1
|
Prasertsee T, Prachantasena S, Tantitaveewattana P, Chuaythammakit P, Pascoe B, Patchanee P. Assessing antimicrobial resistance profiles of Salmonella enterica in the pork production system. J Med Microbiol 2024; 73:001894. [PMID: 39320348 PMCID: PMC11423857 DOI: 10.1099/jmm.0.001894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction. Salmonella enterica is a significant enteric pathogen affecting human and livestock health. Pork production is a common source of Salmonella contamination, with emerging multidrug resistance (MDR) posing a global health threat.Gap statement. Salmonella contamination and antimicrobial resistance (AMR) profiles in the pig production chain are underreported.Aim. To investigate the prevalence of S. enterica in the pig production chain and characterise their AMR profiles.Methodology. We collected 485 samples from pig farms, a standard pig abattoir and retail markets in Patthalung and Songkhla provinces in southern Thailand. Antimicrobial susceptibility testing was performed on these samples, and AMR profiles were determined.Results. S. enterica was detected in 68.67% of farm samples, 45.95% of abattoir samples and 50.67% of retail market samples. Analysis of 264 isolates, representing 18 serotypes, identified S. enterica serotype Rissen as the most prevalent. The predominant resistance phenotypes included ampicillin (AMP, 91.29%), tetracycline (TET, 88.26%) and streptomycin (STR, 84.47%). Over 80% of isolates showed resistance to three or more antimicrobial classes, indicating MDR. The AMP-STR-TET resistance pattern was found in nearly 70% of all MDR isolates across the production chain.Conclusions. The high prevalence of MDR is consistent with extensive antimicrobial use in the livestock sector. The presence of extensively resistant S. enterica highlights the urgent need for antimicrobial stewardship. Strengthening preventive strategies and control measures is crucial to mitigate the risk of MDR Salmonella spreading from farm to fork.
Collapse
Affiliation(s)
- Teerarat Prasertsee
- Faculty of Veterinary Science, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | | | | | | | - Ben Pascoe
- Department of Biology, Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
- Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Prapas Patchanee
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| |
Collapse
|
2
|
Koutsoumanis K, Allende A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Fox E, Gosling R(B, Gil BM, Møretrø T, Stessl B, da Silva Felício MT, Messens W, Simon AC, Alvarez‐Ordóñez A. Persistence of microbiological hazards in food and feed production and processing environments. EFSA J 2024; 22:e8521. [PMID: 38250499 PMCID: PMC10797485 DOI: 10.2903/j.efsa.2024.8521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Listeria monocytogenes (in the meat, fish and seafood, dairy and fruit and vegetable sectors), Salmonella enterica (in the feed, meat, egg and low moisture food sectors) and Cronobacter sakazakii (in the low moisture food sector) were identified as the bacterial food safety hazards most relevant to public health that are associated with persistence in the food and feed processing environment (FFPE). There is a wide range of subtypes of these hazards involved in persistence in the FFPE. While some specific subtypes are more commonly reported as persistent, it is currently not possible to identify universal markers (i.e. genetic determinants) for this trait. Common risk factors for persistence in the FFPE are inadequate zoning and hygiene barriers; lack of hygienic design of equipment and machines; and inadequate cleaning and disinfection. A well-designed environmental sampling and testing programme is the most effective strategy to identify contamination sources and detect potentially persistent hazards. The establishment of hygienic barriers and measures within the food safety management system, during implementation of hazard analysis and critical control points, is key to prevent and/or control bacterial persistence in the FFPE. Once persistence is suspected in a plant, a 'seek-and-destroy' approach is frequently recommended, including intensified monitoring, the introduction of control measures and the continuation of the intensified monitoring. Successful actions triggered by persistence of L. monocytogenes are described, as well as interventions with direct bactericidal activity. These interventions could be efficient if properly validated, correctly applied and verified under industrial conditions. Perspectives are provided for performing a risk assessment for relevant combinations of hazard and food sector to assess the relative public health risk that can be associated with persistence, based on bottom-up and top-down approaches. Knowledge gaps related to bacterial food safety hazards associated with persistence in the FFPE and priorities for future research are provided.
Collapse
|
3
|
Pulsrikarn C, Kedsin A, Boueroy P, Chopjitt P, Hatrongjit R, Chansiripornchai P, Suanpairintr N, Nuanualsuwan S. Quantitative Risk Assessment of Susceptible and Ciprofloxacin-Resistant Salmonella from Retail Pork in Chiang Mai Province in Northern Thailand. Foods 2022; 11:2942. [PMID: 36230018 PMCID: PMC9562186 DOI: 10.3390/foods11192942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/26/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
The adverse human health effects as a result of antimicrobial resistance have been recognized worldwide. Salmonella is a leading cause of foodborne illnesses while antimicrobial resistant (AMR) Salmonella has been isolated from foods of animal origin. The quantitative risk assessment (RA) as part of the guidelines for the risk analysis of foodborne antimicrobial resistance was issued by the Codex Alimentarius Commission more than a decade ago. However, only two risk assessments reported the human health effects of AMR Salmonella in dry-cured pork sausage and pork mince. Therefore, the objective of this study was to quantitatively evaluate the adverse health effects attributable to consuming retail pork contaminated with Salmonella using risk assessment models. The sampling frame covered pork at the fresh market (n = 100) and modern trade where pork is refrigerated (n = 50) in Chiang Mai province in northern Thailand. The predictive microbiology models were used in the steps where data were lacking. Susceptible and quinolone-resistant (QR) Salmonella were determined by antimicrobial susceptibility testing and the presence of AMR genes. The probability of mortality conditional to foodborne illness by susceptible Salmonella was modeled as the hazard characterization of susceptible and QR Salmonella. For QR Salmonella, the probabilistic prevalences from the fresh market and modern trade were 28.4 and 1.9%, respectively; the mean concentrations from the fresh market and modern trade were 346 and 0.02 colony forming units/g, respectively. The probability of illness (PI) and probability of mortality given illness (PMI) from QR Salmonella-contaminated pork at retails in Chiang Mai province were in the range of 2.2 × 10-8-3.1 × 10-4 and 3.9 × 10-10-5.4 × 10-6, respectively, while those from susceptible Salmonella contaminated-pork at retails were in the range 1.8 × 10-4-3.2 × 10-4 and 2.3 × 10-7-4.2 × 10-7, respectively. After 1000 iterations of Monte Carlo simulations of the risk assessment models, the annual mortality rates for QR salmonellosis simulated by the risk assessment models were in the range of 0-32, which is in line with the AMR adverse health effects previously reported. Therefore, the risk assessment models used in both exposure assessment and hazard characterization were applicable to evaluate the adverse health effects of AMR Salmonella spp. in Thailand.
Collapse
Affiliation(s)
- Chaiwat Pulsrikarn
- National Institute of Health, Department of Medical Science, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Anusak Kedsin
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Rujirat Hatrongjit
- Faculty of Science and Engineering, Chalermphrakiat Sakon Nakhon Province Campus, Kasetsart University, Sakon Nakhon 47000, Thailand
| | - Piyarat Chansiripornchai
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nipattra Suanpairintr
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence for Food and Water Risk Analysis (FAWRA), Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suphachai Nuanualsuwan
- Center of Excellence for Food and Water Risk Analysis (FAWRA), Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Eiamsam-ang T, Tadee P, Pascoe B, Patchanee P. Genome-based analysis of infrequent Salmonella serotypes through the Thai pork production chain. Front Microbiol 2022; 13:968695. [PMID: 36090074 PMCID: PMC9453559 DOI: 10.3389/fmicb.2022.968695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/05/2022] [Indexed: 12/05/2022] Open
Abstract
Salmonella is a prevalent zoonotic foodborne pathogen. Swine and pork are implicated as important sources of salmonellosis in humans. In Chiang Mai and Lamphun Provinces in northern Thailand, there has been a high prevalence of Salmonella persistence for over a decade. Infection is usually with dominant S. enterica serotypes, including serotypes Rissen and 1,4,[5],12:i:-. However, other serotypes also contribute to disease but are less well characterized. The whole genome sequencing data of 43 S. enterica serotypes isolated from pork production chain through 2011-2014, were used to evaluate genetic diversity and ascertain the possible source of Salmonella contamination based on Core Genome Multilocus Sequence Typing (cgMLST) approach. The Salmonella serotypes recovered from farms and slaughterhouses were re-circulating by swine environmental contamination. Conversely, the Salmonella contamination in the retail market represents cross-contamination from multiple sources, including contaminated foodstuffs. Salmonella contamination in the pork production chain has the competency for host cell adhesion, host cell invasion, and intracellular survival, which is enough for the pathogenicity of salmonellosis. In addition, all of these isolates were multi-drug resistant Salmonella, which contained at least 10 antimicrobial resistance genes. This result indicated that these S. enterica serotypes also pose a significant public health risk. Our findings support the need for appropriate surveillance of food-animal products going to market to reduce public exposure to highly pathogenic, multi-drug resistant Salmonella. Acquiring information would motivate all stakeholders to reinforce sanitation standards throughout the pork production chain in order to eradicate Salmonella contamination and reduce the risk of salmonellosis in humans.
Collapse
Affiliation(s)
- Thanaporn Eiamsam-ang
- Graduate Program in Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pakpoom Tadee
- Integrative Research Center for Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ben Pascoe
- Integrative Research Center for Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- The Milner Center for Evolution, University of Bath, Bath, United Kingdom
| | - Prapas Patchanee
- Integrative Research Center for Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
5
|
Chonsin K, Changkwanyeun R, Siriphap A, Intarapuk A, Prapasawat W, Changkaew K, Pulsrikarn C, Isoda N, Nakajima C, Suzuki Y, Suthienkul O. Prevalence and Multidrug Resistance of Salmonella in Swine Production Chain in a Central Province, Thailand. J Food Prot 2021; 84:2174-2184. [PMID: 34410408 DOI: 10.4315/jfp-21-003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/13/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Salmonella causes foodborne disease outbreaks worldwide and raises concerns about public health and economic losses. To determine prevalence, serovar, antimicrobial resistance patterns, and the presence of extended-spectrum β-lactamase (ESBL) genes in a cross-sectional study, 418 total samples from feces and carcasses (from three slaughterhouses) and pork and cutting boards (from four markets) were collected in a central Thailand province in 2017 and 2018. Of the 418 samples, 272 (65.1%) were positive for Salmonella. The prevalence of Salmonella-positive samples from markets (158 of 178; 88.8%) was significantly higher than that among samples from slaughterhouses (114 of 240; 47.5%) (P < 0.05). A total of 1,030 isolates were identified; 409 were assigned to 45 serovars, with Salmonella Rissen the most common (82 of 409; 20%). Two serovars, Salmonella Cannstatt and Salmonella Braubach, were identified for the first time in Thailand in market and slaughterhouse samples, respectively. Among 180 isolates representing 19 serovars, 133 (73.9%) exhibited multidrug resistance. Screening for ESBL production revealed that 41 (10.3%) of 399 isolates were ESBL positive. The prevalence of ESBL-producing Salmonella isolates was significantly higher among the market isolates (31 of 41; 75.6%) than among the slaughterhouse isolates in (10 of 41; 24.4%) (P < 0.05). In market samples, 24 (77.4%) of 31 isolates were recovered from pork and 7 (22.6%) were recovered from cutting boards. Nine ESBL-producing isolates carried single ESBL genes, either blaTEM (4 of 41 isolates; 9.8%) or blaCTX-M (5 of 41 isolates; 12.2%), whereas 11 (26.8%) carried both blaTEM and blaCTX-M. No ESBL-producing Salmonella isolate carried the blaSHV gene. These results suggest that pigs, their flesh, and cutting boards used for processing pork could be reservoirs for widespread ESBL-producing Salmonella isolates with multidrug resistance and outbreak potential across the food chain. HIGHLIGHTS
Collapse
Affiliation(s)
- Kaknokrat Chonsin
- Faculty of Science and Technology, Suratthani Rajabhat University, Surat Thani 84100, Thailand
| | | | - Achiraya Siriphap
- Department of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000 Thailand
| | - Apiradee Intarapuk
- Department of Clinic, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok 10530, Thailand
| | - Watsawan Prapasawat
- Department of Clinic, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok 10530, Thailand
| | - Kanjana Changkaew
- Faculty of Public Health, Thammasart University, Pathum Thani 12121, Thailand
| | - Chaiwat Pulsrikarn
- National Institute of Health, Department of Medical Science, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Norikazu Isoda
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido 060-0808, Japan
| | - Chie Nakajima
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido 060-0808, Japan.,Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido 001-0020, Japan
| | - Yasuhiko Suzuki
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido 060-0808, Japan.,Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido 001-0020, Japan
| | - Orasa Suthienkul
- Faculty of Public Health, Thammasart University, Pathum Thani 12121, Thailand.,Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
6
|
Poomchuchit S, Kerdsin A, Chopjitt P, Boueroy P, Hatrongjit R, Akeda Y, Tomono K, Nuanualsuwan S, Hamada S. Fluoroquinolone resistance in non-typhoidal Salmonella enterica isolated from slaughtered pigs in Thailand. J Med Microbiol 2021; 70. [PMID: 34319224 DOI: 10.1099/jmm.0.001386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Introduction. The emergence and spread of non-typhoidal Salmonella enterica (NTS) serovars resistant to fluoroquinolones and third- and higher-generation cephalosporins is a matter of great concern. Antimicrobial-resistant NTS is increasingly being discovered in humans, animals, food animals, food products, and agricultural environments. Pigs are considered a major reservoir of antimicrobial-resistant Salmonella spp.Hypothesis/Gap Statement. Fluoroquinolone-resistant Salmonella spp. warrant further surveillance and characterization for a better understanding of the bacteria isolated from animals.Aim. NTS isolated from pork from slaughterhouses across Thailand were characterized in terms of their serovars; resistance to fluoroquinolones, third-generation cephalosporins, and carbapenems; and antimicrobial resistance genes.Methodology. A total of 387 NTS isolates, collected from slaughtered pigs in ten provinces across Thailand between 2014 and 2015, were characterized based on their serovars, antimicrobial resistance genes, and susceptibility to fluoroquinolones, third-generation cephalosporins, and carbapenems.Results. Among all NTS isolates, S. enterica serovar Rissen was predominant. Antimicrobial resistance was exhibited in 93/387 isolates (24 %). Although 24 (6.2 %) isolates were susceptible to all the tested antimicrobials, they were found to possess β-lactamase genes, such as bla TEM, bla SHV, or bla CTX-M. Mobilized colistin-resistant genes (mcr) and resistance to colistin were not observed in any tested isolate. Carbapenem resistance was detected in ten isolates (10.7 %); however, bla KPC, bla NDM, bla OXA-48-like, and bla IMP were not present. Among the 93 antimicrobial-resistant isolates, 87.1 % showed fluoroquinolone resistance with the quinolone resistance gene (qnrS) combined with topoisomerase genes parC (T57S) or gyrA (S83E/Y and D124E/G) substitutions, or topoisomerase gene substitutions alone.Conclusion. We found high fluoroquinolone resistance rates among the NTS isolates from pigs from slaughterhouses. The fluoroquinolone resistance mechanism in NTS was associated with the combination of qnrS and substitutions in gyrA, parC, or both. To prevent the transmission of antimicrobial-resistant NTS between animals and humans, continuous monitoring, surveillance, and regulation of Salmonella in the pork supply chain are pivotal.
Collapse
Affiliation(s)
- Suleepon Poomchuchit
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Rujirat Hatrongjit
- Faculty of Science and Engineering, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Yukihiro Akeda
- Japan-Thailand Research Collaboration Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Suita, Osaka, Japan
| | - Kazunori Tomono
- Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Suita, Osaka, Japan
| | - Suphachai Nuanualsuwan
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Food Risk Hub, Research Unit of Chulalongkorn University, Bangkok, Thailand
| | - Shigeyuki Hamada
- Japan-Thailand Research Collaboration Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Sirichokchatchawan W, Apiwatsiri P, Pupa P, Saenkankam I, Khine NO, Lekagul A, Lugsomya K, Hampson DJ, Prapasarakul N. Reducing the Risk of Transmission of Critical Antimicrobial Resistance Determinants From Contaminated Pork Products to Humans in South-East Asia. Front Microbiol 2021; 12:689015. [PMID: 34385984 PMCID: PMC8353453 DOI: 10.3389/fmicb.2021.689015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/21/2021] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial resistance (AMR) is a critical challenge worldwide as it impacts public health, especially via contamination in the food chain and in healthcare-associated infections. In relation to farming, the systems used, waste management on farms, and the production line process are all determinants reflecting the risk of AMR emergence and rate of contamination of foodstuffs. This review focuses on South East Asia (SEA), which contains diverse regions covering 11 countries, each having different levels of development, customs, laws, and regulations. Routinely, here as elsewhere antimicrobials are still used for three indications: therapy, prevention, and growth promotion, and these are the fundamental drivers of AMR development and persistence. The accuracy of detection of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) depends on the laboratory standards applicable in the various institutes and countries, and this affects the consistency of regional data. Enterobacteriaceae such as Escherichia coli and Klebsiella pneumoniae are the standard proxy species used for indicating AMR-associated nosocomial infections and healthcare-associated infections. Pig feces and wastewater have been suspected as one of the hotspots for spread and circulation of ARB and ARG. As part of AMR surveillance in a One Health approach, clonal typing is used to identify bacterial clonal transmission from the production process to consumers and patients - although to date there have been few published definitive studies about this in SEA. Various alternatives to antibiotics are available to reduce antibiotic use on farms. Certain of these alternatives together with improved disease prevention methods are essential tools to reduce antimicrobial usage in swine farms and to support global policy. This review highlights evidence for potential transfer of resistant bacteria from food animals to humans, and awareness and understanding of AMR through a description of the occurrence of AMR in pig farm food chains under SEA management systems. The latter includes a description of standard pig farming practices, detection of AMR and clonal analysis of bacteria, and AMR in the food chain and associated environments. Finally, the possibility of using alternatives to antibiotics and improving policies for future strategies in combating AMR in a SEA context are outlined.
Collapse
Affiliation(s)
- Wandee Sirichokchatchawan
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Diagnosis and Monitoring of Animal Pathogen Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Prasert Apiwatsiri
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Pawiya Pupa
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Imporn Saenkankam
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nwai Oo Khine
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Angkana Lekagul
- International Health Policy Program, Ministry of Public Health, Nonthaburi, Thailand
| | - Kittitat Lugsomya
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - David J. Hampson
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Nuvee Prapasarakul
- Diagnosis and Monitoring of Animal Pathogen Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Xu X, Biswas S, Gu G, Elbediwi M, Li Y, Yue M. Characterization of Multidrug Resistance Patterns of Emerging Salmonella enterica Serovar Rissen along the Food Chain in China. Antibiotics (Basel) 2020; 9:antibiotics9100660. [PMID: 33007986 PMCID: PMC7600917 DOI: 10.3390/antibiotics9100660] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022] Open
Abstract
Salmonella spp. are recognized as important foodborne pathogens globally. Salmonella enterica serovar Rissen is one of the important Salmonella serovars linked with swine products in numerous countries and can transmit to humans by food chain contamination. Worldwide emerging S. Rissen is considered as one of the most common pathogens to cause human salmonellosis. The objective of this study was to determine the antimicrobial resistance properties and patterns of Salmonella Rissen isolates obtained from humans, animals, animal-derived food products, and the environment in China. Between 2016 and 2019, a total of 311 S. Rissen isolates from different provinces or province-level cities in China were included here. Bacterial isolates were characterized by serotyping and antimicrobial susceptibility testing. Minimum inhibitory concentration (MIC) values of 14 clinically relevant antimicrobials were obtained by broth microdilution method. S. Rissen isolates from humans were found dominant (67%; 208/311). S. Rissen isolates obtained from human patients were mostly found with diarrhea. Other S. Rissen isolates were acquired from food (22%; 69/311), animals (8%; 25/311), and the environment (3%; 9/311). Most of the isolates were resistant to tetracycline, trimethoprim-sulfamethoxazole, chloramphenicol, streptomycin, sulfisoxazole, and ampicillin. The S. Rissen isolates showed susceptibility against ceftriaxone, ceftiofur, gentamicin, nalidixic acid, ciprofloxacin, and azithromycin. In total, 92% of the S. Rissen isolates were multidrug-resistant and ASSuT (27%), ACT (25%), ACSSuT (22%), ACSSuTAmc (11%), and ACSSuTFox (7%) patterns were among the most prevalent antibiotic resistance patterns found in this study. The widespread dissemination of antimicrobial resistance could have emerged from misuse of antimicrobial agents in animal husbandry in China. These findings could be useful for rational antimicrobial usage against Salmonella Rissen infections.
Collapse
Affiliation(s)
- Xuebin Xu
- Department of Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China;
| | - Silpak Biswas
- Institute of Veterinary Sciences & Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (S.B.); (M.E.); (Y.L.)
| | - Guimin Gu
- Guangxi Institute for Product Quality Inspection, Nanning 530007, China;
| | - Mohammed Elbediwi
- Institute of Veterinary Sciences & Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (S.B.); (M.E.); (Y.L.)
- Animal Health Research Institute, Agriculture Research Centre, Cairo 11435, Egypt
| | - Yan Li
- Institute of Veterinary Sciences & Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (S.B.); (M.E.); (Y.L.)
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Min Yue
- Institute of Veterinary Sciences & Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (S.B.); (M.E.); (Y.L.)
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
- Correspondence: ; Tel./Fax: +86-0571-8898-2832
| |
Collapse
|
9
|
Patchanee P, Tanamai P, Tadee P, Hitchings MD, Calland JK, Sheppard SK, Meunsene D, Pascoe B, Tadee P. Whole-genome characterisation of multidrug resistant monophasic variants of Salmonella Typhimurium from pig production in Thailand. PeerJ 2020. [DOI: 10.7717/peerj.9700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background
Monophasic Salmonella Typhimurium or S. enterica 1,4,[5],12:i:- is among the top five serotypes reported in Thailand. In this study, nineteen monophasic S. Typhimurium from the pig production chain in Chiang Mai and Lamphun provinces during 2011–2014 were sequenced and compared to a globally disseminated clone. Isolates were probed in silico for the presence of antimicrobial resistance genes and Salmonella virulence factors, including Pathogenicity Islands.
Results
All isolates were from sequence type 34 (ST-34) and clustered similarly in core and pangenome genealogies. The two closest related isolates showed differences in only eighteen loci from whole-genome multilocus sequence typing analysis. All 19 isolates carried aminoglycoside and beta-lactam class resistance genes and genes for five or more different antibiotic classes. Seven out of 14 known SPIs were detected, including SPI-5, SPI-13 and SPI-14, which were detected in all isolates.
Conclusions
The multi-drug resistant clone, ST-34 was sampled at all stages of pork production. This clone has infiltrated global agricultural processes and poses a significant public health risk. Differences in the core and accessory genomes of the isolates we collected suggest that strains persist though the pork production process, with evidence of mutation within the core-genome and horizontal acquisition of genes, potentially via sharing of pathogenicity islands and plasmids. This highlights the importance of surveillance and targeted intervention measures to successfully control Salmonella contamination.
Collapse
Affiliation(s)
- Prapas Patchanee
- Integrative Research Center for Veterinary Preventive Medicine, Department of Food and Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prawitchaya Tanamai
- Integrative Research Center for Veterinary Preventive Medicine, Department of Food and Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Phacharaporn Tadee
- Faculty of Animal Science and Technology, Maejo University, Chiang Mai, Thailand
| | | | - Jessica K. Calland
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Samuel K. Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Dethaloun Meunsene
- Department of Veterinary Medicine, Faculty of Agriculture, National University of Laos, Vientiane, Loas PDR
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Pakpoom Tadee
- Integrative Research Center for Veterinary Preventive Medicine, Department of Food and Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
10
|
Prevalence and Drug Resistance of Salmonella in Dogs and Cats in Xuzhou, China. J Vet Res 2020; 64:263-268. [PMID: 32587913 PMCID: PMC7305642 DOI: 10.2478/jvetres-2020-0032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 04/28/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction Salmonellosis is a zoonotic disease, and Salmonella spp. can sometimes be found in dogs and cats, posing a risk to human health. In this study, the prevalence and antimicrobial susceptibility of faecal Salmonella were investigated in pet dogs and cats in Xuzhou, Jiangsu Province, China. Material and Methods Faecal samples from 243 dogs and 113 cats, at seven pet clinics, were tested between March 2018 and May 2019. Each Salmonella isolate was characterised using serotyping and antimicrobial susceptibility tests. Results The prevalence of Salmonella was 9.47% in dogs and 1.77% in cats. Among the 25 isolates, eight serotypes of Salmonella enterica subsp. enterica were detected, S. Kentucky (n = 11), S. Indiana (n = 5), and S. Typhimurium (n = 4) predominating. S. Derby, S. Toucra, S. Sandiego, S. Newport, and S. Saintpaul all occurred singly. The 23 Salmonella strains found in dogs were from seven different serovars, while the two strains in cats were from two. The highest resistance rates were found for tetracycline (92%), azithromycin (88%), cefazolin (84%), nalidixic acid (80%), ampicillin (80%), ceftriaxone (80%), and streptomycin (76%). Resistance to three or more antimicrobial agents was detected in 24 (96%) isolates. Most of the S. Kentucky and S. Indiana isolates were multi-drug resistant to more than 11 agents. Conclusion The carriage rate was far higher in dogs than in cats from Xuzhou. Some isolated strains were highly resistant to antimicrobials used to treat infections in humans and pets, which may raise the risk of humans being infected with multi-drug resistant Salmonella via close contact with pets.
Collapse
|
11
|
Nadimpalli M, Fabre L, Yith V, Sem N, Gouali M, Delarocque-Astagneau E, Sreng N, Le Hello S. CTX-M-55-type ESBL-producing Salmonella enterica are emerging among retail meats in Phnom Penh, Cambodia. J Antimicrob Chemother 2020; 74:342-348. [PMID: 30376113 DOI: 10.1093/jac/dky451] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/07/2018] [Indexed: 11/13/2022] Open
Abstract
Background Salmonella enterica is a leading cause of human gastroenteritis. S. enterica strains that produce ESBLs (ESBL-Salm) remain rare in Europe and North America, but less is known about their prevalence among animal-derived foods in countries with weaker food safety practices and unregulated veterinary antibiotic use. Objectives To examine the prevalence and characteristics of ESBL-Salm from retail meats in Phnom Penh, Cambodia. Methods We tested fish, pork and chicken from two markets for ESBL- and carbapenemase-producing Salmonella from September-December 2016, using cefotaxime- and ertapenem-supplemented media, respectively. ESBL-Salm were sequenced and their genomes characterized. We performed plasmid conjugation experiments to assess the co-transferability of ESBL-encoding genes and MDR phenotypes. Results Twenty-six of 150 fish and meat samples (17%) were positive for ESBL-Salm, including 10/60 fish (17%), 15/60 pork (25%) and 1/30 chicken (3%). Carbapenemase-producing Salmonella strains were not detected. Pork-origin ESBL-Salm were primarily serotypes Rissen (10/15) or a monophasic variant of Typhimurium 4,5,12:i:- (3/15), whereas Saintpaul (3/10) and Newport (4/10) were more common among fish. Most ESBL enzymes were encoded by blaCTX-M-55 genes (24/26) harboured on conjugative IncA/C2 (n = 14) or IncHI2 (n = 10) plasmids. Resistance to up to six additional drug classes was co-transferred by each plasmid type. ESBL-Salm were resistant to almost every antibiotic recommended for severe salmonellosis treatment. Conclusions CTX-M-55-type S. enterica are highly prevalent among pork and fish from Phnom Penh markets and their spread appears to be mediated by MDR IncA/C2 and IncHI2 plasmids. Food safety must be improved and veterinary antibiotic use should be regulated to protect public health.
Collapse
Affiliation(s)
- Maya Nadimpalli
- Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases Unit (B2PHI), Inserm, Université de Versailles Saint-Quentin-en-Yvelines, Institut Pasteur, Université Paris-Saclay, 25 rue du Docteur Roux, Paris, France
| | - Laetitia Fabre
- Enteric Bacterial Pathogens Unit, Institut Pasteur, 25 rue du Docteur Roux, Paris, France
| | - Vuthy Yith
- Laboratory of Environment and Food Safety, Institut Pasteur du Cambodge, 5 Preah Monivong Blvd, Phnom Penh, Cambodia
| | - Nita Sem
- Laboratory of Environment and Food Safety, Institut Pasteur du Cambodge, 5 Preah Monivong Blvd, Phnom Penh, Cambodia
| | - Malika Gouali
- Laboratory of Environment and Food Safety, Institut Pasteur du Cambodge, 5 Preah Monivong Blvd, Phnom Penh, Cambodia
| | - Elisabeth Delarocque-Astagneau
- Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases Unit (B2PHI), Inserm, Université de Versailles Saint-Quentin-en-Yvelines, Institut Pasteur, Université Paris-Saclay, 25 rue du Docteur Roux, Paris, France.,Assistance Publique/Hôpitaux de Paris, Raymond-Poincaré Hospital, 104 Boulevard Raymond Poincaré, Garches, France
| | - Navin Sreng
- Laboratory of Environment and Food Safety, Institut Pasteur du Cambodge, 5 Preah Monivong Blvd, Phnom Penh, Cambodia
| | - Simon Le Hello
- Enteric Bacterial Pathogens Unit, Institut Pasteur, 25 rue du Docteur Roux, Paris, France
| | | |
Collapse
|
12
|
Phongaran D, Khang-Air S, Angkititrakul S. Molecular epidemiology and antimicrobial resistance of Salmonella isolates from broilers and pigs in Thailand. Vet World 2019; 12:1311-1318. [PMID: 31641313 PMCID: PMC6755382 DOI: 10.14202/vetworld.2019.1311-1318] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/15/2019] [Indexed: 11/23/2022] Open
Abstract
AIMS This study aimed to determine the prevalence and antimicrobial resistance pattern of Salmonella spp., and the genetic relatedness between isolates from broilers and pigs at slaughterhouses in Thailand. MATERIALS AND METHODS Fecal samples (604 broilers and 562 pigs) were collected from slaughterhouses from April to July 2018. Salmonella spp. were isolated and identified according to the ISO 6579:2002. Salmonella-positive isolates were identified using serotyping and challenged with nine antimicrobial agents: Amoxicillin/clavulanate (AMC, 30 µg), ampicillin (AMP, 10 µg), ceftazidime (30 µg), chloramphenicol (30 µg), ciprofloxacin (CIP, 5 µg), nalidixic acid (NAL, 30 µg), norfloxacin (10 µg), trimethoprim/sulfamethoxazole (SXT, 25 µg), and tetracycline (TET, 30 µg). Isolates of the predominant serovar Salmonella Typhimurium were examined for genetic relatedness using pulsed-field gel electrophoresis (PFGE). RESULTS Salmonella was detected in 18.05% of broiler isolates and 37.54% of pig isolates. The most common serovars were Kentucky, Give, and Typhimurium in broilers and Rissen, Typhimurium, and Weltevreden in pigs. Among broilers, isolates were most commonly resistant to antibiotics, NAL, AMP, TET, AMC, and CIP. Pig isolates most commonly exhibited antimicrobial resistance against AMP, TET, and SXT. Based on PFGE results among 52 S. Typhimurium isolates from broilers and pigs, a high genetic relatedness between broiler and pig isolates (85% similarity) in Cluster A and C from PFGE result was identified. CONCLUSION The results revealed high cross-contamination between these two animal species across various provinces in Thailand.
Collapse
Affiliation(s)
- Dusadee Phongaran
- Research Group for Animal Health Technology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Seri Khang-Air
- Research Group for Animal Health Technology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sunpetch Angkititrakul
- Research Group for Animal Health Technology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
13
|
Prasertsee T, Chuammitri P, Deeudom M, Chokesajjawatee N, Santiyanont P, Tadee P, Nuangmek A, Tadee P, Sheppard SK, Pascoe B, Patchanee P. Core genome sequence analysis to characterize Salmonella enterica serovar Rissen ST469 from a swine production chain. Int J Food Microbiol 2019; 304:68-74. [PMID: 31174037 DOI: 10.1016/j.ijfoodmicro.2019.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/02/2019] [Accepted: 05/25/2019] [Indexed: 02/02/2023]
Abstract
Salmonella enterica subsp. enterica serotype Rissen is the predominant serotype found in Thai pork production and can be transmitted to humans through contamination of the food chain. This study was conducted to investigate the genetic relationships between serovar Rissen isolates from all levels of the pork production chain and evaluate the ability of the in silico antimicrobial resistance (AMR) genotypes to predict the phenotype of serovar Rissen. A total of 38 serovar Rissen isolates were tested against eight antibiotic agents by a disk diffusion method and the whole genomes of all isolates were sequenced to detect AMR genetic elements using the ResFinder database.A total of 86.84% of the isolates were resistant to tetracycline, followed by ampicillin (78.96%) and sulfonamide-trimethoprim (71.05%). Resistance to more than one antimicrobial agent was observed in 78.95% of the isolates, with the most common pattern showing resistance to ampicillin, chloramphenicol, streptomycin, sulfonamide-trimethoprim, and tetracycline. The results of genotypic AMR indicated that 89.47% of the isolates carried tet(A), 84.22% carried blaTEM-1B, 78.95% carried sul3, and 78.95% carried dfrA12. The genotypic prediction of phenotypic resistance resulted in a mean sensitivity of 97.45% and specificity of 75.48%. Analysis by core genome multilocus sequence typing (cgMLST) demonstrated that the Salmonella isolates from various sources and different locations shared many of the same core genome loci. This implies that serovar Rissen has infected every stage of the pork production process and that contamination can occur in every part of the production chain.
Collapse
Affiliation(s)
- Teerarat Prasertsee
- Graduate Program in Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Phongsakorn Chuammitri
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Manu Deeudom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipa Chokesajjawatee
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Pannita Santiyanont
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Pakpoom Tadee
- Integrative Research Center for Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Aniroot Nuangmek
- Graduate Program in Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Phacharaporn Tadee
- Faculty of Animal Science and Technology, Maejo University, Chiang Mai 50290, Thailand
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, BA2 7BA, United Kingdom; Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, BA2 7BA, United Kingdom; Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Prapas Patchanee
- Integrative Research Center for Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
14
|
Prasertsee T, Chokesajjawatee N, Santiyanont P, Chuammitri P, Deeudom M, Tadee P, Patchanee P. Quantification and rep‐PCR characterization of
Salmonella
spp. in retail meats and hospital patients in Northern Thailand. Zoonoses Public Health 2019; 66:301-309. [DOI: 10.1111/zph.12565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/24/2018] [Accepted: 01/06/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Teerarat Prasertsee
- Graduate Program in Veterinary Science, Faculty of Veterinary Medicine Chiang Mai University Muang Thailand
| | - Nipa Chokesajjawatee
- National Center for Genetic Engineering and Biotechnology National Science and Technology Development Agency Pathum Thani Thailand
| | - Pannita Santiyanont
- National Center for Genetic Engineering and Biotechnology National Science and Technology Development Agency Pathum Thani Thailand
| | - Phongsakorn Chuammitri
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine Chiang Mai University Muang Thailand
| | - Manu Deeudom
- Department of Microbiology, Faculty of Medicine Chiang Mai University Muang Thailand
| | - Pakpoom Tadee
- Integrative Research Center for Veterinary Preventive Medicine, Faculty of Veterinary Medicine Chiang Mai University Muang Thailand
| | - Prapas Patchanee
- Integrative Research Center for Veterinary Preventive Medicine, Faculty of Veterinary Medicine Chiang Mai University Muang Thailand
| |
Collapse
|
15
|
Lam S, Pham G, Nguyen-Viet H. Emerging health risks from agricultural intensification in Southeast Asia: a systematic review. INTERNATIONAL JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HEALTH 2017; 23:250-260. [PMID: 29560804 PMCID: PMC6060873 DOI: 10.1080/10773525.2018.1450923] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 03/07/2018] [Indexed: 11/04/2022]
Abstract
Background Agricultural intensification is having profound impacts on food security and rural livelihoods; however, concerns remain about the potential implications on public health. Objectives We aim to examine and synthesize the evidence for human health risks of agricultural intensification in Southeast Asia. Methods We conducted a systematic review of peer-reviewed articles published between January 2000 and December 2015 from two electronic databases (PubMed, CAB Direct). Results A total of 73 relevant studies were included and evaluated. More than half of the studies used epidemiological methods while others applied alternative methods to quantify or estimate risks. Studies mainly focused on occupational and consumer exposure to pesticides, without often specifying the actual health risk. Conclusion Overall, the current knowledge on health risks appears to be limited. More research on long-term health implications and a wider range of contaminants are needed if sustainable benefits are to be obtained from agricultural intensification.
Collapse
Affiliation(s)
- Steven Lam
- Hanoi University of Public Health, Center for Public Health and Ecosystem Research, Hanoi, Vietnam
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada
| | - Giang Pham
- Hanoi University of Public Health, Center for Public Health and Ecosystem Research, Hanoi, Vietnam
- Vietnam Public Health Association, Hanoi, Vietnam
| | - Hung Nguyen-Viet
- Hanoi University of Public Health, Center for Public Health and Ecosystem Research, Hanoi, Vietnam
- International Livestock Research Institute, Hanoi, Vietnam
| |
Collapse
|
16
|
Nhung NT, Cuong NV, Thwaites G, Carrique-Mas J. Antimicrobial Usage and Antimicrobial Resistance in Animal Production in Southeast Asia: A Review. Antibiotics (Basel) 2016; 5:E37. [PMID: 27827853 PMCID: PMC5187518 DOI: 10.3390/antibiotics5040037] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/25/2022] Open
Abstract
Southeast Asia is an area of great economic dynamism. In recent years, it has experienced a rapid rise in the levels of animal product production and consumption. The region is considered to be a hotspot for infectious diseases and antimicrobial resistance (AMR). We reviewed English-language peer-reviewed publications related to antimicrobial usage (AMU) and AMR in animal production, as well as antimicrobial residues in meat and fish from 2000 to 2016, in the region. There is a paucity of data from most countries and for most bacterial pathogens. Most of the published work relates to non-typhoidal Salmonella (NTS), Escherichia coli (E. coli), and Campylobacter spp. (mainly from Vietnam and Thailand), Enterococcus spp. (Malaysia), and methicillin-resistant Staphylococcus aureus (MRSA) (Thailand). However, most studies used the disk diffusion method for antimicrobial susceptibility testing; breakpoints were interpreted using Clinical Standard Laboratory Institute (CSLI) guidelines. Statistical models integrating data from publications on AMR in NTS and E. coli studies show a higher overall prevalence of AMR in pig isolates, and an increase in levels of AMR over the years. AMU studies (mostly from Vietnam) indicate very high usage levels of most types of antimicrobials, including beta-lactams, aminoglycosides, macrolides, and quinolones. This review summarizes information about genetic determinants of resistance, most of which are transferrable (mostly plasmids and integrons). The data in this review provide a benchmark to help focus research and policies on AMU and AMR in the region.
Collapse
Affiliation(s)
- Nguyen T Nhung
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.
| | - Nguyen V Cuong
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.
| | - Guy Thwaites
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Old Road Campus, Roosevelt Drive, Oxford OX3 7BN, UK.
| | - Juan Carrique-Mas
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Old Road Campus, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
17
|
Pornsukarom S, Thakur S. Assessing the Impact of Manure Application in Commercial Swine Farms on the Transmission of Antimicrobial Resistant Salmonella in the Environment. PLoS One 2016; 11:e0164621. [PMID: 27755598 PMCID: PMC5068702 DOI: 10.1371/journal.pone.0164621] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/28/2016] [Indexed: 11/18/2022] Open
Abstract
Land application of swine manure in commercial hog farms is an integral part of their waste management system which recycles the nutrients back to the soil. However, manure application can lead to the dissemination of bacterial pathogens in the environment and pose a serious public health threat. The aim of this study was to determine the dissemination of antimicrobial resistant Salmonella in the environment due to manure application in commercial swine farms in North Carolina (n = 6) and Iowa (n = 7), two leading pork producing states in the US. We collected manure and soil samples twice on day 0 (before and after manure application) from four distinct plots of lands (5 soil samples/plot) located at 20 feet away from each other in the field. Subsequent soil samples were collected again on days 7, 14, 21 from the same plots. A total of 1,300 soil samples (NC = 600; IA = 700) and 130 manure samples (NC = 60; IA = 70) were collected and analyzed in this study. The overall Salmonella prevalence was 13.22% (189/1,430), represented by 10.69% and 38.46% prevalence in soil and manure, respectively. The prevalence in NC (25.45%) was significantly higher than in IA (2.73%) (P<0.001) and a consistent decrease in Salmonella prevalence was detected from Day 0-Day 21 in all the farms that tested positive. Salmonella serotypes detected in NC were not detected in IA, thereby highlighting serotype association based on manure storage and soil application method used in the two regions. Antimicrobial susceptibility testing was done by the broth microdilution method to a panel of 15 antimicrobial drugs. A high frequency of isolates (58.73%) were multidrug resistant (resistance to three or more class of antimicrobials) and the most frequent resistance was detected against streptomycin (88.36%), sulfisoxazole (67.2%), and tetracycline (57.67%). Genotypic characterization by pulse field gel electrophoresis revealed clonally related Salmonella in both manure and soil at multiple time points in the positive farms. Our study highlights the potential role of swine manure application in the dissemination and persistence of antimicrobial resistant Salmonella in the environment.
Collapse
Affiliation(s)
- Suchawan Pornsukarom
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, 27607, United States of America
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, 27607, United States of America
- * E-mail:
| |
Collapse
|
18
|
Salmonella in pork retail outlets and dissemination of its pulsotypes through pig production chain in Chiang Mai and surrounding areas, Thailand. Prev Vet Med 2016; 130:99-105. [DOI: 10.1016/j.prevetmed.2016.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 11/18/2022]
|