-1 (MCP-1) and keratinocyte-derived chemokine (KC) by 3T3-L1 adipocytes. However, nicotine significantly inhibited the production of ASP-induced cytokines via the stimulation of α7nAChR. It was also found that α7nAChR inhibited the ASP-induced activation of p38 kinase and nuclear factor-κB (NF-κB), and the production of MCP-1 and KC. These data indicated that α7nAChR caused the inhibition of ASP-induced activation of p38 kinase and NF-κB to inhibit the production of MCP-1 and KC.
Collapse
Affiliation(s)
- Zhou-Yang Jiao
- Department of Cardiovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jing Wu
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chao Liu
- Department of Cardiovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Bing Wen
- Department of Cardiovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wen-Zeng Zhao
- Department of Cardiovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xin-Ling Du
- Department of Cardiovascular Surgery, Xiehe Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
28
|
Kallel EA, Vangel C, Elbaum D. Conformational analysis of 2-substituted piperazines. Bioorg Med Chem Lett 2016; 26:3010-3013. [PMID: 27212066 DOI: 10.1016/j.bmcl.2016.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 11/16/2022]
Abstract
The unusual activity differences of carbon linked versus oxygen linked 2-substituted piperazines as α7 nicotinic acetylcholine receptor agonists led to a conformational study of several examples. The conformational preferences of which are absent from the literature. We report the first study and explanation of the conformational preference of 2-substiturted piperazines and show an example of how this preference controls binding in a pharmaceutically relevant case. In all cases the axial conformation for these 1-acyl and 1 aryl 2-substituted piperazines was found to be preferred. For the ether linked compounds, the axial conformation was found to be further stabilized by an intramolecular hydrogen bond. The axial orientation also places the basic and pyridyl nitrogens into a special orientation that closely mimics nicotine. Molecular modeling studies confirm that the R enantiomers of the compounds can bind to the α7 nicotinic acetylcholine receptor with the basic and pyridyl nitrogens colocalized with their counterparts in Epibatidine.
Collapse
Affiliation(s)
- E Adam Kallel
- Retrophin, Inc. 12255 El Camino Real, Suite 250, San Diego, CA 92130, United States
| | - Colin Vangel
- Retrophin, Inc. 12255 El Camino Real, Suite 250, San Diego, CA 92130, United States
| | - Daniel Elbaum
- Retrophin, Inc, 301 Binney Street, Cambridge, MA 02142, United States
| |
Collapse
|
29
|
Lee WJ, Kim JY, Wu TP, Park LS. The establishment of a porcine rheumatoid arthritis model: Collagen induced arthritis minipig model. J Pharmacol Sci 2016; 132:41-47. [PMID: 27156927 DOI: 10.1016/j.jphs.2016.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 04/03/2016] [Accepted: 04/04/2016] [Indexed: 01/10/2023] Open
Abstract
Rheumatoid arthritis (RA) research has been largely dependent on collagen induced arthritis (CIA) rodent models, however, they may not translate well to humans due to innate differences in the size, physiology and lifespan. The present study aimed to establish a CIA porcine model with the physical, hematological, histopathological and etiological properties closer to their human equivalent in an attempt to better meet the needs of RA research. Three month old minipigs were administered of bovine type II collagen (CII) emulsified with complete Freund's adjuvants on Day 1 and incomplete Freund's adjuvants on Day 22, via an intradermal or intra-articular route. The clinical, radiological and hematological assessments of immunized animals were made periodically until Day 43, during which period the onset and progression of arthritis was recorded and characterized. In addition, the histopathological and micro-tomographic assessments of the cartilage degradation with regard to mononuclear cell infiltration, and joint deformity indicated a higher severity in the intradermal injection group over the intra-articular group. With confirmation of the susceptibility to heterogeneous CII for arthritis induction in minipig, the potential suitability of this test system as a large animal model for RA has been demonstrated.
Collapse
Affiliation(s)
- Won Jae Lee
- PWG Genetics Pte Ltd, 15 Tech Park Crescent, 638117 Singapore
| | - Ji Yeon Kim
- PWG Genetics Pte Ltd, 15 Tech Park Crescent, 638117 Singapore
| | | | | |
Collapse
|
30
|
St-Pierre S, Jiang W, Roy P, Champigny C, LeBlanc É, Morley BJ, Hao J, Simard AR. Nicotinic Acetylcholine Receptors Modulate Bone Marrow-Derived Pro-Inflammatory Monocyte Production and Survival. PLoS One 2016; 11:e0150230. [PMID: 26925951 PMCID: PMC4771711 DOI: 10.1371/journal.pone.0150230] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/10/2016] [Indexed: 12/24/2022] Open
Abstract
It is increasingly clear that nicotinic acetylcholine receptors (nAChRs) are involved in immune regulation, and that their activation can protect against inflammatory diseases. Previous data have shown that nicotine diminishes the numbers of peripheral monocytes and macrophages, especially those of the pro-inflammatory phenotype. The goal of the present study was to determine if nicotine modulates the production of bone marrow -derived monocytes/macrophages. In this study, we first found that murine bone marrow cells express multiple nAChR subunits, and that the α7 and α9 nAChRs most predominant subtypes found in immune cells and their precursors. Using primary cultures of murine bone marrow cells, we then determined the effect of nicotine on monocyte colony-stimulating factor and interferon gamma (IFNγ)-induced monocyte production. We found that nicotine lowered the overall number of monocytes, and more specifically, inhibited the IFNγ-induced increase in pro-inflammatory monocytes by reducing cell proliferation and viability. These data suggested that nicotine diminishes the ratio of pro-inflammatory versus anti-inflammatory monocyte produced in the bone marrow. We thus confirmed this hypothesis by measuring cytokine expression, where we found that nicotine inhibited the production of the pro-inflammatory cytokines TNFα, IL-1β and IL-12, while stimulating the secretion of IL-10, an anti-inflammatory cytokine. Finally, nicotine also reduced the number of pro-inflammatory monocytes in the bone marrow of LPS-challenged mice. Overall, our data demonstrate that both α7 and α9 nAChRs are involved in the regulation of pro-inflammatory M1 monocyte numbers.
Collapse
Affiliation(s)
- Stéphanie St-Pierre
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada
| | - Wei Jiang
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Patrick Roy
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada
| | - Camille Champigny
- Centre de Formation Médicale du Nouveau-Brunswick, Moncton, NB, Canada
| | - Éric LeBlanc
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada
| | - Barbara J. Morley
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Junwei Hao
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Alain R. Simard
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada
- Centre de Formation Médicale du Nouveau-Brunswick, Moncton, NB, Canada
- * E-mail:
| |
Collapse
|
31
|
Quadri M, Papke RL, Horenstein NA. Dissection of N,N-diethyl-N'-phenylpiperazines as α7 nicotinic receptor silent agonists. Bioorg Med Chem 2016; 24:286-93. [PMID: 26707847 PMCID: PMC4724425 DOI: 10.1016/j.bmc.2015.12.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/30/2015] [Accepted: 12/08/2015] [Indexed: 12/13/2022]
Abstract
The α7 nicotinic acetylcholine receptor (nAChR) is a target for control of inflammation-related phenomena via compounds that are able to selectively induce desensitized states of the receptor. Compounds that selectively desensitize, without facilitating significant channel activation, are termed 'silent agonists' because they can be discriminated from antagonists by the currents evoked with co-application with type II positive allosteric modulators (PAMs). One example is N,N-diethyl-N'-phenyl-piperazine (diEPP) (J. Pharm. Exp. Ther.2014, 350, 665). We used Ullmann-type aryl amination to synthesize a panel of 27 compounds related to diEPP by substitutions at the aryl ring and in the linkage between the piperazine and phenyl rings. Two-electrode voltage clamping of the human α7 nAChR expressed in Xenopus oocytes revealed that it was possible to tune the behavior of compounds to show enhanced desensitization without corresponding partial agonist activity such that trifluoromethyl and carboxamide aryl substituents showed 33 to 46-fold larger PAM-dependent net-charge responses, indicating selective partitioning of the ligand receptor complexes into the desensitized state.
Collapse
Affiliation(s)
- Marta Quadri
- Department of Chemistry, Biochemistry Division, University of Florida, Gainesville, FL 32611, USA
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Nicole A Horenstein
- Department of Chemistry, Biochemistry Division, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
32
|
Papke RL, Horenstein NA, Stokes C. Nicotinic Activity of Arecoline, the Psychoactive Element of "Betel Nuts", Suggests a Basis for Habitual Use and Anti-Inflammatory Activity. PLoS One 2015; 10:e0140907. [PMID: 26488401 PMCID: PMC4619380 DOI: 10.1371/journal.pone.0140907] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/01/2015] [Indexed: 01/07/2023] Open
Abstract
Habitual chewing of "betel nut" preparations constitutes the fourth most common human self-administration of a psychoactive substance after alcohol, caffeine, and nicotine. The primary active ingredient in these preparations is arecoline, which comes from the areca nut, the key component of all such preparations. Arecoline is known to be a relatively non-selective muscarinic partial agonist, accounting for many of the overt peripheral and central nervous system effects, but not likely to account for the addictive properties of the drug. We report that arecoline has activity on select nicotinic acetylcholine receptor (nAChR) subtypes, including the two classes of nAChR most related to the addictive properties of nicotine: receptors containing α4 and β2 subunits and those which also contain α6 and β3 subunits. Arecoline is a partial agonist with about 6-10% efficacy for the α4* and α6* receptors expressed in Xenopus oocytes. Additionally, arecoline is a silent agonist of α7 nAChR; while it does not activate α7 receptors when applied alone, it produces substantial activation when co-applied with the positive allosteric modulator PNU-120696. Some α7 silent agonists are effective inhibitors of inflammation, which might account for anti-inflammatory effects of arecoline. Arecoline's activity on nAChR associated with addiction may account for the habitual use of areca nut preparations in spite of the well-documented risk to personal health associated with oral diseases and cancer. The common link between betel and tobacco suggests that partial agonist therapies with cytisine or the related compound varenicline may also be used to aid betel cessation attempts.
Collapse
Affiliation(s)
- Roger L. Papke
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267 Gainesville, Florida, 32610–0267, United States of America
| | - Nicole A. Horenstein
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida, 32611–7200, United States of America
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267 Gainesville, Florida, 32610–0267, United States of America
| |
Collapse
|
33
|
Brill DA, MacKay JA. Image-driven pharmacokinetics: nanomedicine concentration across space and time. Nanomedicine (Lond) 2015; 10:2861-79. [PMID: 26370694 DOI: 10.2217/nnm.15.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Clinical pharmacokinetics (PK) primarily measures the concentration of drugs in the blood. For nanomedicines it may be more relevant to determine concentration within a target tissue. The emerging field of image-driven PK, which utilizes clinically accepted molecular imaging technology, empirically and noninvasively, measures concentration in multiple tissues. Image-driven PK represents the intersection of PK and biodistribution, combining to provide models of concentration across space and time. Image-driven PK can be used both as a research tool and in the clinic. This review explores the history of pharmacokinetics, technologies used in molecular imaging (especially positron emission tomography) and research using image-driven pharmacokinetic analysis. When standardized, image-driven PK may have significant implications in preclinical development as well as clinical optimization of targeted nanomedicines.
Collapse
Affiliation(s)
- Dab A Brill
- Department of Pharmacology & Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - J Andrew MacKay
- Department of Pharmacology & Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA.,Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
34
|
Wang X, Zhong W. Isorhamnetin attenuates collagen-induced arthritis via modulating cytokines and oxidative stress in mice. Int J Clin Exp Med 2015; 8:16536-16542. [PMID: 26629181 PMCID: PMC4659069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 08/03/2015] [Indexed: 06/05/2023]
Abstract
Inflammation and oxidative stress were involved in the development and progression of rheumatoid arthritis (RA). Isorhamnetin has anti-inflammatory and anti-oxidative activities, but its effects on RA have not been investigated. In order to observe the possible therapeutic effects of isorhamnetin on RA, we established a collagen-induced arthritis mouse model and treated the animal with isorhamnetin for 3 weeks. Besides, fibroblast-like synoviocytes (FLS) were treated with lipopolysaccharide (LPS) and isorhamnetin. The severity of arthritis was assessed by arthritis score, joint destruction score and inflammation score. Levels of cytokines TNF-α, IL-1β, IL-6, IL-17A, IL-17F, IL-10 and IL-35 in the joint tissue homogenate and cell culture medium as well as anti-type II collagen antibody in serum were measured using ELISA. Contents of H2O2 and malondialdehyde (MDA) in joint tissue homogenate were measured using assay kits. We found collagen immunization induced significant arthritis in mice and isorhamnetin at the dose of 10 and 20 mg/kg/day could significantly attenuate the collagen-induced arthritis. Isorhamnetin also modulated the production of cytokines and suppressed the oxidative stress in the mice with collagen-induced arthritis at the dose of 10 and 20 mg/kg/day. These data suggested that isorhamnetin might be a potential agent for the management of RA.
Collapse
Affiliation(s)
- Xuewen Wang
- Department of Orthopaedics, Affiliated Hospital of Weifang Medical College Weifang 261053, Shandong, P. R. China
| | - Wei Zhong
- Department of Orthopaedics, Affiliated Hospital of Weifang Medical College Weifang 261053, Shandong, P. R. China
| |
Collapse
|
35
|
Koopman FA, Vosters JL, Roescher N, Broekstra N, Tak PP, Vervoordeldonk MJ. Cholinergic anti-inflammatory pathway in the non-obese diabetic mouse model. Oral Dis 2015; 21:858-65. [DOI: 10.1111/odi.12354] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 01/03/2023]
Affiliation(s)
- FA Koopman
- Department of Clinical Immunology & Rheumatology; Amsterdam Rheumatology and immunology Center; Academic Medical Center/University of Amsterdam; Amsterdam The Netherlands
| | - JL Vosters
- Department of Clinical Immunology & Rheumatology; Amsterdam Rheumatology and immunology Center; Academic Medical Center/University of Amsterdam; Amsterdam The Netherlands
| | - N Roescher
- Department of Clinical Immunology & Rheumatology; Amsterdam Rheumatology and immunology Center; Academic Medical Center/University of Amsterdam; Amsterdam The Netherlands
| | - N Broekstra
- Department of Clinical Immunology & Rheumatology; Amsterdam Rheumatology and immunology Center; Academic Medical Center/University of Amsterdam; Amsterdam The Netherlands
| | - PP Tak
- Department of Clinical Immunology & Rheumatology; Amsterdam Rheumatology and immunology Center; Academic Medical Center/University of Amsterdam; Amsterdam The Netherlands
- University of Cambridge; Cambridge UK
- Ghent University; Ghent Belgium
- GlaxoSmithKline; Stevenage UK
| | - MJ Vervoordeldonk
- Department of Clinical Immunology & Rheumatology; Amsterdam Rheumatology and immunology Center; Academic Medical Center/University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
36
|
Kox M, van Eijk LT, Verhaak T, Frenzel T, Kiers HD, Gerretsen J, van der Hoeven JG, Kornet L, Scheiner A, Pickkers P. Transvenous vagus nerve stimulation does not modulate the innate immune response during experimental human endotoxemia: a randomized controlled study. Arthritis Res Ther 2015; 17:150. [PMID: 26049730 PMCID: PMC4480894 DOI: 10.1186/s13075-015-0667-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/29/2015] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Vagus nerve stimulation (VNS) exerts beneficial anti-inflammatory effects in various animal models of inflammation, including collagen-induced arthritis, and is implicated in representing a novel therapy for rheumatoid arthritis. However, evidence of anti-inflammatory effects of VNS in humans is very scarce. Transvenous VNS (tVNS) is a newly developed and less invasive method to stimulate the vagus nerve. In the present study, we determined whether tVNS is a feasible and safe procedure and investigated its putative anti-inflammatory effects during experimental human endotoxemia. METHODS We performed a randomized double-blind sham-controlled study in healthy male volunteers. A stimulation catheter was inserted in the left internal jugular vein at spinal level C5-C7, adjacent to the vagus nerve. In the tVNS group (n = 10), stimulation was continuously performed for 30 minutes (0-10 V, 1 ms, 20 Hz), starting 10 minutes before intravenous administration of 2 ng kg(-1) Escherichia coli lipopolysaccharide (LPS). Sham-instrumented subjects (n = 10) received no electrical stimulation. RESULTS No serious adverse events occurred throughout the study. In the tVNS group, stimulation of the vagus nerve was achieved as indicated by laryngeal vibration. Endotoxemia resulted in fever, flu-like symptoms, and hemodynamic changes that were unaffected by tVNS. Furthermore, plasma levels of inflammatory cytokines increased sharply during endotoxemia, but responses were similar between groups. Finally, cytokine production by leukocytes stimulated with LPS ex vivo, as well as neutrophil phagocytosis capacity, were not influenced by tVNS. CONCLUSIONS tVNS is feasible and safe, but does not modulate the innate immune response in humans in vivo during experimental human endotoxemia. TRIAL REGISTRATION Clinicaltrials.gov NCT01944228. Registered 12 September 2013.
Collapse
Affiliation(s)
- Matthijs Kox
- Department of Intensive Care Medicine, Radboud University Medical Center, Radboud Center for Infectious Diseases (RCI), Geert Grooteplein 10, 6500, HB, Nijmegen, The Netherlands.
| | - Lucas T van Eijk
- Department of Intensive Care Medicine, Radboud University Medical Center, Radboud Center for Infectious Diseases (RCI), Geert Grooteplein 10, 6500, HB, Nijmegen, The Netherlands.
| | - Tim Verhaak
- Department of Intensive Care Medicine, Radboud University Medical Center, Radboud Center for Infectious Diseases (RCI), Geert Grooteplein 10, 6500, HB, Nijmegen, The Netherlands.
| | - Tim Frenzel
- Department of Intensive Care Medicine, Radboud University Medical Center, Radboud Center for Infectious Diseases (RCI), Geert Grooteplein 10, 6500, HB, Nijmegen, The Netherlands.
| | - Harmke D Kiers
- Department of Intensive Care Medicine, Radboud University Medical Center, Radboud Center for Infectious Diseases (RCI), Geert Grooteplein 10, 6500, HB, Nijmegen, The Netherlands.
| | - Jelle Gerretsen
- Department of Intensive Care Medicine, Radboud University Medical Center, Radboud Center for Infectious Diseases (RCI), Geert Grooteplein 10, 6500, HB, Nijmegen, The Netherlands.
| | - Johannes G van der Hoeven
- Department of Intensive Care Medicine, Radboud University Medical Center, Radboud Center for Infectious Diseases (RCI), Geert Grooteplein 10, 6500, HB, Nijmegen, The Netherlands.
| | - Lilian Kornet
- Medtronic Inc., Endepolsdomein 5, 6229, GW, Maastricht, The Netherlands.
| | - Avram Scheiner
- Medtronic Inc., 8200 Coral Sea St NE, Mounds View, MN, 55112, USA.
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Radboud Center for Infectious Diseases (RCI), Geert Grooteplein 10, 6500, HB, Nijmegen, The Netherlands.
| |
Collapse
|