1
|
Cervantes J, Yokobori N, Hong BY. Genetic Identification and Drug-Resistance Characterization of Mycobacterium tuberculosis Using a Portable Sequencing Device. A Pilot Study. Antibiotics (Basel) 2020; 9:antibiotics9090548. [PMID: 32867304 PMCID: PMC7559383 DOI: 10.3390/antibiotics9090548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
Clinical management of tuberculosis (TB) in endemic areas is often challenged by a lack of resources including laboratories for Mycobacterium tuberculosis (Mtb) culture. Traditional phenotypic drug susceptibility testing for Mtb is costly and time consuming, while PCR-based methods are limited to selected target loci. We herein utilized a portable, USB-powered, long-read sequencing instrument (MinION), to investigate Mtb genomic DNA from clinical isolates to determine the presence of anti-TB drug-resistance conferring mutations. Data analysis platform EPI2ME and antibiotic-resistance analysis using the real time ARMA workflow, identified Mtb species as well as extensive resistance gene profiles. The approach was highly sensitive, being able to detect almost all described drug resistance conferring mutations based on previous whole genome sequencing analysis. Our findings are supportive of the practical use of this system as a suitable method for the detection of antimicrobial resistance genes, and effective in providing Mtb genomic information. Future improvements in the error rate through statistical analysis, drug resistance prediction algorithms and reference databases would make this a platform suited for the clinical setting. The small size, relatively inexpensive cost of the device, as well as its rapid and simple library preparation protocol and analysis, make it an attractive option for settings with limited laboratory infrastructure.
Collapse
Affiliation(s)
- Jorge Cervantes
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
- Correspondence: ; Tel.: +1-915-215-4672
| | - Noemí Yokobori
- Servicio de Micobacterias, Instituto Nacional de Enfermedades Infecciosas (INEI)-ANLIS and CONICET, Buenos Aires C1282AFF, Argentina;
| | - Bo-Young Hong
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA;
| |
Collapse
|
2
|
Garzon-Chavez D, Garcia-Bereguiain MA, Mora-Pinargote C, Granda-Pardo JC, Leon-Benitez M, Franco-Sotomayor G, Trueba G, de Waard JH. Population structure and genetic diversity of Mycobacterium tuberculosis in Ecuador. Sci Rep 2020; 10:6237. [PMID: 32277077 PMCID: PMC7148308 DOI: 10.1038/s41598-020-62824-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/13/2020] [Indexed: 11/09/2022] Open
Abstract
Tuberculosis (TB) is a significant public health problem in Ecuador with an incidence of 43 per 100,000 inhabitants and an estimated multidrug-resistant-TB prevalence in all TB cases of 9%. Genotyping of Mycobacterium tuberculosis (MTBC) is important to understand regional transmission dynamics. This study aims to describe the main MTBC lineages and sublineages circulating in the country. A representative sample of 373 MTBC strains from 22 provinces of Ecuador, with data comprising geographic origin and drug susceptibility, were genotyped using 24 loci-MIRU-VNTR. For strains with an ambiguous sublineage designation, the lineage was confirmed by Regions of Difference analysis or by Whole Genome Sequencing. We show that lineage 4 is predominant in Ecuador (98.3% of the strains). Only 4 strains belong to lineages 2-sublineage Beijing and two strains to lineage 3-sublineage Delhi. Lineage 4 strains included sublineages LAM (45.7%), Haarlem (31.8%), S (13.1%), X (4.6%), Ghana (0.6%) and NEW (0.3%). The LAM sublineage showed the strongest association with antibiotic resistance. The X and S sublineages were found predominantly in the Coastal and the Andean regions respectively and the reason for the high prevalence of these strains in Ecuador should be addressed in future studies. Our database constitutes a tool for MIRU-VNTR pattern comparison of M. tuberculosis isolates for national and international epidemiologic studies and phylogenetic purposes.
Collapse
Affiliation(s)
- Daniel Garzon-Chavez
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
- Instituto Nacional de Salud Pública e Investigación Leopoldo Izquieta Pérez, Guayaquil, Ecuador
| | - Miguel Angel Garcia-Bereguiain
- One Health Research Group. Universidad de las Américas, Quito, Ecuador.
- Laboratorio para Investigaciones Biomédicas. Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador.
| | - Carlos Mora-Pinargote
- Laboratorio para Investigaciones Biomédicas. Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | | | - Margarita Leon-Benitez
- Instituto Nacional de Salud Pública e Investigación Leopoldo Izquieta Pérez, Guayaquil, Ecuador
| | - Greta Franco-Sotomayor
- Instituto Nacional de Salud Pública e Investigación Leopoldo Izquieta Pérez, Guayaquil, Ecuador
- Facultad de Ciencias Médicas. Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.
| | - Jacobus H de Waard
- One Health Research Group. Universidad de las Américas, Quito, Ecuador.
- Departamento de Tuberculosis, Servicio Autónomo Instituto de Biomedicina "Dr. Jacinto Convit", Universidad Central de Venezuela, Caracas, Venezuela.
| |
Collapse
|
3
|
Cerezo-Cortés MI, Rodríguez-Castillo JG, Hernández-Pando R, Murcia MI. Circulation of M. tuberculosis Beijing genotype in Latin America and the Caribbean. Pathog Glob Health 2019; 113:336-351. [PMID: 31903874 PMCID: PMC7006823 DOI: 10.1080/20477724.2019.1710066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lineage 2 (East Asian), which includes the Beijing genotype, is one of the most prevalent lineages of Mycobacterium tuberculosis (Mtb) throughout the world. The Beijing family is associated to hypervirulence and drug-resistant tuberculosis. The study of this genotype's circulation in Latin America is crucial for achieving total control of TB, the goal established by the World Health Organization, for the American sub-continent, before 2035. In this sense, the present work presents an overview of the status of the Beijing genotype for this region, with a bibliographical review, and data analysis of MIRU-VNTRs for available Beijing isolates. Certain countries present a prevalent trend of <5%, suggesting low transmissibility for the region, with the exception of Cuba (17.2%), Perú (16%) and Colombia (5%). Minimum Spanning Tree analysis, obtained from MIRU-VNTR data, shows distribution of specific clonal complex strains in each country. From this data, in most countries, we found that molecular epidemiology has not been a tool used for the control of TB, suggesting that the Beijing genotype may be underestimated in Latin America. It is recommended that countries with the highest incidence of the Beijing genotype use effective control strategies and increased care, as a requirement for public health systems.
Collapse
Affiliation(s)
- MI Cerezo-Cortés
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - JG Rodríguez-Castillo
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - R Hernández-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition, México D.F., Mexico
| | - MI Murcia
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
4
|
Díaz Acosta CC, Russomando G, Candia N, Ritacco V, Vasconcellos SEG, de Berrêdo Pinho Moreira M, de Romero NJ, Morcillo N, De Waard JH, Gomes HM, Suffys PN. Exploring the "Latin American Mediterranean" family and the RD Rio lineage in Mycobacterium tuberculosis isolates from Paraguay, Argentina and Venezuela. BMC Microbiol 2019; 19:131. [PMID: 31195979 PMCID: PMC6567603 DOI: 10.1186/s12866-019-1479-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 05/07/2019] [Indexed: 11/21/2022] Open
Abstract
Background The Latin American & Mediterranean (LAM) spoligotype family is one of the most successful genotype of Mycobacterium tuberculosis worldwide and particularly prevalent in South-America. Within this family, a sublineage named Region of Difference Rio (RDRio) was reported initially in Brazil and is characterized by a genomic deletion of about 26.3 kb. This lineage seems to show a specific adaptation to the Euro-Latin American population. In this context, we sought to evaluate the LAM family and the presence of the RDRio genotype in samples from three Latin American countries including Paraguay, Venezuela and Argentina. To detect LAM strains reliably we applied a typing scheme using spoligotyping, 12 loci MIRU-VNTR, the Ag85C103 SNP and the regions of difference RDRio and RD174. IS6110-RFLP results were also used when available. Results Genotyping of 413 M. tuberculosis isolates from three Latin-American countries detected LAM (46%) and the ill-defined T clade (16%) as the most frequent families. The highest clustering rate was detected in the sample population from the city of Caracas in Venezuela. We observed considerable differences in the presence of the RDRio lineage, with high frequency in Caracas-Venezuela (55%) and low frequency in Buenos Aires-Argentina (11%) and Paraguay (10%). The molecular markers (RD174, Ag85C103, MIRU02-MIRU40 signature) of the RDRio lineage were essentially confirmed. For the LAM family, the most polymorphic loci were MIRU40, MIRU31, MIRU10, MIRU26, MIRU16 and the least polymorphic MIRU24, MIRU20, MIRU04, MIRU23. Conclusions Our results suggest a differential adaptation of LAM-sublineages in neighboring populations and that RDRio strains spread regionally with different rates of distribution. The Ag85C SNP and RDs (RD174, RDRio) tested in this study can in fact facilitate molecular epidemiological studies of LAM strains in endemic settings and low-income countries. Electronic supplementary material The online version of this article (10.1186/s12866-019-1479-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chyntia Carolina Díaz Acosta
- Departamento de Biología Molecular y Biotecnología. Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Asunción, Paraguay.,Laboratório de Biologia Molecular aplicada às Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Graciela Russomando
- Departamento de Biología Molecular y Biotecnología. Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Asunción, Paraguay
| | - Norma Candia
- Departamento de Biología Molecular y Biotecnología. Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Asunción, Paraguay
| | - Viviana Ritacco
- Servicio de Micobacterias, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Carlos G. Malbran", Buenos Aires, Argentina
| | - Sidra E G Vasconcellos
- Laboratório de Biologia Molecular aplicada às Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21045-900, Brazil
| | | | | | - Nora Morcillo
- Instituto Nacional de Enfermedades Respiratorias Emilio Coni, Buenos Aires, Argentina
| | - Jacobus Henri De Waard
- Laboratorio de Tuberculosis, Instituto de Biomedicina, Caracas, Venezuela.,Present Address: One Health Research Group. Facultad de Ciencias de la Salud, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Harrison Magdinier Gomes
- Laboratório de Biologia Molecular aplicada às Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Philip Noel Suffys
- Laboratório de Biologia Molecular aplicada às Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21045-900, Brazil.
| |
Collapse
|
5
|
Woodman M, Haeusler IL, Grandjean L. Tuberculosis Genetic Epidemiology: A Latin American Perspective. Genes (Basel) 2019; 10:genes10010053. [PMID: 30654542 PMCID: PMC6356704 DOI: 10.3390/genes10010053] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 11/16/2022] Open
Abstract
There are an estimated 10 million new cases of tuberculosis worldwide annually, with 282,000 new or relapsed cases each year reported from the Americas. With improvements in genome sequencing technology, it is now possible to study the genetic diversity of tuberculosis with much greater resolution. Although tuberculosis bacteria do not engage in horizontal gene transfer, the genome is far more variable than previously thought. The study of genome-wide variation in tuberculosis has improved our understanding of the evolutionary origins of tuberculosis, the arrival of tuberculosis in Latin America, the genetic determinants of drug resistance, and lineage-specific associations with important clinical phenotypes. This article reviews what is known about the arrival of tuberculosis in Latin America, the genetic diversity of tuberculosis in Latin America, and the genotypic determinants of clinical phenotypes.
Collapse
Affiliation(s)
- Marc Woodman
- Institute of Child Health, University College London, London WC1N 3JH, UK.
| | - Ilsa L Haeusler
- Institute of Child Health, University College London, London WC1N 3JH, UK.
| | - Louis Grandjean
- Institute of Child Health, University College London, London WC1N 3JH, UK.
- Department of Medicine, Imperial College London, London W2 1NY, UK.
- Great Ormond Street Hospital, Institute of Child Health, University College London, London WC1N 3JH, UK.
- Laboratorio de Investigacion y Desarollo, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martin de Porres 15102, Lima, Peru.
| |
Collapse
|
6
|
Perdigão J, Silva C, Diniz J, Pereira C, Machado D, Ramos J, Silva H, Abilleira F, Brum C, Reis AJ, Macedo M, Scaini JL, Silva AB, Esteves L, Macedo R, Maltez F, Clemente S, Coelho E, Viegas S, Rabna P, Rodrigues A, Taveira N, Jordao L, Kritski A, Lapa E Silva JR, Mokrousov I, Couvin D, Rastogi N, Couto I, Pain A, McNerney R, Clark TG, von Groll A, Dalla-Costa ER, Rossetti ML, Silva PEA, Viveiros M, Portugal I. Clonal expansion across the seas as seen through CPLP-TB database: A joint effort in cataloguing Mycobacterium tuberculosis genetic diversity in Portuguese-speaking countries. INFECTION GENETICS AND EVOLUTION 2018; 72:44-58. [PMID: 29559379 PMCID: PMC6598853 DOI: 10.1016/j.meegid.2018.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 12/22/2022]
Abstract
Tuberculosis (TB) remains a major health problem within the Community of Portuguese Language Speaking Countries (CPLP). Despite the marked variation in TB incidence across its member-states and continued human migratory flux between countries, a considerable gap in the knowledge on the Mycobacterium tuberculosis population structure and strain circulation between the countries still exists. To address this, we have assembled and analysed the largest CPLP M. tuberculosis molecular and drug susceptibility dataset, comprised by a total of 1447 clinical isolates, including 423 multidrug-resistant isolates, from five CPLP countries. The data herein presented reinforces Latin American and Mediterranean (LAM) strains as the hallmark of M. tuberculosis populational structure in the CPLP coupled with country-specific differential prevalence of minor clades. Moreover, using high-resolution typing by 24-loci MIRU-VNTR, six cross-border genetic clusters were detected, thus supporting recent clonal expansion across the Lusophone space. To make this data available to the scientific community and public health authorities we developed CPLP-TB (available at http://cplp-tb.ff.ulisboa.pt), an online database coupled with web-based tools for exploratory data analysis. As a public health tool, it is expected to contribute to improved knowledge on the M. tuberculosis population structure and strain circulation within the CPLP, thus supporting the risk assessment of strain-specific trends. The Community of Portuguese Speaking Countries (CPLP) occupies a vast geographical area. Three CPLP countries are shortlisted in the WHO's list of Top 30 high-burden countries. Common Mycobacterium tuberculosis population structure denote historical strain flow. Cross-border clusters suggest recent intercontinental tuberculosis transmission. CPLP-TB: a novel strain database and framework for collaborative studies and strain tracing.
Collapse
Affiliation(s)
- João Perdigão
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
| | - Carla Silva
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Jaciara Diniz
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Catarina Pereira
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Diana Machado
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Jorge Ramos
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Hugo Silva
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Fernanda Abilleira
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Clarice Brum
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Ana J Reis
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Maíra Macedo
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - João L Scaini
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Ana B Silva
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Leonardo Esteves
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Porto Alegre, Brazil
| | - Rita Macedo
- Departamento de Doenças Infecciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Fernando Maltez
- Serviço de Doenças Infecciosas, Hospital de Curry Cabral, Lisboa, Portugal
| | - Sofia Clemente
- Hospital da Divina Providência, Serviço de Doenças Infecciosas, Luanda, Angola
| | - Elizabeth Coelho
- Programa Nacional de Controlo da Tuberculose, Ministério da Saúde de Moçambique, Mozambique
| | - Sofia Viegas
- Instituto Nacional de Saúde, Ministério da Saúde de Moçambique, Mozambique
| | - Paulo Rabna
- Instituto Nacional de Saúde Pública, Projecto de Saúde de Bandim (INASA/PSB), Bissau, Guinea-Bissau
| | - Amabélia Rodrigues
- Instituto Nacional de Saúde Pública, Projecto de Saúde de Bandim (INASA/PSB), Bissau, Guinea-Bissau
| | - Nuno Taveira
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal; Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, Monte de Caparica, Portugal
| | - Luísa Jordao
- Departamento de Doenças Infecciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Afrânio Kritski
- Academic Tuberculosis Program, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José R Lapa E Silva
- Thoracic Diseases Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics (former Laboratory of Molecular Microbiology), St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - David Couvin
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Jolivière Abymes, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Jolivière Abymes, Guadeloupe, France
| | - Isabel Couto
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Arnab Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ruth McNerney
- Lung Infection and Immunity Unit, UCT Lung Institute, University of Cape Town, Groote Schuur Hospital, Observatory, 7925, Cape Town, South Africa
| | - Taane G Clark
- London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Andrea von Groll
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Elis R Dalla-Costa
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Porto Alegre, Brazil
| | - Maria Lúcia Rossetti
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Porto Alegre, Brazil; Universidade Luterana do Brasil (ULBRA/RS), Porto Alegre, Brazil
| | - Pedro E A Silva
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Miguel Viveiros
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Isabel Portugal
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
7
|
Genetic diversity of Mycobacterium tuberculosis and transmission associated with first-line drug resistance: a first analysis in Jalisco, Mexico. J Glob Antimicrob Resist 2017; 11:90-97. [DOI: 10.1016/j.jgar.2017.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/07/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022] Open
|
8
|
Couvin D, Zozio T, Rastogi N. SpolSimilaritySearch – A web tool to compare and search similarities between spoligotypes of Mycobacterium tuberculosis complex. Tuberculosis (Edinb) 2017; 105:49-52. [DOI: 10.1016/j.tube.2017.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
|
9
|
The Evolution of Strain Typing in the Mycobacterium tuberculosis Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:43-78. [PMID: 29116629 DOI: 10.1007/978-3-319-64371-7_3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) is a contagious disease with a complex epidemiology. Therefore, molecular typing (genotyping) of Mycobacterium tuberculosis complex (MTBC) strains is of primary importance to effectively guide outbreak investigations, define transmission dynamics and assist global epidemiological surveillance of the disease. Large-scale genotyping is also needed to get better insights into the biological diversity and the evolution of the pathogen. Thanks to its shorter turnaround and simple numerical nomenclature system, mycobacterial interspersed repetitive unit-variable-number tandem repeat (MIRU-VNTR) typing, based on 24 standardized plus 4 hypervariable loci, optionally combined with spoligotyping, has replaced IS6110 DNA fingerprinting over the last decade as a gold standard among classical strain typing methods for many applications. With the continuous progress and decreasing costs of next-generation sequencing (NGS) technologies, typing based on whole genome sequencing (WGS) is now increasingly performed for near complete exploitation of the available genetic information. However, some important challenges remain such as the lack of standardization of WGS analysis pipelines, the need of databases for sharing WGS data at a global level, and a better understanding of the relevant genomic distances for defining clusters of recent TB transmission in different epidemiological contexts. This chapter provides an overview of the evolution of genotyping methods over the last three decades, which culminated with the development of WGS-based methods. It addresses the relative advantages and limitations of these techniques, indicates current challenges and potential directions for facilitating standardization of WGS-based typing, and provides suggestions on what method to use depending on the specific research question.
Collapse
|
10
|
Lagos J, Couvin D, Arata L, Tognarelli J, Aguayo C, Leiva T, Arias F, Hormazabal JC, Rastogi N, Fernández J. Analysis of Mycobacterium tuberculosis Genotypic Lineage Distribution in Chile and Neighboring Countries. PLoS One 2016; 11:e0160434. [PMID: 27518286 PMCID: PMC4982630 DOI: 10.1371/journal.pone.0160434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/19/2016] [Indexed: 10/29/2022] Open
Abstract
Tuberculosis (TB), caused by the pathogen Mycobacterium tuberculosis (MTB), remains a disease of high importance to global public health. Studies into the population structure of MTB have become vital to monitoring possible outbreaks and also to develop strategies regarding disease control. Although Chile has a low incidence of MTB, the current rates of migration have the potential to change this scenario. We collected and analyzed a total of 458 M. tuberculosis isolates (1 isolate per patient) originating from all 15 regions of Chile. The isolates were genotyped using the spoligotyping method and the data obtained were analyzed and compared with the SITVIT2 database. A total of 169 different patterns were identified, of which, 119 patterns (408 strains) corresponded to Spoligotype International Types (SITs) and 50 patterns corresponded to orphan strains. The most abundantly represented SITs/lineages were: SIT53/T1 (11.57%), SIT33/LAM3 (9.6%), SIT42/LAM9 (9.39%), SIT50/H3 (5.9%), SIT37/T3 (5%); analysis of the spoligotyping minimum spanning tree as well as spoligoforest were suggestive of a recent expansion of SIT42, SIT50 and SIT37; all of which potentially evolved from SIT53. The most abundantly represented lineages were LAM (40.6%), T (34.1%) and Haarlem (13.5%). LAM was more prevalent in the Santiago (43.6%) and Concepción (44.1%) isolates, rather than the Iquique (29.4%) strains. The proportion of X lineage was appreciably higher in Iquique and Concepción (11.7% in both) as compared to Santiago (1.6%). Global analysis of MTB lineage distribution in Chile versus neighboring countries showed that evolutionary recent lineages (LAM, T and Haarlem) accounted together for 88.2% of isolates in Chile, a pattern which mirrored MTB lineage distribution in neighboring countries (n = 7378 isolates recorded in SITVIT2 database for Peru, Brazil, Paraguay, and Argentina; and published studies), highlighting epidemiological advantage of Euro-American lineages in this region. Finally, we also observed exclusive emergence of patterns SIT4014/X1 and SIT4015 (unknown lineage signature) that have hitherto been found exclusively in Chile, indicating that conditions specific to Chile, along with the unique genetic makeup of the Chilean population, might have allowed for a possible co-evolution leading to the success of these emerging genotypes.
Collapse
Affiliation(s)
- Jaime Lagos
- Subdepartment of Molecular Genetics, Public Health Institute of Chile, Santiago, Chile
| | - David Couvin
- WHO Supranational TB Reference Laboratory, TB and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Guadeloupe, France
| | - Loredana Arata
- Subdepartment of Molecular Genetics, Public Health Institute of Chile, Santiago, Chile
| | - Javier Tognarelli
- Subdepartment of Molecular Genetics, Public Health Institute of Chile, Santiago, Chile
| | - Carolina Aguayo
- Subdepartment of Molecular Genetics, Public Health Institute of Chile, Santiago, Chile
| | - Tamara Leiva
- Mycobacteria Laboratory, Public Health Institute of Chile, Santiago, Chile
| | - Fabiola Arias
- Mycobacteria Laboratory, Public Health Institute of Chile, Santiago, Chile
| | | | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, TB and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Guadeloupe, France
- * E-mail: (JF); (NR)
| | - Jorge Fernández
- Subdepartment of Molecular Genetics, Public Health Institute of Chile, Santiago, Chile
- * E-mail: (JF); (NR)
| |
Collapse
|
11
|
Whole-Genome Sequencing of a Haarlem Extensively Drug-Resistant Mycobacterium tuberculosis Clinical Isolate from Medellín, Colombia. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00566-16. [PMID: 27313305 PMCID: PMC4911484 DOI: 10.1128/genomea.00566-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Colombia is one of the 105 countries that has reported at least one case of extensively drug-resistant tuberculosis (XDR-TB). The Mycobacterium tuberculosis Haarlem genotype is ubiquitous worldwide. Here, we report the high-quality draft genome sequence of a Colombian Haarlem XDR-TB clinical isolate composed of 4,329,127 bp with 4,386 genes.
Collapse
|
12
|
Combined Genotypic, Phylogenetic, and Epidemiologic Analyses of Mycobacterium tuberculosis Genetic Diversity in the Rhône Alpes Region, France. PLoS One 2016; 11:e0153580. [PMID: 27128522 PMCID: PMC4851328 DOI: 10.1371/journal.pone.0153580] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/31/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The present work relates to identification and a deep molecular characterization of circulating Mycobacterium tuberculosis complex (MTBC) strains in the Rhône-Alpes region, France from 2000 to 2010. It aimed to provide with a first snapshot of MTBC genetic diversity in conjunction with bacterial drug resistance, type of disease and available demographic and epidemiologic characteristics over an eleven-year period, in the south-east of France. METHODS Mycobacterium tuberculosis complex (MTBC) strains isolated in the Rhône-Alpes region, France (n = 2257, 1 isolate per patient) between 2000 and 2010 were analyzed by spoligotyping. MIRU-VNTR typing was applied on n = 1698 strains (with full results available for 974 strains). The data obtained were compared with the SITVIT2 database, followed by detailed genotyping, phylogenetic, and epidemiologic analyses in correlation with anonymized data on available demographic, and epidemiologic characteristics, and location of disease (pulmonary or extrapulmonary TB). RESULTS The most predominant spoligotyping clusters were SIT53/T1 (n = 346, 15.3%) > SIT50/H3 (n = 166, 7.35%) > SIT42/LAM9 (n = 125, 5.5%) > SIT1/Beijing (n = 72, 3.2%) > SIT47/H1 (n = 71, 3.1%). Evolutionary-recent strains belonging to the Principal Genetic Group (PGG) 2/3, or Euro-American lineages (T, LAM, Haarlem, X, S) were predominant and represented 1768 or 78.33% of all isolates. For strains having drug resistance information (n = 1119), any drug resistance accounted for 14.83% cases vs. 1.52% for multidrug resistance (MDR); and was significantly more associated with age group 21-40 years (p-value<0.001). Extra-pulmonary TB was more common among female patients while pulmonary TB predominated among men (p-value<0.001; OR = 2.16 95%CI [1.69; 2.77]). Also, BOV and CAS lineages were significantly well represented in patients affected by extra-pulmonary TB (p-value<0.001). The origin was known for 927/2257 patients: 376 (40.6%) being French-born vs. 551 (59.4%) Foreign-born. French patients were significantly older (mean age: 58.42 yrs 95%CI [56.04; 60.80]) than Foreign-born patients (mean age: 42.38 yrs. 95%CI [40.75; 44.0]). CONCLUSION The study underlined the importance of imported TB cases on the genetic diversity and epidemiologic characteristics of circulating MTBC strains in Rhône-Alpes region, France over a large time-period. It helps better understand intricate relationships between certain lineages and geographic origin of the patients, and pinpoints genotypic and phylogenetic specificities of prevailing MTBC strains. Lastly, it also demonstrated a slow decline in isolation of M. africanum lineage in this region between 2000 and 2010.
Collapse
|
13
|
Mokrousov I, Vyazovaya A, Iwamoto T, Skiba Y, Pole I, Zhdanova S, Arikawa K, Sinkov V, Umpeleva T, Valcheva V, Alvarez Figueroa M, Ranka R, Jansone I, Ogarkov O, Zhuravlev V, Narvskaya O. Latin-American-Mediterranean lineage of Mycobacterium tuberculosis: Human traces across pathogen's phylogeography. Mol Phylogenet Evol 2016; 99:133-143. [PMID: 27001605 DOI: 10.1016/j.ympev.2016.03.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/10/2016] [Accepted: 03/15/2016] [Indexed: 01/18/2023]
Abstract
Currently, Mycobacterium tuberculosis isolates of Latin-American Mediterranean (LAM) family may be detected far beyond the geographic areas that coined its name 15years ago. Here, we established the framework phylogeny of this geographically intriguing and pathobiologically important mycobacterial lineage and hypothesized how human demographics and migration influenced its phylogeography. Phylogenetic analysis of LAM isolates from all continents based on 24 variable number of tandem repeats (VNTR) loci and other markers identified three global sublineages with certain geographic affinities and defined by large deletions RD115, RD174, and by spoligotype SIT33. One minor sublineage (spoligotype SIT388) appears endemic in Japan. One-locus VNTR signatures were established for sublineages and served for their search in published literature and geographic mapping. We suggest that the LAM family originated in the Western Mediterranean region. The most widespread RD115 sublineage seems the most ancient and encompasses genetically and geographically distant branches, including extremely drug resistant KZN in South Africa and LAM-RUS recently widespread across Northern Eurasia. The RD174 sublineage likely started its active spread in Brazil; its earlier branch is relatively dominated by isolates from South America and the derived one is dominated by Portuguese and South/Southeastern African isolates. The relatively most recent SIT33-sublineage is marked with enigmatic gaps and peaks across the Americas and includes South African clade F11/RD761, which likely emerged within the SIT33 subpopulation after its arrival to Africa. In addition to SIT388-sublineage, other deeply rooted, endemic LAM sublineages may exist that remain to be discovered. As a general conclusion, human mass migration appears to be the major factor that shaped the M. tuberculosis phylogeography over large time-spans.
Collapse
Affiliation(s)
- Igor Mokrousov
- St. Petersburg Pasteur Institute, 14 Mira Street, St. Petersburg 197101, Russia.
| | - Anna Vyazovaya
- St. Petersburg Pasteur Institute, 14 Mira Street, St. Petersburg 197101, Russia
| | - Tomotada Iwamoto
- Kobe Institute of Health, 4-6 Minatojima-nakamachi, Chuo-ku, Kobe 650-0046, Japan
| | - Yuriy Skiba
- Aitkhozhin Institute of Molecular Biology and Biochemistry, 86, Dosmuhamedov str., Almaty 050012, Kazakhstan
| | - Ilva Pole
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1, Riga LV-1067, Latvia; Center of Tuberculosis and Lung Diseases, Riga East University Hospital, Stopinu p., Riga LV-2118, Latvia
| | - Svetlana Zhdanova
- Scientific Center of Family Health and Reproductive Problems, Irkutsk 664003, Russia
| | - Kentaro Arikawa
- Kobe Institute of Health, 4-6 Minatojima-nakamachi, Chuo-ku, Kobe 650-0046, Japan
| | - Viacheslav Sinkov
- Scientific Center of Family Health and Reproductive Problems, Irkutsk 664003, Russia
| | - Tatiana Umpeleva
- Ural Research Institute of Phthisiopulmonology, 50 22go Partsiezda str., Ekaterinburg 620039, Russia
| | - Violeta Valcheva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G Bonchev str., Sofia 1113, Bulgaria
| | - Maria Alvarez Figueroa
- Central Research Institute for Epidemiology, 3A Novogireevskaya str., Moscow 111123, Russia
| | - Renate Ranka
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1, Riga LV-1067, Latvia
| | - Inta Jansone
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1, Riga LV-1067, Latvia
| | - Oleg Ogarkov
- Scientific Center of Family Health and Reproductive Problems, Irkutsk 664003, Russia
| | - Viacheslav Zhuravlev
- Research Institute of Phthisiopulmonology, 2-4 Ligovsky prospect, St. Petersburg 191036, Russia
| | - Olga Narvskaya
- St. Petersburg Pasteur Institute, 14 Mira Street, St. Petersburg 197101, Russia; Research Institute of Phthisiopulmonology, 2-4 Ligovsky prospect, St. Petersburg 191036, Russia
| |
Collapse
|
14
|
Reynaud Y, Millet J, Rastogi N. Genetic Structuration, Demography and Evolutionary History of Mycobacterium tuberculosis LAM9 Sublineage in the Americas as Two Distinct Subpopulations Revealed by Bayesian Analyses. PLoS One 2015; 10:e0140911. [PMID: 26517715 PMCID: PMC4627653 DOI: 10.1371/journal.pone.0140911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/01/2015] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB) remains broadly present in the Americas despite intense global efforts for its control and elimination. Starting from a large dataset comprising spoligotyping (n = 21183 isolates) and 12-loci MIRU-VNTRs data (n = 4022 isolates) from a total of 31 countries of the Americas (data extracted from the SITVIT2 database), this study aimed to get an overview of lineages circulating in the Americas. A total of 17119 (80.8%) strains belonged to the Euro-American lineage 4, among which the most predominant genotypic family belonged to the Latin American and Mediterranean (LAM) lineage (n = 6386, 30.1% of strains). By combining classical phylogenetic analyses and Bayesian approaches, this study revealed for the first time a clear genetic structuration of LAM9 sublineage into two subpopulations named LAM9C1 and LAM9C2, with distinct genetic characteristics. LAM9C1 was predominant in Chile, Colombia and USA, while LAM9C2 was predominant in Brazil, Dominican Republic, Guadeloupe and French Guiana. Globally, LAM9C2 was characterized by higher allelic richness as compared to LAM9C1 isolates. Moreover, LAM9C2 sublineage appeared to expand close to twenty times more than LAM9C1 and showed older traces of expansion. Interestingly, a significant proportion of LAM9C2 isolates presented typical signature of ancestral LAM-RDRio MIRU-VNTR type (224226153321). Further studies based on Whole Genome Sequencing of LAM strains will provide the needed resolution to decipher the biogeographical structure and evolutionary history of this successful family.
Collapse
Affiliation(s)
- Yann Reynaud
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
- * E-mail: (YR); (NR)
| | - Julie Millet
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
- * E-mail: (YR); (NR)
| |
Collapse
|
15
|
Whole genome sequencing identifies circulating Beijing-lineage Mycobacterium tuberculosis strains in Guatemala and an associated urban outbreak. Tuberculosis (Edinb) 2015; 95:810-816. [PMID: 26542222 PMCID: PMC4672993 DOI: 10.1016/j.tube.2015.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/22/2015] [Accepted: 09/05/2015] [Indexed: 12/15/2022]
Abstract
Limited data are available regarding the molecular epidemiology of Mycobacterium tuberculosis (Mtb) strains circulating in Guatemala. Beijing-lineage Mtb strains have gained prevalence worldwide and are associated with increased virulence and drug resistance, but there have been only a few cases reported in Central America. Here we report the first whole genome sequencing of Central American Beijing-lineage strains of Mtb. We find that multiple Beijing-lineage strains, derived from independent founding events, are currently circulating in Guatemala, but overall still represent a relatively small proportion of disease burden. Finally, we identify a specific Beijing-lineage outbreak centered on a poor neighborhood in Guatemala City.
Collapse
|