1
|
Osborn G, López-Abente J, Adams R, Laddach R, Grandits M, Bax HJ, Chauhan J, Pellizzari G, Nakamura M, Stavraka C, Chenoweth A, Palhares LCGF, Evan T, Lim JHC, Gross A, Moise L, Jatiani S, Figini M, Bianchini R, Jensen-Jarolim E, Ghosh S, Montes A, Sayasneh A, Kristeleit R, Tsoka S, Spicer J, Josephs DH, Karagiannis SN. Hyperinflammatory repolarisation of ovarian cancer patient macrophages by anti-tumour IgE antibody, MOv18, restricts an immunosuppressive macrophage:Treg cell interaction. Nat Commun 2025; 16:2903. [PMID: 40210642 PMCID: PMC11985905 DOI: 10.1038/s41467-025-57870-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/06/2025] [Indexed: 04/12/2025] Open
Abstract
Ovarian cancer is the most lethal gynaecological cancer and treatment options remain limited. In a recent first-in-class Phase I trial, the monoclonal IgE antibody MOv18, specific for the tumour-associated antigen Folate Receptor-α, was well-tolerated and preliminary anti-tumoural activity observed. Pre-clinical studies identified macrophages as mediators of tumour restriction and pro-inflammatory activation by IgE. However, the mechanisms of IgE-mediated modulation of macrophages and downstream tumour immunity in human cancer remain unclear. Here we study macrophages from patients with epithelial ovarian cancers naive to IgE therapy. High-dimensional flow cytometry and RNA-seq demonstrate immunosuppressive, FcεR-expressing macrophage phenotypes. Ex vivo co-cultures and RNA-seq interaction analyses reveal immunosuppressive associations between patient-derived macrophages and regulatory T (Treg) cells. MOv18 IgE-engaged patient-derived macrophages undergo pro-inflammatory repolarisation ex vivo and display induction of a hyperinflammatory, T cell-stimulatory subset. IgE reverses macrophage-promoted Treg cell induction to increase CD8+ T cell expansion, a signature associated with improved patient prognosis. On-treatment tumours from the MOv18 IgE Phase I trial show evidence of this IgE-driven immune signature, with increased CD68+ and CD3+ cell infiltration. We demonstrate that IgE induces hyperinflammatory repolarised states of patient-derived macrophages to inhibit Treg cell immunosuppression. These processes may collectively promote immune activation in ovarian cancer patients receiving IgE therapy.
Collapse
Affiliation(s)
- Gabriel Osborn
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Jacobo López-Abente
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Rebecca Adams
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Roman Laddach
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London, UK
| | - Melanie Grandits
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Heather J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Jitesh Chauhan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Giulia Pellizzari
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Mano Nakamura
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Chara Stavraka
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Alicia Chenoweth
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK
| | - Lais C G F Palhares
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Theodore Evan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | | | | | | | | | - Mariangela Figini
- ANP2, Department of Advanced Diagnostics, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Rodolfo Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
| | - Erika Jensen-Jarolim
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University Vienna, Vienna, Austria
| | - Sharmistha Ghosh
- Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Ana Montes
- Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Ahmad Sayasneh
- Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Rebecca Kristeleit
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
- Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London, UK
| | - James Spicer
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Debra H Josephs
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK.
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK.
| |
Collapse
|
2
|
Pennel KAF, Kurniawan A, Samir Foad Al-Badran S, Schubert Santana L, Quinn J, Nixon C, Hatthakarnkul P, Maka N, Roxburgh C, McMillan D, Edwards J. IL6 and IL6R as Prognostic Biomarkers in Colorectal Cancer. Biomolecules 2024; 14:1629. [PMID: 39766336 PMCID: PMC11727588 DOI: 10.3390/biom14121629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/15/2025] Open
Abstract
Colorectal cancer is the third most diagnosed malignancy worldwide and survival outcomes remain poor. Research is focused on the identification of novel prognostic and predictive biomarkers to improve clinical practice. There is robust evidence in the literature that inflammatory cytokine interleukin-6 (IL6) is elevated systemically in CRC patients and that this phenomenon is a predictor of poor survival outcome. However, evidence is more limited for the role of IL6 and its cognate receptor, IL6R, within the tumour epithelium and microenvironment. This study aimed to investigate IL6 and IL6R expression in a large cohort of retrospectively collected patient tumour specimens and determine association with clinical outcomes and characteristics. High expression of IL6R in the tumour epithelium was associated with reduced cancer-specific survival in patients with right-sided colon cancer. In these patients, high IL6R expression was also associated with an increased systemic neutrophil-to-lymphocyte ratio. A high number of copies of IL6 mRNA within the tumour-associated stroma, but not epithelium, was associated with reduced cancer-specific survival. The results from this study have validated IL6R as a marker of poor prognosis in a subgroup of CRC patients and identified the spatially resolved prognostic nature of intra-tumoural IL6 expression. This study has also highlighted the need for investigation of IL6/IL6R-targeted therapies as novel treatment strategies for patients with colon cancer.
Collapse
Affiliation(s)
- Kathryn A. F. Pennel
- School of Cancer Sciences, Wolfson Wohl Cancer Research Institute, University of Glasgow, Estate, Glasgow G61 1BD, UK (S.S.F.A.-B.); (L.S.S.)
| | - Ahmad Kurniawan
- School of Cancer Sciences, Wolfson Wohl Cancer Research Institute, University of Glasgow, Estate, Glasgow G61 1BD, UK (S.S.F.A.-B.); (L.S.S.)
| | - Sara Samir Foad Al-Badran
- School of Cancer Sciences, Wolfson Wohl Cancer Research Institute, University of Glasgow, Estate, Glasgow G61 1BD, UK (S.S.F.A.-B.); (L.S.S.)
| | - Leonor Schubert Santana
- School of Cancer Sciences, Wolfson Wohl Cancer Research Institute, University of Glasgow, Estate, Glasgow G61 1BD, UK (S.S.F.A.-B.); (L.S.S.)
| | - Jean Quinn
- School of Cancer Sciences, Wolfson Wohl Cancer Research Institute, University of Glasgow, Estate, Glasgow G61 1BD, UK (S.S.F.A.-B.); (L.S.S.)
| | - Colin Nixon
- Cancer Research UK Scotland Institute, Garscube Estate, Glasgow G61 1BD, UK;
| | - Phimmada Hatthakarnkul
- School of Cancer Sciences, Wolfson Wohl Cancer Research Institute, University of Glasgow, Estate, Glasgow G61 1BD, UK (S.S.F.A.-B.); (L.S.S.)
| | - Noori Maka
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Campbell Roxburgh
- School of Cancer Sciences, Wolfson Wohl Cancer Research Institute, University of Glasgow, Estate, Glasgow G61 1BD, UK (S.S.F.A.-B.); (L.S.S.)
- Academic Unit of Surgery, Glasgow Royal Infirmary, Glasgow G4 0SF, UK
| | - Donald McMillan
- School of Cancer Sciences, Wolfson Wohl Cancer Research Institute, University of Glasgow, Estate, Glasgow G61 1BD, UK (S.S.F.A.-B.); (L.S.S.)
- Academic Unit of Surgery, Glasgow Royal Infirmary, Glasgow G4 0SF, UK
| | - Joanne Edwards
- School of Cancer Sciences, Wolfson Wohl Cancer Research Institute, University of Glasgow, Estate, Glasgow G61 1BD, UK (S.S.F.A.-B.); (L.S.S.)
| |
Collapse
|
3
|
Amer H, Kampan NC, Itsiopoulos C, Flanagan KL, Scott CL, Kartikasari AER, Plebanski M. Interleukin-6 Modulation in Ovarian Cancer Necessitates a Targeted Strategy: From the Approved to Emerging Therapies. Cancers (Basel) 2024; 16:4187. [PMID: 39766086 PMCID: PMC11674514 DOI: 10.3390/cancers16244187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Despite significant advances in treatments, ovarian cancer (OC) remains one of the most prevalent and lethal gynecological cancers in women. The frequent detection at the advanced stages has contributed to low survival rates, resistance to various treatments, and disease recurrence. Thus, a more effective approach is warranted to combat OC. The cytokine Interleukin-6 (IL6) has been implicated in various stages of OC development. High IL6 levels are also correlated with a lower survival rate in OC patients. In this current review, we summarized the pivotal roles of IL6 in OC, including the initiation, development, invasion, metastasis, and drug resistance mechanisms. This article systematically highlights how targeting IL6 improves OC outcomes by altering various cancer processes and reports the ongoing clinical trials that would further shape the IL6-based targeted therapies. This review also suggests how combining IL6-targeted therapies with other therapeutic strategies could further enhance their efficacy to combat OC.
Collapse
Affiliation(s)
- Hina Amer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| | - Nirmala C. Kampan
- Department of Obstetrics and Gynecology, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Catherine Itsiopoulos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| | - Katie L. Flanagan
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
- School of Medicine and School of Health Sciences, University of Tasmania, Launceston, TAS 7250, Australia
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Clare L. Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Faculty of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Parkville, VIC 3052, Australia
- The Royal Women’s Hospital, Parkville, VIC 3052, Australia
| | - Apriliana E. R. Kartikasari
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| |
Collapse
|
4
|
Matuszewska J, Krawiec A, Radziemski A, Uruski P, Tykarski A, Mikuła-Pietrasik J, Książek K. Alterations of receptors and insulin-like growth factor binding proteins in senescent cells. Eur J Cell Biol 2024; 103:151438. [PMID: 38945074 DOI: 10.1016/j.ejcb.2024.151438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024] Open
Abstract
The knowledge about cellular senescence expands dynamically, providing more and more conclusive evidence of its triggers, mechanisms, and consequences. Senescence-associated secretory phenotype (SASP), one of the most important functional traits of senescent cells, is responsible for a large extent of their context-dependent activity. Both SASP's components and signaling pathways are well-defined. A literature review shows, however, that a relatively underinvestigated aspect of senescent cell autocrine and paracrine activity is the change in the production of proteins responsible for the reception and transmission of SASP signals, i.e., receptors and binding proteins. For this reason, we present in this article the current state of knowledge regarding senescence-associated changes in cellular receptors and insulin-like growth factor binding proteins. We also discuss the role of these alterations in senescence induction and maintenance, pro-cancerogenic effects of senescent cells, and aging-related structural and functional malfunctions.
Collapse
Affiliation(s)
- Julia Matuszewska
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Adrianna Krawiec
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Artur Radziemski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Paweł Uruski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Andrzej Tykarski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Justyna Mikuła-Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Krzysztof Książek
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland.
| |
Collapse
|
5
|
Boidin L, Moinard M, Moussaron A, Merlier M, Moralès O, Grolez GP, Baydoun M, Mohd-Gazzali A, Tazizi MHDM, Allah HHA, Kerbage Y, Arnoux P, Acherar S, Frochot C, Delhem N. Targeted Photodynamic Therapy using a Vectorized Photosensitizer coupled to Folic Acid Analog induces Ovarian Tumor Cell Death and inhibits IL-6-mediated Inflammation. J Control Release 2024; 371:351-370. [PMID: 38789088 DOI: 10.1016/j.jconrel.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Ovarian cancer (OC) is one of the most lethal cancers among women. Frequent recurrence in the peritoneum due to the presence of microscopic tumor residues justifies the development of new therapies. Indeed, our main objective is to develop a targeted photodynamic therapy (PDT) treatment of peritoneal carcinomatosis from OC to improve the life expectancy of cancer patients. Herein, we propose a targeted-PDT using a vectorized photosensitizer (PS) coupled with a newly folic acid analog (FAA), named PSFAA, in order to target folate receptor alpha (FRα) overexpressed on peritoneal metastasis. This PSFAA was the result of the coupling of pyropheophorbide-a (Pyro-a), as the PS, to a newly synthesized FAA via a polyethylene glycol (PEG) spacer. The selectivity and the PDT efficacy of PSFAA was evaluated on two human OC cell lines overexpressing FRα compared to fibrosarcoma cells underexpressing FRα. Final PSFAA, including the synthesis of a newly FAA and its conjugation to Pyro-a, was obtained after 10 synthesis steps, with an overall yield of 19%. Photophysical properties of PSFAA in EtOH were performed and showed similarity with those of free Pyro-a, such as the fluorescence and singlet oxygen quantum yields (Φf = 0.39 and ΦΔ = 0.53 for free Pyro-a, and Φf = 0.26 and ΦΔ = 0.41 for PSFAA). Any toxicity of PSFAA was noticed. After light illumination, a dose-dependent effect on PS concentration and light dose was shown. Furthermore, a PDT efficacy of PSFAA on OC cell secretome was detected inducing a decrease of a pro-inflammatory cytokine secretion (IL-6). This new PSFAA has shown promising biological properties highlighting the selectivity of the therapy opening new perspectives in the treatment of a cancer in a therapeutic impasse.
Collapse
Affiliation(s)
- Léa Boidin
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, Lille F-59000, France
| | - Morgane Moinard
- Univ. Lorraine, CNRS, UMR7274 - LRGP- Laboratoire des Réactions et Génie des Procédés, Nancy F-54000, France
| | - Albert Moussaron
- Univ. Lorraine, CNRS, UMR7274 - LRGP- Laboratoire des Réactions et Génie des Procédés, Nancy F-54000, France; Univ. Lorraine, CNRS, UMR7375 - LCPM - Laboratoire de Chimie-Physique Macromoléculaire, Nancy F-54000, France
| | - Margaux Merlier
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, Lille F-59000, France
| | - Olivier Moralès
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, Lille F-59000, France; Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
| | - Guillaume Paul Grolez
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, Lille F-59000, France
| | - Martha Baydoun
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, Lille F-59000, France
| | - Amirah Mohd-Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Hassan Hadi Abd Allah
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Yohan Kerbage
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, Lille F-59000, France
| | - Philippe Arnoux
- Univ. Lorraine, CNRS, UMR7274 - LRGP- Laboratoire des Réactions et Génie des Procédés, Nancy F-54000, France
| | - Samir Acherar
- Univ. Lorraine, CNRS, UMR7375 - LCPM - Laboratoire de Chimie-Physique Macromoléculaire, Nancy F-54000, France.
| | - Céline Frochot
- Univ. Lorraine, CNRS, UMR7274 - LRGP- Laboratoire des Réactions et Génie des Procédés, Nancy F-54000, France.
| | - Nadira Delhem
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, Lille F-59000, France.
| |
Collapse
|
6
|
Rodman EPB, Emch MJ, Hou X, Bajaj A, Pearson NA, John AJ, Ortiz Y, Bass AD, Singh S, Baldassarre G, Kaufmann SH, Weroha SJ, Hawse JR. Lestaurtinib's antineoplastic activity converges on JAK/STAT signaling to inhibit advanced forms of therapy resistant ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597753. [PMID: 38895264 PMCID: PMC11185641 DOI: 10.1101/2024.06.06.597753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Ovarian cancer is the deadliest gynecological malignancy, owing to its late-stage diagnosis and high rates of recurrence and resistance following standard-of-care treatment, highlighting the need for novel treatment approaches. Through an unbiased drug screen, we identified the kinase inhibitor, lestaurtinib, as a potent antineoplastic agent for chemotherapy- and PARP-inhibitor (PARPi)-sensitive and -resistant ovarian cancer cells and patient derived xenografts (PDXs). RNA-sequencing revealed that lestaurtinib potently suppressed JAK/STAT signaling and lestaurtinib efficacy was shown to be directly related to JAK/STAT pathway activity in cell lines and PDX models. Most ovarian cancer cells exhibited constitutive JAK/STAT pathway activation and genetic loss of STAT1 and STAT3 resulted in growth inhibition. Lestaurtinib also displayed synergy when combined with cisplatin and olaparib, including in a model of PARPi resistance. In contrast, the most well-known JAK/STAT inhibitor, ruxolitinib, lacked antineoplastic activity against all ovarian cancer cell lines and PDX models tested. This divergent behavior was reflected in the ability of lestaurtinib to block both Y701/705 and S727 phosphorylation of STAT1 and STAT3, whereas ruxolitinib failed to block S727. Consistent with these findings, lestaurtinib additionally inhibited JNK and ERK activity, leading to more complete suppression of STAT phosphorylation. Concordantly, combinatorial treatment with ruxolitinib and a JNK or ERK inhibitor resulted in synergistic antineoplastic effects at dose levels where single agents were ineffective. Taken together, these findings indicate that lestaurtinib, and other treatments that converge on JAK/STAT signaling, are worthy of further pre-clinical and clinical exploration for the treatment of highly aggressive and advanced forms of ovarian cancer. Statement of significance Lestaurtinib is a novel inhibitor of ovarian cancer, including chemotherapy- and PARPi-resistant models, that acts through robust inhibition of the JAK/STAT pathway and synergizes with standard-of-care agents at clinically relevant concentrations.
Collapse
|
7
|
Dadgar N, Sherry C, Zimmerman J, Park H, Lewis C, Donnenberg A, Zaidi AH, Fan Y, Xiao K, Bartlett D, Donnenberg V, Wagner PL. Targeting interleukin-6 as a treatment approach for peritoneal carcinomatosis. J Transl Med 2024; 22:402. [PMID: 38689325 PMCID: PMC11061933 DOI: 10.1186/s12967-024-05205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Peritoneal carcinomatosis (PC) is a complex manifestation of abdominal cancers, with a poor prognosis and limited treatment options. Recent work identifying high concentrations of the cytokine interleukin-6 (IL-6) and its soluble receptor (sIL-6-Rα) in the peritoneal cavity of patients with PC has highlighted this pathway as an emerging potential therapeutic target. This review article provides a comprehensive overview of the current understanding of the potential role of IL-6 in the development and progression of PC. We discuss mechansims by which the IL-6 pathway may contribute to peritoneal tumor dissemination, mesothelial adhesion and invasion, stromal invasion and proliferation, and immune response modulation. Finally, we review the prospects for targeting the IL-6 pathway in the treatment of PC, focusing on common sites of origin, including ovarian, gastric, pancreatic, colorectal and appendiceal cancer, and mesothelioma.
Collapse
Affiliation(s)
- Neda Dadgar
- Translational Hematology & Oncology Research, Enterprise Cancer Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Christopher Sherry
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Jenna Zimmerman
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Hyun Park
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Catherine Lewis
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Albert Donnenberg
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Ali H Zaidi
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Yong Fan
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Kunhong Xiao
- Center for Proteomics & Artificial Intelligence, Center for Clinical Mass Spectrometry, Allegheny Health Network Cancer Institute, Pittsburgh, PA, 15224, USA
| | - David Bartlett
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Vera Donnenberg
- University of Pittsburgh School of MedicineDepartment of Cardiothoracic SurgeryUPMC Hillman Cancer Center Wagner, Patrick; Allegheny Health Network Cancer Institute, Pittsburgh, USA
| | - Patrick L Wagner
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA.
| |
Collapse
|
8
|
Calmon MS, Lemos FFB, Silva Luz M, Rocha Pinheiro SL, de Oliveira Silva LG, Correa Santos GL, Rocha GR, Freire de Melo F. Immune pathway through endometriosis to ovarian cancer. World J Clin Oncol 2024; 15:496-522. [PMID: 38689629 PMCID: PMC11056862 DOI: 10.5306/wjco.v15.i4.496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 04/22/2024] Open
Abstract
Endometriosis is an estrogen-dependent inflammatory disease, defined by the presence of functional endometrial tissue outside of the uterine cavity. This disease is one of the main gynecological diseases, affecting around 10%-15% women and girls of reproductive age, being a common gynecologic disorder. Although endometriosis is a benign disease, it shares several characteristics with invasive cancer. Studies support that it has been linked with an increased chance of developing endometrial ovarian cancer, representing an earlier stage of neoplastic processes. This is particularly true for women with clear cell carcinoma, low-grade serous carcinoma and endometrioid. However, the carcinogenic pathways between both pathologies remain poorly understood. Current studies suggest a connection between endometriosis and endometriosis-associated ovarian cancers (EAOCs) via pathways associated with oxidative stress, inflammation, and hyperestrogenism. This article aims to review current data on the molecular events linked to the development of EAOCs from endometriosis, specifically focusing on the complex relationship between the immune response to endometriosis and cancer, including the molecular mechanisms and their ramifications. Examining recent developments in immunotherapy and their potential to boost the effectiveness of future treatments.
Collapse
Affiliation(s)
- Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Gabriel Lima Correa Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Gabriel Reis Rocha
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
9
|
Lutgendorf SK, Telles RM, Whitney B, Thaker PH, Slavich GM, Goodheart MJ, Penedo FJ, Noble AE, Cole SW, Sood AK, Corn BW. The biology of hope: Inflammatory and neuroendocrine profiles in ovarian cancer patients. Brain Behav Immun 2024; 116:362-369. [PMID: 38081436 PMCID: PMC11219272 DOI: 10.1016/j.bbi.2023.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 01/01/2024] Open
Abstract
INTRODUCTION Although the concept of hope is highly relevant for cancer patients, little is known about its association with cancer-relevant biomarkers. Here we examined how hope was related to diurnal cortisol and interleukin-6 (IL-6), a pro-inflammatory cytokine previously associated with tumor biology and survival in ovarian cancer. Secondly, we examined whether hope and hopelessness are distinctly associated with these biomarkers. METHOD Participants were 292 high-grade ovarian cancer patients who completed surveys and provided saliva samples 4x/daily for 3 days pre-surgery to assess diurnal cortisol. Blood (pre-surgery) and ascites were assessed for IL-6. Hope and hopelessness were assessed using standardized survey items from established scales (Center for Epidemiological Studies Depression Scale; Profile of Mood States, Functional Assessment of Cancer Therapy). Two hopeless items were z-scored and combined into a composite for analysis. Regression models related these variables to nocturnal cortisol, cortisol slope, plasma and ascites IL-6, adjusting for cancer stage, BMI, age, and depression. RESULTS Greater hope was significantly related to a steeper cortisol slope, β = -0.193, p = 0.046, and lower night cortisol, β = -0.227, p = 0.018, plasma IL-6, β = -0.142, p = 0.033, and ascites IL-6, β = -0.290, p = 0.002. Secondary analyses including both hope and hopelessness showed similar patterns, with distinct relationships of hope with significantly lower nocturnal cortisol β = -0.233,p = 0.017 and ascites IL-6, β = -0.282,p = 0.003, and between hopelessness and a flatter cortisol slope, β = 0.211, p = 0.031. CONCLUSIONS These data suggest a biological signature of hope associated with less inflammation and more normalized diurnal cortisol in ovarian cancer. These findings have potential clinical utility but need replication with more diverse samples and validated assessments of hope.
Collapse
Affiliation(s)
- Susan K Lutgendorf
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA, United States; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States; Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA, United States.
| | - Rachel M Telles
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA, United States
| | - Brendan Whitney
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA, United States
| | - Premal H Thaker
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States
| | - George M Slavich
- Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, CA, United States; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, United States
| | - Michael J Goodheart
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States; Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA, United States
| | - Frank J Penedo
- Departments of Psychology and Medicine and Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - Alyssa E Noble
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA, United States
| | - Steven W Cole
- Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, CA, United States; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, United States; Division of Hematology/Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Anil K Sood
- Departments of Gynecologic Oncology, Cancer Biology and Center for RNA Interference and Noncoding RNA, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Benjamin W Corn
- Shaare Zedek Medical Center, Jerusalem, Israel; Hebrew University Faculty of Medicine, Jerusalem, Israel
| |
Collapse
|
10
|
Ostrowska-Lesko M, Rajtak A, Moreno-Bueno G, Bobinski M. Scientific and clinical relevance of non-cellular tumor microenvironment components in ovarian cancer chemotherapy resistance. Biochim Biophys Acta Rev Cancer 2024; 1879:189036. [PMID: 38042260 DOI: 10.1016/j.bbcan.2023.189036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
The tumor microenvironment (TME) components play a crucial role in cancer cells' resistance to chemotherapeutic agents. This phenomenon is exceptionally fundamental in patients with ovarian cancer (OvCa), whose outcome depends mainly on their response to chemotherapy. Until now, most reports have focused on the role of cellular components of the TME, while less attention has been paid to the stroma and other non-cellular elements of the TME, which may play an essential role in the therapy resistance. Inhibiting these components could help define new therapeutic targets and potentially restore chemosensitivity. The aim of the present article is both to summarize the knowledge about non-cellular components of the TME in the development of OvCa chemoresistance and to suggest targeting of non-cellular elements of the TME as a valuable strategy to overcome chemoresistance and to develop new therapeutic strategies in OvCA patients.
Collapse
Affiliation(s)
- Marta Ostrowska-Lesko
- Chair and Department of Toxicology, Medical University of Lublin, 8b Jaczewskiego Street, 20-090 Lublin, Poland.
| | - Alicja Rajtak
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Poland
| | - Gema Moreno-Bueno
- Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Sols-Morreale' (IIBm-CISC), Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Spain; Fundación MD Anderson Internacional (FMDA), Spain.
| | - Marcin Bobinski
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Poland.
| |
Collapse
|
11
|
Blanc-Durand F, Clemence Wei Xian L, Tan DSP. Targeting the immune microenvironment for ovarian cancer therapy. Front Immunol 2023; 14:1328651. [PMID: 38164130 PMCID: PMC10757966 DOI: 10.3389/fimmu.2023.1328651] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
Ovarian cancer (OC) is an aggressive malignancy characterized by a complex immunosuppressive tumor microenvironment (TME). Immune checkpoint inhibitors have emerged as a breakthrough in cancer therapy by reactivating the antitumor immune response suppressed by tumor cells. However, in the case of OC, these inhibitors have failed to demonstrate significant improvements in patient outcomes, and existing biomarkers have not yet identified promising subgroups. Consequently, there remains a pressing need to understand the interplay between OC tumor cells and their surrounding microenvironment to develop effective immunotherapeutic approaches. This review aims to provide an overview of the OC TME and explore its potential as a therapeutic strategy. Tumor-infiltrating lymphocytes (TILs) are major actors in OC TME. Evidence has been accumulating regarding the spontaneous TILS response against OC antigens. Activated T-helpers secrete a wide range of inflammatory cytokines with a supportive action on cytotoxic T-cells. Simultaneously, mature B-cells are recruited and play a significant antitumor role through opsonization of target antigens and T-cell recruitment. Macrophages also form an important subset of innate immunity (M1-macrophages) while participating in the immune-stimulation context. Finally, OC has shown to engage a significant natural-killer-cells immune response, exerting direct cytotoxicity without prior sensitization. Despite this initial cytotoxicity, OC cells develop various strategies to induce an immune-tolerant state. To this end, multiple immunosuppressive molecules are secreted to impair cytotoxic cells, recruit regulatory cells, alter antigen presentation, and effectively evade immune response. Consequently, OC TME is predominantly infiltrated by immunosuppressive cells such as FOXP3+ regulatory T-cells, M2-polarized macrophages and myeloid-derived suppressor cells. Despite this strong immunosuppressive state, PD-1/PD-L1 inhibitors have failed to improve outcomes. Beyond PD-1/PD-L1, OC expresses multiple other immune checkpoints that contribute to immune evasion, and each representing potential immune targets. Novel immunotherapies are attempting to overcome the immunosuppressive state and induce specific immune responses using antibodies adoptive cell therapy or vaccines. Overall, the OC TME presents both opportunities and obstacles. Immunotherapeutic approaches continue to show promise, and next-generation inhibitors offer exciting opportunities. However, tailoring therapies to individual immune characteristics will be critical for the success of these treatments.
Collapse
Affiliation(s)
- Felix Blanc-Durand
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine and Cancer Science Institute (CSI), National University of Singapore (NUS), Singapore, Singapore
| | - Lai Clemence Wei Xian
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine and Cancer Science Institute (CSI), National University of Singapore (NUS), Singapore, Singapore
| | - David S. P. Tan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University Centre for Cancer Research (N2CR) and Cancer Science Institute (CSI), National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Sharrow AC, Ho M, Dua A, Buj R, Blenman KRM, Orsulic S, Buckanovich R, Aird KM, Wu L. Tumor-Associated Macrophages Expand Chemoresistant, Ovarian Cancer Stem-Like Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549067. [PMID: 37503008 PMCID: PMC10370114 DOI: 10.1101/2023.07.17.549067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The persistence of ovarian cancer stem-like cells (OvCSCs) after chemotherapy resistance has been implicated in relapse. However, the ability of these relatively quiescent cells to produce the robust tumor regrowth necessary for relapse remains an enigma. Since normal stem cells exist in a niche, and tumor-associated macrophages (TAMs) are the highest abundance immune cell within ovarian tumors, we hypothesized that TAMs may influence OvCSC proliferation. To test this, we optimized OvCSC enrichment by sphere culture and in vitro polarization of monocytes to a TAM-like M2 phenotype. Using cocultures that permitted the exchange of only soluble factors, we found that M2 macrophages increased the proliferation of sphere cells. Longer-term exposure (5-7 days) to soluble TAM factors led to retention of some stem cell features by OvCSCs but loss of others, suggesting that TAMs may support an intermediate stemness phenotype in OvCSCs. Although TAM coculture decreased the percentage of OvCSCs surviving chemotherapy, it increased the overall number. We therefore sought to determine the influence of this interaction on chemotherapy efficacy in vivo and found that inhibiting macrophages improved chemotherapy response. Comparing the gene expression changes in OvCSCs cocultured with TAMs to publicly available patient data identified 34 genes upregulated in OvCSCs by exposure to soluble TAM factors whose expression correlates with outcome. Overall, these data suggest that TAMs may influence OvCSC proliferation and impact therapeutic response.
Collapse
|
13
|
Chia CS, Li Y, Ceelen W, Ong CAJ. Editorial: Translational research in the diagnosis and development of therapeutics for peritoneal surface malignancies. Front Oncol 2023; 13:1232993. [PMID: 37496663 PMCID: PMC10366001 DOI: 10.3389/fonc.2023.1232993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Affiliation(s)
- Claramae Shulyn Chia
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Yan Li
- Department of Peritoneal Cancer Surgery and Pathology, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Wim Ceelen
- Department of Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium
| | - Chin-Ann Johnny Ong
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, ASTAR Research Entities, Singapore, Singapore
| |
Collapse
|
14
|
Song J, Sokoll LJ, Zhang Z, Chan DW. VCAM-1 complements CA-125 in detecting recurrent ovarian cancer. Clin Proteomics 2023; 20:25. [PMID: 37357306 PMCID: PMC10291808 DOI: 10.1186/s12014-023-09414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/13/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Close to three-quarters of ovarian cancer cases are frequently diagnosed at an advanced stage, with more than 70% of them failing to respond to primary therapy and relapsing within 5 years. There is an urgent need to identify strategies for early detection of ovarian cancer recurrence, which may lead to earlier intervention and better outcomes. METHODS A customized magnetic bead-based 8-plex immunoassay was evaluated using a Bio-Plex 200 Suspension Array System. Target protein levels were analyzed in sera from 58 patients diagnosed with advanced ovarian cancer (including 34 primary and 24 recurrent tumors) and 46 healthy controls. The clinical performance of these biomarkers was evaluated individually and in combination for their ability to detect recurrent ovarian cancer. RESULTS An 8-plex immunoassay was evaluated with high analytical performance suitable for biomarker validation studies. Logistic regression modeling selected a two-marker panel of CA-125 and VCAM-1 that improved the performance of CA-125 alone in detecting recurrent ovarian cancer (AUC: 0.813 versus 0.700). At a fixed specificity of 83%, the two-marker panel significantly improved sensitivity in separating primary from recurrent tumors (70.8% versus 37.5%, P = 0.004), demonstrating that VCAM-1 was significantly complementary to CA-125 in detecting recurrent ovarian cancer. CONCLUSIONS A two-marker panel of CA-125 and VCAM-1 showed strong diagnostic performance and improvement over the use of CA-125 alone in detecting recurrent ovarian cancer. The experimental results warrant further clinical validation to determine their role in the early detection of recurrent ovarian cancer.
Collapse
Affiliation(s)
- Jin Song
- Center for Biomarker Discovery and Translation, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Pathology, Johns Hopkins University School of Medicine, 419 North Caroline Street, Baltimore, MD, 21231, USA.
| | - Lori J Sokoll
- Center for Biomarker Discovery and Translation, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Zhen Zhang
- Center for Biomarker Discovery and Translation, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Daniel W Chan
- Center for Biomarker Discovery and Translation, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| |
Collapse
|
15
|
Bhardwaj V, Zhang X, Pandey V, Garg M. Neo-vascularization-based therapeutic perspectives in advanced ovarian cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188888. [PMID: 37001618 DOI: 10.1016/j.bbcan.2023.188888] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023]
Abstract
The process of angiogenesis is well described for its potential role in the development of normal ovaries, and physiological functions as well as in the initiation, progression, and metastasis of ovarian cancer (OC). In advanced stages of OC, cancer cells spread outside the ovary to the pelvic, abdomen, lung, or multiple secondary sites. This seriously limits the efficacy of therapeutic options contributing to fatal clinical outcomes. Notably, a variety of angiogenic effectors are produced by the tumor cells to initiate angiogenic processes leading to the development of new blood vessels, which provide essential resources for tumor survival, dissemination, and dormant micro-metastasis of tumor cells. Multiple proangiogenic effectors and their signaling axis have been discovered and functionally characterized for potential clinical utility in OC. In this review, we have provided the current updates on classical and emerging proangiogenic effectors, their signaling axis, and the immune microenvironment contributing to the pathogenesis of OC. Moreover, we have comprehensively reviewed and discussed the significance of the preclinical strategies, drug repurposing, and clinical trials targeting the angiogenic processes that hold promising perspectives for the better management of patients with OC.
Collapse
Affiliation(s)
- Vipul Bhardwaj
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute of Biopharmaceutical and Bioengineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, PR China
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute of Biopharmaceutical and Bioengineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Sector-125, Noida 201301, India.
| |
Collapse
|
16
|
Gurunathan S, Kim JH. Graphene Oxide Enhances Biogenesis and Release of Exosomes in Human Ovarian Cancer Cells. Int J Nanomedicine 2022; 17:5697-5731. [PMID: 36466784 PMCID: PMC9717435 DOI: 10.2147/ijn.s385113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/04/2022] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Exosomes, which are nanovesicles secreted by almost all the cells, mediate intercellular communication and are involved in various physiological and pathological processes. We aimed to investigate the effects of graphene oxide (GO) on the biogenesis and release of exosomes in human ovarian cancer (SKOV3) cells. METHODS Exosomes were isolated using ultracentrifugation and ExoQuick and characterized by various analytical techniques. The expression levels of exosome markers were analyzed via quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS Graphene oxide (10-50 μg/mL), cisplatin (2-10 μg/mL), and C6-ceramide (5-25 μM) inhibited the cell viability, proliferation, and cytotoxicity in a dose-dependent manner. We observed that graphene oxide (GO), cisplatin (CIS), and C6-Ceramide (C6-Cer) stimulated acetylcholine esterase and neutral sphingomyelinase activity, total exosome protein concentration, and exosome counts associated with increased level of apoptosis, oxidative stress and endoplasmic reticulum stress. In contrast, GW4869 treatment inhibits biogenesis and release of exosomes. We observed that the human ovarian cancer cells secreted exosomes with typical cup-shaped morphology and surface protein biomarkers. The expression levels of TSG101, CD9, CD63, and CD81 were significantly higher in GO-treated cells than in control cells. Further, cytokine and chemokine levels were significantly higher in exosomes isolated from GO-treated SKOV3 cells than in those isolated from control cells. SKOV3 cells pre-treated with N-acetylcysteine or GW4869 displayed a significant reduction in GO-induced exosome biogenesis and release. Furthermore, endocytic inhibitors decrease exosome biogenesis and release by impairing endocytic pathways. CONCLUSION This study identifies GO as a potential tool for targeting the exosome pathway and stimulating exosome biogenesis and release. We believe that the knowledge acquired in this study can be potentially extended to other exosome-dominated pathologies and model systems. Furthermore, these nanoparticles can provide a promising means to enhance exosome production in SKOV3 cells.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Jin Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| |
Collapse
|
17
|
Kumar N, Vyas A, Agnihotri SK, Chattopadhyay N, Sachdev M. Small secretory proteins of immune cells can modulate gynecological cancers. Semin Cancer Biol 2022; 86:513-531. [PMID: 35150864 DOI: 10.1016/j.semcancer.2022.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 01/27/2023]
Abstract
Small secretory proteins of immune cells are mostly Cytokines, which include chemokines, interleukins, interferons, lymphokines and tumor necrosis factors but not hormones or growth factors. These secretory proteins are the molecular messengers and primarily involved in autocrine, paracrine and endocrine signaling as immunomodulating agents. Hence, these proteins actually regulate the cells of immune system to communicate with one another to produce a synchronized, robust, still self-regulated response to a specific antigen. Chemokines are smaller secreted proteins that control overall immune cell movement and location; these chemokines are divided into 4 subgroups, namely, CXC, CC, CX3C and C according to the position of 4 conserved cysteine residues. Complete characterization of cytokines and chemokines can exploit their vast signaling networks to develop cancer treatments. These secretory proteins like IL-6, IL-10, IL-12, TNFα, CCL2, CXCL4 & CXCL8 are predominantly expressed in most of the gynecological cancers, which directly stimulate immune effector cells and stromal cells at the tumor site and augment tumor cell recognition by cytotoxic T-cells. Hence; these secretory proteins are the major regulators, which can actually modulate all kinds of gynecological cancers. Furthermore, advancements in adoptive T-cell treatment have relied on the use of multiple cytokines/chemokines to establish a highly regulated environment for anti-tumor T cell growth. A number of in vitro studies as well as animal models and clinical subjects have also shown that cytokines/chemokines have broad antitumor activity, which has been translated into a number of cancer therapy approaches. This review will focus on the foremost cytokines & chemokines involved in the majority of the gynecological malignancies and discuss their basic biology as well as clinical applications.
Collapse
Affiliation(s)
- Niranjan Kumar
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India
| | - Akanksha Vyas
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India
| | | | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India.
| | - Monika Sachdev
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India.
| |
Collapse
|
18
|
Zhang Y, Ouyang D, Chen YH, Xia H. Peritoneal resident macrophages in tumor metastasis and immunotherapy. Front Cell Dev Biol 2022; 10:948952. [PMID: 36035994 PMCID: PMC9402905 DOI: 10.3389/fcell.2022.948952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Macrophages residing in various tissues play crucial roles in innate immunity, tissue repair, and immune homeostasis. The development and differentiation of macrophages in non-lymphoid tissues are highly regulated by the tissue microenvironment. Peritoneum provides a unique metastatic niche for certain types of tumor cells. As the dominant immune cell type in peritoneal cavity, macrophages control the immune response to tumor and influence the efficacy of anti-tumor therapy. Considering the heterogeneity of macrophages in origin, metabolism, and function, it is always challenging to define the precise roles of macrophages in tumor microenvironment. We review here recent progresses in peritoneal resident macrophage research in the context of physiological and metastatic tumor conditions, which may benefit the development of new anti-tumor therapies through targeting macrophages.
Collapse
Affiliation(s)
- Yu Zhang
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dongyun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Youhai H. Chen
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Houjun Xia
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Houjun Xia,
| |
Collapse
|
19
|
Srivastava S, Rasool M. Underpinning IL-6 biology and emphasizing selective JAK blockade as the potential alternate therapeutic intervention for rheumatoid arthritis. Life Sci 2022; 298:120516. [DOI: 10.1016/j.lfs.2022.120516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
|
20
|
Resveratrol Contrasts IL-6 Pro-Growth Effects and Promotes Autophagy-Mediated Cancer Cell Dormancy in 3D Ovarian Cancer: Role of miR-1305 and of Its Target ARH-I. Cancers (Basel) 2022; 14:cancers14092142. [PMID: 35565270 PMCID: PMC9101105 DOI: 10.3390/cancers14092142] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 01/18/2023] Open
Abstract
Tumor dormancy is the extended period during which patients are asymptomatic before recurrence, and it represents a difficult phenomenon to target pharmacologically. The relapse of tumors, for instance arising from the interruption of dormant metastases, is frequently observed in ovarian cancer patients and determines poor survival. Inflammatory cytokines present in the tumor microenvironment likely contribute to such events. Cancer cell dormancy and autophagy are interconnected at the molecular level through ARH-I (DIRAS3) and BECLIN-1, two tumor suppressors often dysregulated in ovarian cancers. IL-6 disrupts autophagy in ovarian cancer cells via miRNAs downregulation of ARH-I, an effect contrasted by the nutraceutical protein restriction mimetic resveratrol (RV). By using three ovarian cancer cell lines with different genetic background in 2D and 3D models, the latter mimicking the growth of peritoneal metastases, we show that RV keeps the cancer cells in a dormant-like quiescent state contrasting the IL-6 growth-promoting activity. Mechanistically, this effect is mediated by BECLIN-1-dependent autophagy and relies on the availability of ARH-I. We also show that ARH-I (DIRAS3) is a bona fide target of miR-1305, a novel oncomiRNA upregulated by IL-6 and downregulated by RV. Clinically relevant, bioinformatic analysis of a transcriptomic database showed that the high expression of DIRAS3 and MAP1LC3B mRNAs together with that of CDKN1A, directing a cellular dormant phenotype, predicts better overall survival in ovarian cancer patients, and this correlates with MIR1305 downregulation. The possibility of maintaining a permanent cell dormancy in ovarian cancer by the chronic administration of RV should be considered as a therapeutic option to prevent the "awakening" of cancer cells in response to a permissive microenvironment, thus limiting the risk of tumor relapse and metastasis.
Collapse
|
21
|
Zhang R, Roque DM, Reader J, Lin J. Combined inhibition of IL‑6 and IL‑8 pathways suppresses ovarian cancer cell viability and migration and tumor growth. Int J Oncol 2022; 60:50. [PMID: 35315502 PMCID: PMC8973967 DOI: 10.3892/ijo.2022.5340] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/13/2021] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological cancer type in the United States. The success of current chemotherapies is limited by chemoresistance and side effects. Targeted therapy is a promising future direction for cancer therapy. In the present study, the efficacy of co‑targeting IL‑6 and IL‑8 in human ovarian cancer cells by bazedoxifene (Baze) + SCH527123 (SCH) treatment was examined. ELISA, cell viability, cell proliferation, cell migration, cell invasion, western blotting and peritoneal ovarian tumor mouse model analyses were performed to analyze the expression levels of IL‑6 and IL‑8, tumor growth, tumor migration and invasion, and the possible pathways of human ovarian cancer cell lines (SKOV3, CAOV3 and OVCAR3) and patient‑derived OV75 ovarian cancer cells. Each cell line was treated by monotherapy or combination therapy. The results demonstrated that IL‑6 and IL‑8 were secreted by human ovarian cancer cell lines. Compared with the DMSO control, the combination of IL‑6/glycoprotein 130 inhibitor Baze and IL‑8 inhibitor SCH synergistically inhibited cell viability in ovarian cancer cells. Baze + SCH also inhibited cell migration and invasion, suppressed ovarian tumor growth and inhibited STAT3 and AKT phosphorylation, as well as survivin expression. Therefore, co‑targeting the IL‑6 and IL‑8 signaling pathways may be an effective approach for ovarian cancer treatment.
Collapse
Affiliation(s)
- Ruijie Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Dana M Roque
- Division of Gynecologic Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jocelyn Reader
- Division of Gynecologic Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
22
|
Almolakab ZM, El-Nesr KA, Mohamad Hassanin EH, Elkaffas R, Nabil A. Gene polymorphisms of Interleukin 6 (−174 G/C) and transforming growth factor β-1(+915 G/C) in ovarian cancer patients. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
In the study on hand, we investigated the effect of IL-6 (−174 G/C; rs 1800795) and TGF-β1 (+915G/C; rs 1800471) gene polymorphisms on the susceptibility to Ovarian Cancer and their effect on plasma levels. IL-6 (−174 G/C) SNP was analyzed using mutagenically separated polymerase chain reaction (MS-PCR) while TGF-β1 +915G/C (codon 25) SNP was investigated by the sequence-specific primer polymerase chain reaction (SSP-PCR). An enzyme-linked immunosorbent assay (ELISA) was used to quantify IL-6 and TGF-β1 plasma levels in 48 ovarian cancer patients and 48 normal controls.
Results
Regarding IL 6 (−174 G/C), a significant increase in CC and GC+CC genotypes parallel with the C allele was considered as risk factors for ovarian cancer; on the other hand, the G allele was considered as a protective factor for ovarian cancer. TGF-β1 (+915G/C) investigations showed a significant elevation in GC and GC+CC genotypes which can be considered as a risk factor for ovarian cancer. Plasma IL-6 and TGF-β1 were higher in ovarian cancer patients compared with controls. No specific genotype or allele could be responsible for the elevation of TGF-β1 in ovarian cancer patients’ plasma, while the highest significant value for IL6 in subjects carrying GG and CC genotypes in comparison with GC genotype.
Conclusions
This study supports an association of IL6 (−174G/C) and TGF-β1 (+915G/C) gene polymorphisms with the susceptibility to ovarian cancer.
Collapse
|
23
|
MiR-520h inhibits viability and facilitates apoptosis of KGN cells through modulating IL6R and the JAK/STAT pathway. Reprod Biol 2022; 22:100607. [DOI: 10.1016/j.repbio.2022.100607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/22/2022]
|
24
|
Lee HS, Lee IH, Kang K, Park SI, Jung M, Yang SG, Kwon TW, Lee DY. A Network Pharmacology Study to Uncover the Mechanism of FDY003 for Ovarian Cancer Treatment. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221075432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological tumors responsible for 0.21 million deaths per year worldwide. Despite the increasing interest in the use of herbal drugs for cancer treatment, their pharmacological effects in OC treatment are not understood from a systems perspective. Using network pharmacology, we determined the anti-OC potential of FDY003 from a comprehensive systems view. We observed that FDY003 suppressed the viability of human OC cells and further chemosensitized them to cytotoxic chemotherapy. Through network pharmacological and pharmacokinetic approaches, we identified 16 active ingredients in FDY003 and their 108 targets associated with OC mechanisms. Functional enrichment investigation revealed that the targets may coordinate diverse cellular behaviors of OC cells, including their growth, proliferation, survival, death, and cell cycle regulation. Furthermore, the FDY003 targets are important constituents of diverse signaling pathways implicated in OC mechanisms (eg, phosphoinositide 3-kinase [PI3K]-Akt, mitogen-activated protein kinase [MAPK], focal adhesion, hypoxia-inducible factor [HIF]-1, estrogen, tumor necrosis factor [TNF], erythroblastic leukemia viral oncogene homolog [ErbB], Janus kinase [JAK]-signal transducer and activator of transcription [STAT], and p53 signaling). In summary, our data present a comprehensive understanding of the anti-OC effects and mechanisms of action of FDY003.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| | - In-Hee Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| | - Sang-In Park
- Forestheal Hospitalo, Songpa-gu, Seoul, Republic of Korea
| | - Minho Jung
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Seung Gu Yang
- Kyunghee Naro Hospital, Bundang-gu, Seongnam, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| |
Collapse
|
25
|
Roberto Raúl SG, Damaris IA, Ángel de Jesús JC, Leticia MF. Cry1Ac Protoxin Confers Antitumor Adjuvant Effect in a Triple-Negative Breast Cancer Mouse Model by Improving Tumor Immunity. BREAST CANCER: BASIC AND CLINICAL RESEARCH 2022; 16:11782234211065154. [PMID: 35002244 PMCID: PMC8738886 DOI: 10.1177/11782234211065154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/17/2021] [Indexed: 12/07/2022] Open
Abstract
The Cry1Ac protoxin from Bacillus thuringiensis is a systemic
and mucosal adjuvant, able to confer protective immunity in different infection
murine models and induce both Th1 and TCD8+ cytotoxic lymphocyte responses,
which are required to induce antitumor immunity. The Cry1Ac toxin, despite
having not being characterized as an adjuvant, has also proved to be immunogenic
and able to activate macrophages. Here, we investigated the potential antitumor
adjuvant effect conferred by the Cry1Ac protoxin and Cry1Ac toxin in a triple
negative breast cancer (TNBC) murine model. First, we evaluated the ability of
Cry1Ac proteins to improve dendritic cell (DC) activation and cellular response
through intraperitoneal (i.p.) coadministration with the 4T1 cellular lysate.
Mice coadministered with the Cry1Ac protoxin showed an increase in the number
and activation of CD11c+MHCII- and CD11c+MHCII+low in the peritoneal
cavity and an increase in DC activation (CD11c+MHCII+) in the spleen. Cry1Ac
protoxin increased the proliferation of TCD4+ and TCD8+ lymphocytes in the
spleen and mesenteric lymph nodes (MLN), while the Cry1Ac toxin only increased
the proliferation of TCD4+ and TCD8+ in the MLN. Remarkably, when tested in the
in vivo TNBC mouse model, prophylactic immunizations with 4T1 lysates plus the
Cry1Ac protoxin protected mice from developing tumors. The antitumor effect
conferred by the Cry1Ac protoxin also increased specific cytotoxic T cell
responses, and prevented the typical tumor-related decrease of T cells
(TCD3+ and TCD4+) as well the increase of myeloid-derived suppressor cells
(MDSC) in spleen. Also in the tumor microenvironment of mice coadministered
twice with Cry1Ac protoxin immunological improvements were found such as
reductions in immunosupressive populations (T regulatory lymphocytes and MDSC)
along with increases in macrophages upregulating CD86. These results show a
differential antitumor adjuvant capability of Cry1Ac proteins, highlighting the
ability of Cry1Ac protoxin to enhance local and systemic tumor immunity in TNBC.
Finally, using a therapeutic approach, we evaluated the coadministration of
Cry1Ac protoxin with doxorubicin. A significant reduction in tumor volume and
lung metastasis was found, with increased intratumoral levels of tumor necrosis
factor-α and IL-6 with respect to the vehicle group, further supporting its
antitumor applicability.
Collapse
Affiliation(s)
- Servin-Garrido Roberto Raúl
- Laboratorio de Inmunidad en Mucosas, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1 Los Reyes Iztacala CP 54090, Tlalnepantla, Estado de México, México
| | - Ilhuicatzi-Alvarado Damaris
- Laboratorio de Inmunidad en Mucosas, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1 Los Reyes Iztacala CP 54090, Tlalnepantla, Estado de México, México
| | - Jiménez-Chávez Ángel de Jesús
- Laboratorio de Inmunidad en Mucosas, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1 Los Reyes Iztacala CP 54090, Tlalnepantla, Estado de México, México
| | - Moreno-Fierros Leticia
- Laboratorio de Inmunidad en Mucosas, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1 Los Reyes Iztacala CP 54090, Tlalnepantla, Estado de México, México
| |
Collapse
|
26
|
Osborn G, Stavraka C, Adams R, Sayasneh A, Ghosh S, Montes A, Lacy KE, Kristeleit R, Spicer J, Josephs DH, Arnold JN, Karagiannis SN. Macrophages in ovarian cancer and their interactions with monoclonal antibody therapies. Clin Exp Immunol 2021; 209:4-21. [PMID: 35020853 PMCID: PMC9307234 DOI: 10.1093/cei/uxab020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022] Open
Abstract
Abstract
The unmet clinical need for effective treatments in ovarian cancer has yet to be addressed using monoclonal antibodies (mAbs), which have largely failed to overcome tumour-associated immunosuppression, restrict cancer growth, and significantly improve survival. In recent years, experimental mAb design has moved away from solely targeting ovarian tumours and instead sought to modulate the wider tumour microenvironment (TME). Tumour-associated macrophages (TAMs) may represent an attractive therapeutic target for mAbs in ovarian cancer due to their high abundance and close proximity to tumour cells and their active involvement in facilitating several pro-tumoural processes. Moreover, the expression of several antibody crystallisable fragment (Fc) receptors and broad phenotypic plasticity of TAMs provide opportunities to modulate TAM polarisation using mAbs to promote anti-tumoural phenotypes. In this review, we discuss the role of TAMs in ovarian cancer TME and the emerging strategies to target the contributions of these cells in tumour progression through the rationale design of mAbs.
Collapse
Affiliation(s)
- Gabriel Osborn
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Chara Stavraka
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom.,Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.,School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Rebecca Adams
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Ahmad Sayasneh
- Department of Gynecological Oncology, Surgical Oncology Directorate, Guy's and St Thomas' NHS Foundation Trust, School of Life Course Sciences, King's College London, London, United Kingdom
| | - Sharmistha Ghosh
- Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Ana Montes
- Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Katie E Lacy
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Rebecca Kristeleit
- Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - James Spicer
- School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Debra H Josephs
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom.,Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.,School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - James N Arnold
- School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| |
Collapse
|
27
|
Fucikova J, Coosemans A, Orsulic S, Cibula D, Vergote I, Galluzzi L, Spisek R. Immunological configuration of ovarian carcinoma: features and impact on disease outcome. J Immunother Cancer 2021; 9:jitc-2021-002873. [PMID: 34645669 PMCID: PMC8515436 DOI: 10.1136/jitc-2021-002873] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/20/2022] Open
Abstract
Epithelial ovarian carcinoma (EOC) is a relatively rare malignancy but is the fifth-leading cause of cancer-related death in women, largely reflecting early, prediagnosis dissemination of malignant disease to the peritoneum. At odds with other neoplasms, EOC is virtually insensitive to immune checkpoint inhibitors, correlating with a tumor microenvironment that exhibits poor infiltration by immune cells and active immunosuppression. Here, we comparatively summarize the humoral and cellular features of primary and metastatic EOC, comparatively analyze their impact on disease outcome, and propose measures to alter them in support of treatment sensitivity and superior patient survival.
Collapse
Affiliation(s)
- Jitka Fucikova
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Sandra Orsulic
- UCLA David Geffen School of Medicine and Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
| | - David Cibula
- Gynecologic Oncology Center, Department of Obstetrics and Gynecology, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Ignace Vergote
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, University Hospital Leuven, Leuven, Belgium
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
28
|
Liu S, Wu M, Wang F. Research Progress in Prognostic Factors and Biomarkers of Ovarian Cancer. J Cancer 2021; 12:3976-3996. [PMID: 34093804 PMCID: PMC8176232 DOI: 10.7150/jca.47695] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is a serious threat to women's health; its early diagnosis rate is low and prone to metastasis and recurrence. The current conventional treatment for ovarian cancer is a combination of platinum and paclitaxel chemotherapy based on surgery. The recurrence and progression of ovarian cancer with poor prognosis is a major challenge in treatment. With rapid advances in technology, understanding of the molecular pathways involved in ovarian cancer recurrence and progression has increased, biomarker-guided treatment options can greatly improve the prognosis of patients. This review systematically discusses and summarizes existing and new information on prognostic factors and biomarkers of ovarian cancer, which is expected to improve the clinical management of patients and lead to effective personalized treatment.
Collapse
Affiliation(s)
- Shuna Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 210029
- National Key Clinical Department of Laboratory Medicine, Nanjing, China, 210029
| | - Ming Wu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 210029
- National Key Clinical Department of Laboratory Medicine, Nanjing, China, 210029
| | - Fang Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 210029
- National Key Clinical Department of Laboratory Medicine, Nanjing, China, 210029
| |
Collapse
|
29
|
Li X, Liu Y, Zheng S, Zhang T, Wu J, Sun Y, Zhang J, Liu G. Role of exosomes in the immune microenvironment of ovarian cancer. Oncol Lett 2021; 21:377. [PMID: 33777201 PMCID: PMC7988709 DOI: 10.3892/ol.2021.12638] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are excretory vesicles that can deliver a variety of bioactive cargo molecules to the extracellular environment. Accumulating evidence demonstrates exosome participation in intercellular communication, immune response, inflammatory response and they even play an essential role in affecting the tumor immune microenvironment. The role of exosomes in the immune microenvironment of ovarian cancer is mainly divided into suppression and stimulation. On one hand exosomes can stimulate the innate and adaptive immune systems by activating dendritic cells (DCs), natural killer cells and T cells, allowing these immune cells exert an antitumorigenic effect. On the other hand, ovarian cancer-derived exosomes initiate cross-talk with immunosuppressive effector cells, which subsequently cause immune evasion; one of the hallmarks of cancer. Exosomes induce the polarization of macrophages in M2 phenotype and induce apoptosis of lymphocytes and DCs. Exosomes further activate additional immunosuppressive effector cells (myeloid-derived suppressor cells and regulatory T cells) that induce fibroblasts to differentiate into cancer-associated fibroblasts. Exosomes also induce the tumorigenicity of mesenchymal stem cells to exert additional immune suppression. Furthermore, besides mediating the intercellular communication, exosomes carry microRNAs (miRNAs), proteins and lipids to the tumor microenvironment, which collectively promotes ovarian cancer cells to proliferate, invade and tumors to metastasize. Studying proteins, lipids and miRNAs carried by exosomes could potentially be used as an early diagnostic marker of ovarian cancer for designing treatment strategies.
Collapse
Affiliation(s)
- Xiao Li
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yang Liu
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shuangshuang Zheng
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Tianyu Zhang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jing Wu
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yue Sun
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jingzi Zhang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Guoyan Liu
- Department of Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
30
|
Liu J, Li L, Luo N, Liu Q, Liu L, Chen D, Cheng Z, Xi X. Inflammatory signals induce MUC16 expression in ovarian cancer cells via NF-κB activation. Exp Ther Med 2020; 21:163. [PMID: 33456530 PMCID: PMC7792485 DOI: 10.3892/etm.2020.9594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/05/2020] [Indexed: 01/21/2023] Open
Abstract
Cancer antigen 125 (CA125), encoded by the mucin 16 cell surface associated (MUC16) gene, has been widely used as a biomarker for ovarian cancer (OC) screening. However, it has yet to be elucidated as to why its levels increase with tumor progression as well as with certain other non-malignant conditions. Based on our knowledge of the inflammatory microenvironment (IME) in OC, HEY cells were treated with several inflammation-associated factors as well as their antagonists, and it was observed that inflammation-associated factors upregulated MUC16 gene expression. Considering the role of nuclear factor (NF)-κB in the inflammatory signaling network and our previous research on OC, chromatin immunoprecipitation was performed, and it was observed that activated NF-κB bound to the MUC16 gene promoter and enhanced its expression, thereby elevating secreted CA125 levels. These findings demonstrated that IME and MUC16 gene expression were associated in OC, partly elucidating the role of IME in tumor progression, explaining the elevated serum CA125 levels in some non-malignant conditions, and confirming IME as a potential target for OC therapy.
Collapse
Affiliation(s)
- Jie Liu
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China.,Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Clinical College of Nanjing Medical University, Shanghai 200072, P.R. China
| | - Li Li
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Clinical College of Nanjing Medical University, Shanghai 200072, P.R. China
| | - Ning Luo
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Clinical College of Nanjing Medical University, Shanghai 200072, P.R. China
| | - Qi Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Clinical College of Nanjing Medical University, Shanghai 200072, P.R. China
| | - Li Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Clinical College of Nanjing Medical University, Shanghai 200072, P.R. China
| | - Dandan Chen
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Clinical College of Nanjing Medical University, Shanghai 200072, P.R. China
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Clinical College of Nanjing Medical University, Shanghai 200072, P.R. China.,Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xiaowei Xi
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| |
Collapse
|
31
|
Mimoto F, Tatsumi K, Shimizu S, Kadono S, Haraya K, Nagayasu M, Suzuki Y, Fujii E, Kamimura M, Hayasaka A, Kawauchi H, Ohara K, Matsushita M, Baba T, Susumu H, Sakashita T, Muraoka T, Aso K, Katada H, Tanaka E, Nakagawa K, Hasegawa M, Ayabe M, Yamamoto T, Tanba S, Ishiguro T, Kamikawa T, Nambu T, Kibayashi T, Azuma Y, Tomii Y, Kato A, Ozeki K, Murao N, Endo M, Kikuta J, Kamata-Sakurai M, Ishii M, Hattori K, Igawa T. Exploitation of Elevated Extracellular ATP to Specifically Direct Antibody to Tumor Microenvironment. Cell Rep 2020; 33:108542. [PMID: 33357423 DOI: 10.1016/j.celrep.2020.108542] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 08/16/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
The extracellular adenosine triphosphate (ATP) concentration is highly elevated in the tumor microenvironment (TME) and remains tightly regulated in normal tissues. Using phage display technology, we establish a method to identify an antibody that can bind to an antigen only in the presence of ATP. Crystallography analysis reveals that ATP bound in between the antibody-antigen interface serves as a switch for antigen binding. In a transgenic mouse model overexpressing the antigen systemically, the ATP switch antibody binds to the antigen in tumors with minimal binding in normal tissues and plasma and inhibits tumor growth. Thus, we demonstrate that elevated extracellular ATP concentration can be exploited to specifically target the TME, giving therapeutic antibodies the ability to overcome on-target off-tumor toxicity.
Collapse
Affiliation(s)
- Futa Mimoto
- Chugai Pharmabody Research Pte. Ltd., 3 Biopolis Drive, #07 - 11 to 16, Synapse, 138623, Singapore.
| | - Kanako Tatsumi
- Research Division, Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan.
| | - Shun Shimizu
- Research Division, Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Shojiro Kadono
- Research Division, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200, Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Kenta Haraya
- Research Division, Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Miho Nagayasu
- Research Division, Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Yuki Suzuki
- Research Division, Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Etsuko Fujii
- Research Division, Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Masaki Kamimura
- Chugai Research Institute for Medical Science, Inc. 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Akira Hayasaka
- Research Division, Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Hiroki Kawauchi
- Research Division, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200, Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Kazuhiro Ohara
- Research Division, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200, Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Masayuki Matsushita
- Research Division, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200, Kajiwara, Kamakura, Kanagawa, 247-8530, Japan; Project & Lifecycle Management Unit, 1-1 Nihonbashi-Muromachi 2-Chome, Chugai Pharmaceutical Co., Ltd., Chuo-ku, Tokyo, 103-8324, Japan
| | - Takeshi Baba
- Research Division, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200, Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Hiroaki Susumu
- Research Division, Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Takuya Sakashita
- Research Division, Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Terushige Muraoka
- Research Division, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200, Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Kosuke Aso
- Research Division, Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Hitoshi Katada
- Research Division, Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Eriko Tanaka
- Research Division, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200, Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Kenji Nakagawa
- Research Division, Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Masami Hasegawa
- Research Division, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200, Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Miho Ayabe
- Research Division, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200, Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Tessai Yamamoto
- Research Division, Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Shigero Tanba
- Research Division, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200, Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Takahiro Ishiguro
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 1-1 Nihonbashi-Muromachi 2-Chome, Chuo-ku, Tokyo, 103-8324, Japan
| | - Takayuki Kamikawa
- Research Division, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200, Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Takeru Nambu
- Chugai Pharmabody Research Pte. Ltd., 3 Biopolis Drive, #07 - 11 to 16, Synapse, 138623, Singapore
| | - Tatsuya Kibayashi
- Research Division, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200, Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Yumiko Azuma
- Research Division, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200, Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Yasushi Tomii
- Research Division, Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Atsuhiko Kato
- Research Division, Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Kazuhisa Ozeki
- Research Division, Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Naoaki Murao
- Research Division, Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Mika Endo
- Research Division, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200, Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Osaka University Graduate School of Medicine and Frontier Biosciences, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mika Kamata-Sakurai
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 1-1 Nihonbashi-Muromachi 2-Chome, Chuo-ku, Tokyo, 103-8324, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Osaka University Graduate School of Medicine and Frontier Biosciences, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kunihiro Hattori
- Research Division, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200, Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Tomoyuki Igawa
- Chugai Pharmabody Research Pte. Ltd., 3 Biopolis Drive, #07 - 11 to 16, Synapse, 138623, Singapore; Research Division, Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| |
Collapse
|
32
|
Abstract
Aims Tocilizumab, an interleukin-6 (IL-6) receptor (IL-6R) targeting antibody, enhances the anti-tumour effect of conventional chemotherapy in preclinical models of cancer. We investigated the anti-tumour effect of tocilizumab in osteosarcoma (OS) cell lines. Methods We used the 143B, HOS, and Saos-2 human OS cell lines. We first analyzed the IL-6 gene expression and IL-6Rα protein expression in OS cells using reverse transcription real time quantitative-polymerase chain reaction (RT-qPCR) analysis and western blotting, respectively. We also assessed the effect of tocilizumab on OS cells using proliferation and invasion assay. Results The OS cell lines 143B, HOS, and Saos-2 expressed IL-6R. Recombinant human IL-6 treatment increased proliferation of 143B and HOS cells. Tocilizumab treatment decreased proliferation and invasion of 143B, HOS, and Saos-2. Conclusion In conclusion, we confirmed the production of IL-6 and the expression of IL-6R in OS cells and demonstrated that tocilizumab inhibits proliferation and invasion in OS cells. Cite this article: Bone Joint Res 2020;9(11):821–826.
Collapse
Affiliation(s)
- Tomohito Hagi
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Tomoki Nakamura
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kouji Kita
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Takahiro Iino
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kunihiro Asanuma
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
33
|
Ji F, Kang Q, Wang L, Liu L, Ke Y, Zhu Y, Zhang N, Xiong S, Li Y, Zou H. Prognostic significance of the neutrophil-to-lymphocyte ratio with distal cholangiocarcinoma patients. Medicine (Baltimore) 2020; 99:e22827. [PMID: 33120809 PMCID: PMC7581158 DOI: 10.1097/md.0000000000022827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The present study aimed to investigate the prognostic value of the neutrophil-to-lymphocyte ratio (NLR) in distal cholangiocarcinoma (DCC) following radical surgery. METHODS The clinicopathological data of 59 patients with DCC were retrospectively reviewed. Patients were treated by radical surgery and diagnosed by postoperative pathology at the Second Affiliated Hospital of Kunming Medical University (Yunnan, China), between July 2015 and December 2017. The optimal cut-off value for the NLR was determined by generating receiver operating characteristic (ROC) curves. Kaplan-Meier survival analysis and Cox proportional hazards models were used to determine the risk factors and independent risk factors influencing the prognosis of patients with DCC. RESULTS According to the ROC curve, the optimal cut-off value for the NLR was 2.933. The results of Kaplan-Meier survival analysis and the Cox proportional hazards model showed that carbohydrate antigen 125, NLR, perineural, vascular and fat invasion, regional lymph node metastasis, and the American Joint Committee on Cancer stage were risk factors for DCC; the only independent risk factor to affect the prognosis of DCC patients was the NLR. CONCLUSIONS The preoperative NLR plays an important guiding role in evaluating the prognosis of patients with DCC, and an increase in the NLR is associated with poor patient prognosis.
Collapse
Affiliation(s)
- Fengming Ji
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital
- Urology Department of The Affiliated Children's Hospital of Kunminng Medical University, Kunming Chlidren's Hospital, Key Laboratory of Children's Major Disease Research, Kunming Medical University
| | - Qiang Kang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital
| | - Lianmin Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital
| | - Lixin Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital
| | - Yang Ke
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital
| | - Ya Zhu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital
| | - Naiqiang Zhang
- Department of General Surgery, Kunming Traditional Chinese Medicine Hospital, Kunming, Yunnan, PR China
| | - Shifeng Xiong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital
| | - Yuehua Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital
| | - Hao Zou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital
| |
Collapse
|
34
|
Komura N, Mabuchi S, Shimura K, Kawano M, Matsumoto Y, Kimura T. Significance of Pretreatment C-Reactive Protein, Albumin, and C-Reactive Protein to Albumin Ratio in Predicting Poor Prognosis in Epithelial Ovarian Cancer Patients. Nutr Cancer 2020; 73:1357-1364. [PMID: 32835520 DOI: 10.1080/01635581.2020.1798479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To investigate the prognostic significance of pretreatment C-reactive protein (CRP), albumin, and the CRP to albumin ratio (CRP/Alb) in epithelial ovarian cancer (EOC) patients. Clinical data from 308 EOC patients between April 2007 and March 2016 were collected and retrospectively reviewed. The cutoff values for CRP, albumin, and CRP/Alb were defined by receiver operating characteristics (ROC) analyses. Univariate or multivariate analysis was conducted to evaluate the prognostic significance of these factors for disease-specific survival. The cutoff values for CRP, albumin, and CRP/Alb were 0.76, 3.8, and 0.048 by ROC analysis, respectively. Cox regression analyses demonstrated that an elevated CRP/Alb is an independent predictor of short disease-specific survival irrespective of clinical stage or optimal surgery rate. When examined according to clinical stage, elevated CRP/Alb was associated with short disease-specific survival in both early-stage and advanced-stage patients. Cox regression analyses demonstrated that an elevated CRP, but not lower albumin, is also an independent predictor of short disease-specific survival. When two prognosticators were compared, CRP/Alb was found to be superior to CRP for predicting disease-specific survival in EOC patients. Pretreatment elevated CRP/Alb is a predictor of shorter survival in EOC patients regardless of clinical stage.
Collapse
Affiliation(s)
- Naoko Komura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Seiji Mabuchi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kotaro Shimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mahiru Kawano
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuri Matsumoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
35
|
The influence of secreted factors and extracellular vesicles in ovarian cancer metastasis. EJC Suppl 2020; 15:38-48. [PMID: 33240441 PMCID: PMC7573474 DOI: 10.1016/j.ejcsup.2019.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/02/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer cells mainly metastasise within the peritoneal cavity, the lethal consequence of tumour progression in this cancer type. Classically, changes in tumour cells, such as epithelial to mesenchymal transition, involve the down-regulatinon of E-cadherin, activation of extracellular proteases and integrin-mediated adhesion. However, our current understanding of ovarian tumour progression suggests the implication of both intrinsic and extrinsic factors. It has been proposed that ovarian cancer metastases are a consequence of the crosstalk between cancer cells and the tumour microenvironment by soluble factors and extracellular vesicles. Characterisation of the alterations in both the tumour cells and the surrounding microenvironment has emerged as a new research field to understand ovarian cancer metastasis. In this mini review, we will summarise the most recent findings, focusing our attention on the role of secreted factors and extracellular vesicles in ovarian cancer metastasis. During ovarian cancer metastasis, tumour cells metastasise in the mesothelium as primarily ‘soil’ for ovarian cancer ‘seeds’. Soluble factors and extracellular vesicles secreted by tumor cells are involved in the generation of the pre-metastatic niche. Cancer-associated fibroblasts (CAFs) represent the majority of stromal cells in various types of human carcinoma, including ovarian cancer. Analysis of early metastasis to the omentum indicates that ovarian cancer cells rely on the interaction with immune cells such as macrophages. Liquid biopsy analyses in ovarian cancer may help to define novel biomarkers improving patient survival and reduce lethality.
Collapse
|
36
|
Aziz NB, Mahmudunnabi RG, Umer M, Sharma S, Rashid MA, Alhamhoom Y, Shim YB, Salomon C, Shiddiky MJA. MicroRNAs in ovarian cancer and recent advances in the development of microRNA-based biosensors. Analyst 2020; 145:2038-2057. [DOI: 10.1039/c9an02263e] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ovarian cancer is the most aggressive of all gynaecological malignancies and is the leading cause of cancer-associated mortality worldwide.
Collapse
Affiliation(s)
- Nahian Binte Aziz
- School of Environment and Science
- Griffith University
- Nathan Campus
- Australia
- School of Chemistry & Molecular Biosciences
| | - Rabbee G. Mahmudunnabi
- Department of Molecular Science Technology and Institute of BioPhysio Sensor Technology (IBST)
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Muhammad Umer
- Queensland Micro and nanotechnology Centre
- Griffith University
- Nathan Campus
- Australia
| | - Shayna Sharma
- Exosome Biology Laboratory
- Centre for Clinical Diagnostics
- University of Queensland Centre for Clinical Research
- Royal Brisbane and Women's Hospital
- The University of Queensland
| | - Md Abdur Rashid
- Department of Pharmaceutics
- College of Pharmacy
- King Khalid University
- Abha
- Kingdom of Saudi Arabia
| | - Yahya Alhamhoom
- Department of Pharmaceutics
- College of Pharmacy
- King Khalid University
- Abha
- Kingdom of Saudi Arabia
| | - Yoon-Bo Shim
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST)
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Carlos Salomon
- Exosome Biology Laboratory
- Centre for Clinical Diagnostics
- University of Queensland Centre for Clinical Research
- Royal Brisbane and Women's Hospital
- The University of Queensland
| | - Muhammad J. A. Shiddiky
- School of Environment and Science
- Griffith University
- Nathan Campus
- Australia
- Queensland Micro and nanotechnology Centre
| |
Collapse
|
37
|
Binju M, Amaya-Padilla MA, Wan G, Gunosewoyo H, Suryo Rahmanto Y, Yu Y. Therapeutic Inducers of Apoptosis in Ovarian Cancer. Cancers (Basel) 2019; 11:E1786. [PMID: 31766284 PMCID: PMC6896143 DOI: 10.3390/cancers11111786] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancers remain one of the most common causes of gynecologic cancer-related death in women worldwide. The standard treatment comprises platinum-based chemotherapy, and most tumors develop resistance to therapeutic drugs. One mechanism of developing drug resistance is alterations of molecules involved in apoptosis, ultimately assisting in the cells' capability to evade death. Thus, there is a need to focus on identifying potential drugs that restore apoptosis in cancer cells. Here, we discuss the major inducers of apoptosis mediated through various mechanisms and their usefulness as potential future treatment options for ovarian cancer. Broadly, they can target the apoptotic pathways directly or affect apoptosis indirectly through major cancer-pathways in cells. The direct apoptotic targets include the Bcl-2 family of proteins and the inhibitor of apoptotic proteins (IAPs). However, indirect targets include processes related to homologous recombination DNA repair, micro-RNA, and p53 mutation. Besides, apoptosis inducers may also disturb major pathways converging into apoptotic signals including janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3), wingless-related integration site (Wnt)/β-Catenin, mesenchymal-epithelial transition factor (MET)/hepatocyte growth factor (HGF), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), and phosphatidylinositol 3-kinase (PI3K)/v-AKT murine thymoma viral oncogene homologue (AKT)/mammalian target of rapamycin (mTOR) pathways. Several drugs in our review are undergoing clinical trials, for example, birinapant, DEBIO-1143, Alisertib, and other small molecules are in preclinical investigations showing promising results in combination with chemotherapy. Molecules that exhibit better efficacy in the treatment of chemo-resistant cancer cells are of interest but require more extensive preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Mudra Binju
- School of Pharmacy & Biomedical Sciences, Curtin University, Curtin Health Innovative Research Institute, Perth, WA 6102, Australia
| | - Monica Angelica Amaya-Padilla
- School of Pharmacy & Biomedical Sciences, Curtin University, Curtin Health Innovative Research Institute, Perth, WA 6102, Australia
| | - Graeme Wan
- School of Pharmacy & Biomedical Sciences, Curtin University, Curtin Health Innovative Research Institute, Perth, WA 6102, Australia
| | - Hendra Gunosewoyo
- School of Pharmacy & Biomedical Sciences, Curtin University, Curtin Health Innovative Research Institute, Perth, WA 6102, Australia
| | - Yohan Suryo Rahmanto
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Yu Yu
- School of Pharmacy & Biomedical Sciences, Curtin University, Curtin Health Innovative Research Institute, Perth, WA 6102, Australia
- University of Western Australia Medical School, Division of Obstetrics & Gynaecology, Perth, WA 6009, Australia
| |
Collapse
|
38
|
de Lima CA, Silva Rodrigues IS, Martins-Filho A, Côbo Micheli D, Martins Tavares-Murta B, Candido Murta EF, Simões Nomelini R. Cytokines in peritoneal fluid of ovarian neoplasms. J OBSTET GYNAECOL 2019; 40:401-405. [DOI: 10.1080/01443615.2019.1633516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Cid Almeida de Lima
- Research Institute of Oncology (IPON)/Department of Gynecology and Obstetrics, Uberaba, Brazil
| | | | - Agrimaldo Martins-Filho
- Research Institute of Oncology (IPON)/Department of Gynecology and Obstetrics, Uberaba, Brazil
| | - Douglas Côbo Micheli
- Discipline of Pharmacology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | | | | | | |
Collapse
|
39
|
Finkernagel F, Reinartz S, Schuldner M, Malz A, Jansen JM, Wagner U, Worzfeld T, Graumann J, von Strandmann EP, Müller R. Dual-platform affinity proteomics identifies links between the recurrence of ovarian carcinoma and proteins released into the tumor microenvironment. Am J Cancer Res 2019; 9:6601-6617. [PMID: 31588238 PMCID: PMC6771240 DOI: 10.7150/thno.37549] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/27/2019] [Indexed: 01/10/2023] Open
Abstract
The peritoneal fluid (ascites), replete with abundant tumor-promoting factors and extracellular vesicles (EVs) reflecting the tumor secretome, plays an essential role in ovarian high-grade serous carcinoma (HGSC) metastasis and immune suppression. A comprehensive picture of mediators impacting HGSC progression is, however, not available. Methods: Proteins in ascites from HGSC patients were quantified by the aptamer-based SOMAscan affinity proteomic platform. SOMAscan data were analyzed by bioinformatic methods to reveal clinically relevant links and functional connections, and were validated using the antibody-based proximity extension assay (PEA) Olink platform. Mass spectrometry was used to identify proteins in extracellular microvesicles released by HGSC cells. Results: Consistent with the clinical features of HGSC, 779 proteins in ascites identified by SOMAscan clustered into groups associated either with metastasis and a short relapse-free survival (RFS), or with immune regulation and a favorable RFS. In total, 346 proteins were linked to OC recurrence in either direction. Reanalysis of 214 of these proteins by PEA revealed an excellent median Spearman inter-platform correlation of ρ=0.82 for the 46 positively RFS-associated proteins in both datasets. Intriguingly, many proteins strongly associated with clinical outcome were constituents of extracellular vesicles. These include proteins either linked to a poor RFS, such as HSPA1A, BCAM and DKK1, or associated with a favorable outcome, such as the protein kinase LCK. Finally, based on these data we defined two protein signatures that clearly classify short-term and long-term relapse-free survivors. Conclusion: The ascites secretome points to metastasis-promoting events and an anti-tumor response as the major determinants of the clinical outcome of HGSC. Relevant proteins include both bone fide secreted and vesicle-encapsulated polypeptides, many of which have previously not been linked to HGSC recurrence. Besides a deeper understanding of the HGSC microenvironment our data provide novel potential tools for HGSC patient stratification. Furthermore, the first large-scale inter-platform validation of SOMAscan and PEA will be invaluable for other studies using these affinity proteomics platforms.
Collapse
|
40
|
Yokomizo R, Yanaihara N, Yamaguchi N, Saito M, Kawabata A, Takahashi K, Takenaka M, Yamada K, Shapiro JS, Okamoto A. MicroRNA-34a/IL-6R pathway as a potential therapeutic target for ovarian high-grade serous carcinoma. Oncotarget 2019; 10:4880-4893. [PMID: 31448054 PMCID: PMC6690672 DOI: 10.18632/oncotarget.27117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/29/2019] [Indexed: 01/08/2023] Open
Abstract
Accumulating evidence has indicated that microRNAs play a critical role in the pathogenesis of human cancers. microRNA-34a (miR-34a) has been shown to be a key regulator of tumor suppression by targeting several cancer-related signals, including the interleukin-6 receptor (IL-6R)/Signal Transducers and Activator of Transcription 3 (STAT3) signaling pathway. Previously, we determined that miR-34a expression was frequently reduced in high-grade serous carcinoma (HGSC), the major subtype of epithelial ovarian cancer (EOC). Considering that the IL-6R/STAT3 signaling pathway is upregulated and believed to be a potential therapeutic target in EOC, we investigated the biological significance of reduced miR-34a expression in HGSC with regard to IL-6R signaling. Additionally, we evaluated the viability of miR-34a as a therapeutic application for HGSC both in vitro and in vivo. Accordingly, we found that the ectopic expression of miR-34a significantly reduced tumor proliferation and invasion through downregulation of IL-6R expression, suggesting that reduced miR-34a expression might play an important role in the malignant potential of HGSC through upregulation of the IL-6R/STAT3 signaling pathway. Moreover, we demonstrated that replacement of miR-34a reduced tumorigenicity of HGSC in vivo. Therefore, this study may provide the rationale for miR-34a replacement as a promising therapeutic strategy for HGSC.
Collapse
Affiliation(s)
- Ryo Yokomizo
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Nozomu Yanaihara
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Noriko Yamaguchi
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Misato Saito
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Ayako Kawabata
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Kazuaki Takahashi
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Masataka Takenaka
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Kyosuke Yamada
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Jason Solomon Shapiro
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
41
|
Prognostic significance of the pretreatment prognostic nutritional index in patients with epithelial ovarian cancer. Oncotarget 2019; 10:3605-3613. [PMID: 31217896 PMCID: PMC6557203 DOI: 10.18632/oncotarget.26914] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 04/14/2019] [Indexed: 11/25/2022] Open
Abstract
Objective We retrospectively investigated the prognostic significance of the pretreatment prognostic nutritional index (PNI) in patients with epithelial ovarian cancer (EOC) according to the clinical stage. Methods The baseline characteristics and clinical outcomes of 308 EOC patients were collected and retrospectively reviewed. PNI was defined as 10 × serum albumin (g/L) + 0.005 × lymphocyte count (per mm3) in the peripheral blood. The cut-off value of PNI was defined by time-dependent receiver operating characteristics (ROC) analysis. Univariate or multivariate analysis was conducted to evaluate the association between pretreatment PNI, progression-free survival (PFS), and disease-specific survival (DSS) according to the clinical stage. Results The cut-off value of PNI was defined as 44.7 in early-stage patients and 42.9 in advanced-stage patient by ROC analysis, respectively. Although decreased PNI was not associated with short PFS or DSS in early-stage patients, it was significantly correlated with short PFS (p<0.0001) and DSS (p<0.0001) in advanced-stage patients. In multivariate analysis, decreased PNI was an independent prognostic predictor of recurrence and short survival in advanced-stage patients. Conclusion A decreased pretreatment PNI was an independent poor prognostic factor in patients with advanced EOC.
Collapse
|
42
|
Ham IH, Oh HJ, Jin H, Bae CA, Jeon SM, Choi KS, Son SY, Han SU, Brekken RA, Lee D, Hur H. Targeting interleukin-6 as a strategy to overcome stroma-induced resistance to chemotherapy in gastric cancer. Mol Cancer 2019; 18:68. [PMID: 30927911 PMCID: PMC6441211 DOI: 10.1186/s12943-019-0972-8] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/21/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Although the tumor stroma in solid tumors like gastric cancer (GC) plays a crucial role in chemo-resistance, specific targets to inhibit the interaction between the stromal and cancer cells have not yet been utilized in clinical practice. The present study aims to determine whether cancer-associated fibroblasts (CAFs), a major component of the tumor stroma, confer chemotherapeutic resistance to GC cells, and to discover potential targets to improve chemo-response in GC. METHODS To identify CAF-specific proteins and signal transduction pathways affecting chemo-resistance in GC cells, secretome and transcriptome analyses were performed. We evaluated the inhibiting effect of CAF-specific protein in in vivo and in vitro models and investigated the expression of CAF-specific protein in human GC tissues. RESULTS Secretome and transcriptome data revealed that interleukin-6 (IL-6) is a CAF-specific secretory protein that protects GC cells via paracrine signaling. Furthermore, CAF-induced activation of the Janus kinase 1-signal transducer and activator of transcription 3 signal transduction pathway confers chemo-resistance in GC cells. CAF-mediated inhibition of chemotherapy-induced apoptosis was abrogated by the anti-IL-6 receptor monoclonal antibody tocilizumab in various experimental models. Clinical data revealed that IL-6 was prominently expressed in the stromal portion of GC tissues, and IL-6 upregulation in GC tissues was correlated with poor responsiveness to chemotherapy. CONCLUSIONS Our data provide plausible evidence for crosstalk between GC cells and CAFs, wherein IL-6 is a key contributor to chemoresistance. These findings suggest the potential therapeutic application of IL-6 inhibitors to enhance the responsiveness to chemotherapy in GC.
Collapse
Affiliation(s)
- In-Hye Ham
- Department of Surgery, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si, 16499 Gyeonggi-do Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si, 16499 Gyeonggi-do Republic of Korea
| | - Hye Jeong Oh
- Department of Surgery, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si, 16499 Gyeonggi-do Republic of Korea
| | - Hyejin Jin
- Department of Surgery, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si, 16499 Gyeonggi-do Republic of Korea
| | - Cheong A Bae
- Department of Surgery, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si, 16499 Gyeonggi-do Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si, 16499 Gyeonggi-do Republic of Korea
| | - Sang-Min Jeon
- Department of Pharmacy, Ajou University College of Pharmacy, 206 Worldcup-ro, Yeongtong-gu, Suwon-si, 16499 Gyeonggi-do Republic of Korea
| | - Kyeong Sook Choi
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si, 16499 Gyeonggi-do Republic of Korea
| | - Sang-Yong Son
- Department of Surgery, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si, 16499 Gyeonggi-do Republic of Korea
| | - Sang-Uk Han
- Department of Surgery, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si, 16499 Gyeonggi-do Republic of Korea
| | - Rolf A. Brekken
- Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Dakeun Lee
- Department of Pathology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si, Gyunggi-do 16499 Republic of Korea
| | - Hoon Hur
- Department of Surgery, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si, 16499 Gyeonggi-do Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si, 16499 Gyeonggi-do Republic of Korea
| |
Collapse
|
43
|
Large DE, Soucy JR, Hebert J, Auguste DT. Advances in Receptor-Mediated, Tumor-Targeted Drug Delivery. ADVANCED THERAPEUTICS 2019; 2:1800091. [PMID: 38699509 PMCID: PMC11064891 DOI: 10.1002/adtp.201800091] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Indexed: 02/06/2023]
Abstract
Receptor-mediated drug delivery presents an opportunity to enhance therapeutic efficiency by accumulating drug within the tissue of interest and reducing undesired, off-target effects. In cancer, receptor overexpression is a platform for binding and inhibiting pathways that shape biodistribution, toxicity, cell binding and uptake, and therapeutic function. This review will identify tumor-targeted drug delivery vehicles and receptors that show promise for clinical translation based on quantitative in vitro and in vivo data. The authors describe the rationale to engineer a targeted drug delivery vehicle based on the ligand, chemical conjugation method, and type of drug delivery vehicle. Recent advances in multivalent targeting and ligand organization on tumor accumulation are discussed. Revolutionizing receptor-mediated drug delivery may be leveraged in the therapeutic delivery of chemotherapy, gene editing tools, and epigenetic drugs.
Collapse
Affiliation(s)
- Danielle E Large
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Jonathan R Soucy
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Jacob Hebert
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Debra T Auguste
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| |
Collapse
|
44
|
Browning L, Patel MR, Horvath EB, Tawara K, Jorcyk CL. IL-6 and ovarian cancer: inflammatory cytokines in promotion of metastasis. Cancer Manag Res 2018; 10:6685-6693. [PMID: 30584363 PMCID: PMC6287645 DOI: 10.2147/cmar.s179189] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is the most fatal gynecological cancer in the USA and the fifth most common cancer-related cause of death in women. Inflammation has been shown to play many roles in ovarian cancer tumor growth, with the proinflammatory cytokine interleukin-6 (IL-6) having been established as a key immunoregulatory cytokine. Ovarian cancer cells continuously secrete cytokines that promote tumorigenicity in both autocrine and paracrine fashions while also receiving signals from the tumor microenvironment (TME). The TME contains many cells including leukocytes and fibroblasts, which respond to proinflammatory cytokines and secrete their own cytokines, which can produce many effects including promotion of chemoresistance, resistance to apoptosis, invasion, angiogenesis by way of overexpression of vascular endothelial growth factor, and promotion of metastatic growth at distant sites. IL-6 and its proinflammatory family members, including oncostatin M, have been found to directly stimulate enhanced invasion of cancer cells through basement membrane degradation caused by the overexpression of matrix metalloproteinases, stimulate promotion of cell cycle, enhance resistance to chemotherapy, and cause epithelial-to-mesenchymal transition (EMT). IL-6 has been shown to activate signaling pathways that lead to tumor proliferation, the most studied of which being the Janus kinase (JAK) and STAT3 pathway. IL-6-induced JAK/STAT activation leads to constitutive activation of STAT3, which has been correlated with enhanced tumor cell growth and resistance to chemotherapy. IL-6 has also been shown to act as a trigger of the EMT, the hypothesized first step in the metastatic cascade. Understanding the important role of IL-6 and its family members' effects on the pathogenesis of ovarian cancer tumor growth and metastasis may lead to more novel treatments, detection methods, and improvement of overall clinical outcomes.
Collapse
Affiliation(s)
- Landon Browning
- University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Megha R Patel
- University of California Riverside School of Medicine, Riverside, CA 92521, USA
| | - Eli Bring Horvath
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA,
| | - Ken Tawara
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA, .,Biomolecular Sciences Program, Boise State University, Boise, ID 83725, USA,
| | - Cheryl L Jorcyk
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA, .,Biomolecular Sciences Program, Boise State University, Boise, ID 83725, USA,
| |
Collapse
|
45
|
Cojocaru E, Parkinson CA, Brenton JD. Personalising Treatment for High-Grade Serous Ovarian Carcinoma. Clin Oncol (R Coll Radiol) 2018; 30:515-524. [PMID: 29934103 DOI: 10.1016/j.clon.2018.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022]
Abstract
Ovarian cancer is a heterogeneous group of cancers that differ by cell of origin and genomic features. High-grade serous ovarian cancer (HGSOC) is the commonest histiotype and is characterized by extreme genomic complexity and dysregulation of DNA damage repair pathways, particularly homologous recombination deficiency. New insights from molecular profiling into homologous recombination deficiency now offers the credible possibility of personalizing treatment choices for women with HGSOC using poly(ADP-ribose) polymerase inhibitor (PARP) therapy. Although the presence of tumour infiltrating lymphocytes (TILs) in the microenvironment is associated with improved survival in HGSOC, the role of anti-angiogenic and immune checkpoint inhibitor therapy remains unclear. PARP inhibition combined with immunotherapy is an exciting combination strategy for future therapeutic development for women with advanced HGSOC.
Collapse
Affiliation(s)
- E Cojocaru
- Cambridge University Hospitals, Department of Oncology, Cambridge, UK
| | - C A Parkinson
- Cambridge University Hospitals, Department of Oncology, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - J D Brenton
- Cambridge University Hospitals, Department of Oncology, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
46
|
The Role of Inflammation and Inflammatory Mediators in the Development, Progression, Metastasis, and Chemoresistance of Epithelial Ovarian Cancer. Cancers (Basel) 2018; 10:cancers10080251. [PMID: 30061485 PMCID: PMC6116184 DOI: 10.3390/cancers10080251] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Inflammation plays a role in the initiation and development of many types of cancers, including epithelial ovarian cancer (EOC) and high grade serous ovarian cancer (HGSC), a type of EOC. There are connections between EOC and both peritoneal and ovulation-induced inflammation. Additionally, EOCs have an inflammatory component that contributes to their progression. At sites of inflammation, epithelial cells are exposed to increased levels of inflammatory mediators such as reactive oxygen species, cytokines, prostaglandins, and growth factors that contribute to increased cell division, and genetic and epigenetic changes. These exposure-induced changes promote excessive cell proliferation, increased survival, malignant transformation, and cancer development. Furthermore, the pro-inflammatory tumor microenvironment environment (TME) contributes to EOC metastasis and chemoresistance. In this review we will discuss the roles inflammation and inflammatory mediators play in the development, progression, metastasis, and chemoresistance of EOC.
Collapse
|
47
|
Le Naour A, Mevel R, Thibault B, Courtais E, Chantalat E, Delord JP, Couderc B, Guillermet-Guibert J, Martinez A. Effect of combined inhibition of p110 alpha PI3K isoform and STAT3 pathway in ovarian cancer platinum-based resistance. Oncotarget 2018; 9:27220-27232. [PMID: 29930760 PMCID: PMC6007481 DOI: 10.18632/oncotarget.25513] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/07/2018] [Indexed: 12/13/2022] Open
Abstract
Background Ovarian cancer is associated with poor prognostic outcome due to late diagnosis and to intrinsic and acquired resistance to platinum-based chemotherapy in a large number of patients. This chemoresistance is acquired through the peritoneal and ascites microenvironment by several released factors, such as IL-6,. Preclinical studies have implicated the activation of PI3K pathway in chemoresistance, showing it to extend tumor cell survival and modulate multidrug resistance. We aimed to evaluate the implication of the p110 alpha PI3K subunit in ovarian cancer chemoresistance acquisition, and to evaluate whether the STAT3 pathway can mediate resistance to PI3K inhibitors through secretion of IL6. Results Human ovarian adenocarcinoma IGROV-1 and JHOC-5 cells cultured in ascites showed an increase in carboplatinum-based resistance. Level of chemoresistance was associated to IL6 concentration in ascites. Activation of PI3K/Akt, STAT and MAPK pathways was observed after IGROV-1 incubation with ascites and treatment with carboplatin. Neither IGROV-1 nor JHOC-5 cells exposed to ascites treated with additional IL-6 directed antibody showed any reversion of the chemoresistance. Conclusion IL6-related resistance was not abolished by the selective inhibition of PI3K alpha subunit coupled with the anti-IL6-receptor antibody tocilizumab. This dual inhibition requires further exploration in other ovarian cancer models such as clear cell carcinoma.
Collapse
Affiliation(s)
- Augustin Le Naour
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR 1037 INSERM, University Toulouse III, Toulouse, France
| | - Renaud Mevel
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR 1037 INSERM, University Toulouse III, Toulouse, France
| | - Benoit Thibault
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR 1037 INSERM, University Toulouse III, Toulouse, France
| | - Elise Courtais
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR 1037 INSERM, University Toulouse III, Toulouse, France
| | - Elodie Chantalat
- Department Surgical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Jean Pierre Delord
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR 1037 INSERM, University Toulouse III, Toulouse, France.,Department Medical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Bettina Couderc
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR 1037 INSERM, University Toulouse III, Toulouse, France.,Department Biology, Institut Claudius Regaud, Institut Universitaire du Cancer, Toulouse, France
| | - Julie Guillermet-Guibert
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR 1037 INSERM, University Toulouse III, Toulouse, France.,Laboratoire d'excellence LABEX TouCAN, Toulouse, France
| | - Alejandra Martinez
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR 1037 INSERM, University Toulouse III, Toulouse, France.,Department Surgical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| |
Collapse
|
48
|
IL-6 family cytokines: Key inflammatory mediators as biomarkers and potential therapeutic targets. Cytokine Growth Factor Rev 2018; 41:10-17. [PMID: 29699936 DOI: 10.1016/j.cytogfr.2018.04.004] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023]
Abstract
IL-6 is a critical cytokine in acute phase response and involved in the pathogenesis of several chronic inflammatory diseases including cancer. Studies have highlighted that levels of IL-6 and its family members can be useful for diagnosis, prognosis of relapse-free survival and recurrence. IL-6 family cytokines have been identified as cancer biomarkers through screening of inflammatory mediators in different fluids including saliva, serum, and bronchoalveolar lavage fluid (BALF). IL-6 can be modulated by chemopreventive drugs, small molecules, monoclonal antibodies and immune checkpoint inhibitors. Unveiling the different sources of IL-6, the interaction between IL-6 and its cellular targets, the IL-6-dependent tumor resistance mechanisms, and the identification of novel regulators of IL-6 are some of the highly complex topics included in this review and their understanding could aid cancer biomarkers and therapy development.
Collapse
|
49
|
Itoh H, Kadomatsu T, Tanoue H, Yugami M, Miyata K, Endo M, Morinaga J, Kobayashi E, Miyamoto T, Kurahashi R, Terada K, Mizuta H, Oike Y. TET2-dependent IL-6 induction mediated by the tumor microenvironment promotes tumor metastasis in osteosarcoma. Oncogene 2018. [DOI: 10.1038/s41388-018-0160-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
García-Martínez E, Smith M, Buqué A, Aranda F, de la Peña FA, Ivars A, Cánovas MS, Conesa MAV, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunostimulation with recombinant cytokines for cancer therapy. Oncoimmunology 2018; 7:e1433982. [PMID: 29872569 PMCID: PMC5980390 DOI: 10.1080/2162402x.2018.1433982] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/15/2022] Open
Abstract
Cytokines regulate virtually aspects of innate and adaptive immunity, including the initiation, execution and extinction of tumor-targeting immune responses. Over the past three decades, the possibility of using recombinant cytokines as a means to elicit or boost clinically relevant anticancer immune responses has attracted considerable attention. However, only three cytokines have been approved so far by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, namely, recombinant interleukin (IL)-2 and two variants of recombinant interferon alpha 2 (IFN-α2a and IFN-α2b). Moreover, the use of these cytokines in the clinics is steadily decreasing, mostly as a consequence of: (1) the elevated pleiotropism of IL-2, IFN-α2a and IFN-α2b, resulting in multiple unwarranted effects; and (2) the development of highly effective immunostimulatory therapeutics, such as immune checkpoint blockers. Despite this and other obstacles, research in the field continues as alternative cytokines with restricted effects on specific cell populations are being evaluated. Here, we summarize research preclinical and clinical developments on the use of recombinant cytokines for immunostimulation in cancer patients.
Collapse
Affiliation(s)
- Elena García-Martínez
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Melody Smith
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Fernando Aranda
- Immunoreceptors of the Innate and Adaptive System, IDIBAPS, Barcelona, Spain
| | | | - Alejandra Ivars
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Manuel Sanchez Cánovas
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | | | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France
- Université Pierre et Marie Curie/Paris VI, Paris
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Université Paris Descartes/Paris V, France
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|