1
|
Zacarías-Hernández JL, Flores-Aréchiga A, Tamez-Guerra RS, Rivera-Morales LG, Castro-Garza J, Becerril-Montes P, Vázquez-Cortés CG, de la O-Cavazos M, Vázquez-Guillén JM, Rodríguez-Padilla C. Geographical location and genotyping analysis of pulmonary tuberculosis in the state of Nuevo Leon, Mexico. Sci Rep 2025; 15:7098. [PMID: 40016307 PMCID: PMC11868510 DOI: 10.1038/s41598-025-90579-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, is a major global health problem. In Mexico, the State of Nuevo Leon is among the top ten in tuberculosis morbidity. Information about transmission patterns and case clustering for tuberculosis in Nuevo Leon is limited. The spoligotypes of 151 isolates from newly diagnosed pulmonary tuberculosis patients were obtained and its phenotypic drug susceptibility pattern for streptomycin, isoniazid, rifampin, ethambutol, and pyrazinamide was determined by using the Mycobacteria Growth Indicator Tube fluorometric method. Geographical data of isolates were mapped using geographic information systems. Nineteen M. tuberculosis sublineages were identified. The most frequent lineages were: T1 at 35% (n = 53), X1 at 19.2% (n = 29), and LAM at 10.2% (n = 15). Additionally, we identified the Beijing lineage (3.3%, n = 5) and orphan strains (9.9%, n = 15). Drug resistant strains were 25 (16.55%) DR-TB, 15 (9.93%) MDR/RR-TB and 6 (3.97%) Hr-TB. Regarding TB comorbidities, diabetes mellitus II affected 21.85% of patients, while four patients were HIV-positive (2.65%). Despite the large number of tuberculosis cases in Monterrey, no definitive correlation with clusters and comorbidities was found. However, our results suggest a potential TB transmission hotspot for the T1 lineage within the Monterrey metropolitan area.
Collapse
Affiliation(s)
- José Luis Zacarías-Hernández
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Ciudad Universitaria, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Amador Flores-Aréchiga
- Departamento de Patología Clínica, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario Dr. José Eleuterio González, Monterrey, NL, Mexico
| | - Reyes S Tamez-Guerra
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Ciudad Universitaria, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Lydia Guadalupe Rivera-Morales
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Ciudad Universitaria, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico.
| | - Jorge Castro-Garza
- Facultad de Ciencias Biológicas, Laboratorio de Bioquímica y Genética de Microorganismos, Ciudad Universitaria, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico.
| | - Pola Becerril-Montes
- Facultad de Ciencias Biológicas, Laboratorio de Química, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Cecilia Gabriela Vázquez-Cortés
- Departamento de Patología Clínica, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario Dr. José Eleuterio González, Monterrey, NL, Mexico
| | - Manuel de la O-Cavazos
- Departamento de Pediatría, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario Dr. José Eleuterio González, Monterrey, NL, Mexico
| | - José Manuel Vázquez-Guillén
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Ciudad Universitaria, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Cristina Rodríguez-Padilla
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Ciudad Universitaria, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| |
Collapse
|
2
|
Castro-Rodriguez B, Franco-Sotomayor G, Orlando SA, Garcia-Bereguiain MÁ. Molecular epidemiology of Mycobacterium tuberculosis in Ecuador: Recent advances and future challenges. J Clin Tuberc Other Mycobact Dis 2024; 37:100465. [PMID: 39184342 PMCID: PMC11342892 DOI: 10.1016/j.jctube.2024.100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Tuberculosis (TB) is one of the three leading causes of death from a single infectious agent, Mycobacterium tuberculosis (MTB), together with COVID-19 and HIV/AIDS. This disease places a heavy burden on countries with low socio-economic development and aggravates existing inequalities. For the year 2021, estimations for Ecuador were 8500 TB cases, of which 370 were associated to multiple drug resistance (TB-MDR), and 1160 deaths. In the same year, Ecuador notified 5973 total cases, 401 of them were TB-MDR, pointing out an under diagnosis problem. The few molecular epidemiology studies available conclude that L4 is the most prevalent MTB lineage in Ecuador (with LAM as the main L4 sublineage), but L2-Beijing family is also present at low prevalence. Nevertheless, with less than 1 % MTB isolates genetically characterized by either MIRU-VNTR, spolygotyping or WGS to date, molecular epidemiology research must me improved to assist the TB surveillance and control program in Ecuador.
Collapse
Affiliation(s)
| | - Greta Franco-Sotomayor
- Instituto Nacional de Investigación y Salud Pública, Guayaquil, Ecuador
- Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | - Solón Alberto Orlando
- Instituto Nacional de Investigación y Salud Pública, Guayaquil, Ecuador
- Universidad Espíritu Santo, Guayaquil, Ecuador
| | | |
Collapse
|
3
|
Shah V, Yogesh M, Kothari DR, Gandhi RB, Nagda JJ. Audit of risk factors of drug-sensitive, drug-resistant tuberculosis disease, a case-control study of patients registered under NTEP, Gujarat. J Family Med Prim Care 2024; 13:3614-3620. [PMID: 39464923 PMCID: PMC11504741 DOI: 10.4103/jfmpc.jfmpc_1967_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 10/29/2024] Open
Abstract
Background Characterizing risk factors for drug-resistant tuberculosis (TB) is critical to guide targeted interventions in high-burden settings like India. We aimed to identify socioeconomic, lifestyle, and clinical factors associated with drug-sensitive and drug-resistant TB acquisition. Materials and Methods A comparative cross-sectional study recruited 350 bacteriologically confirmed TB patients registered under the National Tuberculosis Elimination Program (NTEP) in Gujarat, India, and 300 matched participants without active/past TB. Multinomial logistic regression analyzed risk factors for 200 drug-sensitive and 150 drug-resistant TB cases compared to participants without active or past TB. Results Key factors independently associated with higher adjusted odds ratios (aOR) of both TB types included low socioeconomic status (SES) (drug-sensitive TB: aOR 1.7, 95% CI 1.2-2.5; drug-resistant TB: aOR 2.2, 95% CI 1.3-3.7), crowding (>5 persons/room) (drug-sensitive TB: aOR 1.6, 95% CI 1.1-2.3; drug-resistant TB: aOR 1.9, 95% CI 1.2-2.9), undernutrition (drug-sensitive TB: aOR 1.6, 95% CI 1.1-2.3; drug-resistant TB: aOR 2.0, 95% CI 1.2-3.2), smoking (drug-sensitive TB: aOR 1.5, 95% CI 1.0-2.3; drug-resistant TB: aOR 1.7, 95% CI 1.1-2.7), and indoor air pollution (drug-sensitive TB: aOR 1.5, 95% CI 1.0-2.2; drug-resistant TB: aOR 1.8, 95% CI 1.2-2.8). Conclusion Marked social determinants and clinical risks drive heightened susceptibility for both TB types in India, while prior inadequate treatment and nosocomial exposures selectively enable additional drug resistance. Holistic prevention policies jointly targeting transmission, vulnerability, and curative factors are imperative.
Collapse
Affiliation(s)
- Viral Shah
- Department of Community Medicine, Shri M P Shah Government Medical College, Jamnagar, Gujarat, India
| | - M Yogesh
- Department of Community Medicine, Shri M P Shah Government Medical College, Jamnagar, Gujarat, India
| | - Deep R Kothari
- Department of Respiratory Medicine, Narendra Modi Medical College, Ahmedabad, Gujarat, India
| | - Rohankumar B Gandhi
- Department of Community Medicine, Shri M P Shah Government Medical College, Jamnagar, Gujarat, India
| | - Jay J Nagda
- Department of Community Medicine, Shri M P Shah Government Medical College, Jamnagar, Gujarat, India
| |
Collapse
|
4
|
Valencia-Trujillo D, Avila-Trejo AM, García-Reyes RL, Narváez-Díaz L, Segura del Pilar M, Mújica-Sánchez MA, Becerril-Vargas E, León-Juárez M, Mata-Miranda MM, Rivera-Gutiérrez S, Cerna-Cortés JF. Genetic Diversity of Mycobacterium tuberculosis Strains Isolated from HIV-Infected Patients in Mexico. Pathogens 2024; 13:428. [PMID: 38787280 PMCID: PMC11124049 DOI: 10.3390/pathogens13050428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
There has been very limited investigation regarding the genetic diversity of Mycobacterium tuberculosis (MTb) strains isolated from human immunodeficiency virus (HIV)-infected patients in Mexico. In this study, we isolated 93 MTb strains from pulmonary and extrapulmonary samples of HIV-infected patients treated in a public hospital in Mexico City to evaluate the genetic diversity using spoligotyping and mycobacterial interspersed repetitive unit-variable-number tandem-repeat (MIRU-VNTR) typing (based on 24 loci). The cohort comprised 80 male and 13 female individuals. There was a positive correlation between a high HIV viral load (>100,000 copies) and extrapulmonary tuberculosis (TB) (r = 0.306, p = 0.008). Lineage 4 was the most frequent lineage (79 strains). In this lineage, we found the H clade (n = 24), including the Haarlem, H3, and H1 families; the T clade (n = 22), including T1 and T2; the X clade (n = 15), including X1 and X3; the LAM clade (n = 14), including LAM1, LAM2, LAM3, LAM6, and LAM9; the S clade (n = 2); Uganda (n = 1); and Ghana (n = 1). We also found 12 strains in the EAI clade belonging to lineage 1, including the EAI2-Manila and EAI5 families. Interestingly, we identified one strain belonging to the Beijing family, which is part of lineage 2. One strain could not be identified. This study reports high genetic diversity among MTb strains, highlighting the need for a molecular epidemiological surveillance system that can help to monitor the spread of these strains, leading to more appropriate measures for TB control in HIV-infected patients.
Collapse
Affiliation(s)
- Daniel Valencia-Trujillo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (D.V.-T.); (R.L.G.-R.); (S.R.-G.)
- Servicio de Microbiología Clínica, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México 14080, Mexico; (L.N.-D.); (M.S.d.P.); (M.A.M.-S.); (E.B.-V.)
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Ciudad de México 11200, Mexico; (A.M.A.-T.); (M.M.M.-M.)
| | - Amanda Marineth Avila-Trejo
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Ciudad de México 11200, Mexico; (A.M.A.-T.); (M.M.M.-M.)
| | - Rocío Liliana García-Reyes
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (D.V.-T.); (R.L.G.-R.); (S.R.-G.)
| | - Luis Narváez-Díaz
- Servicio de Microbiología Clínica, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México 14080, Mexico; (L.N.-D.); (M.S.d.P.); (M.A.M.-S.); (E.B.-V.)
| | - Mariela Segura del Pilar
- Servicio de Microbiología Clínica, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México 14080, Mexico; (L.N.-D.); (M.S.d.P.); (M.A.M.-S.); (E.B.-V.)
| | - Mario Alberto Mújica-Sánchez
- Servicio de Microbiología Clínica, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México 14080, Mexico; (L.N.-D.); (M.S.d.P.); (M.A.M.-S.); (E.B.-V.)
| | - Eduardo Becerril-Vargas
- Servicio de Microbiología Clínica, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México 14080, Mexico; (L.N.-D.); (M.S.d.P.); (M.A.M.-S.); (E.B.-V.)
| | - Moises León-Juárez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico;
| | - Mónica Maribel Mata-Miranda
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Ciudad de México 11200, Mexico; (A.M.A.-T.); (M.M.M.-M.)
| | - Sandra Rivera-Gutiérrez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (D.V.-T.); (R.L.G.-R.); (S.R.-G.)
| | - Jorge Francisco Cerna-Cortés
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (D.V.-T.); (R.L.G.-R.); (S.R.-G.)
| |
Collapse
|
5
|
Castro-Rodriguez B, Franco-Sotomayor G, Benitez-Medina JM, Cardenas-Franco G, Jiménez-Pizarro N, Cardenas-Franco C, Aguirre-Martinez JL, Orlando SA, Hermoso de Mendoza J, Garcia-Bereguiain MA. Prevalence, drug resistance, and genotypic diversity of the RD Rio subfamily of Mycobacterium tuberculosis in Ecuador: a retrospective analysis for years 2012-2016. Front Public Health 2024; 12:1337357. [PMID: 38689770 PMCID: PMC11060180 DOI: 10.3389/fpubh.2024.1337357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/15/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction A major sublineage within the Mycobacterium tuberculosis (MTB) LAM family characterized by a new in-frame fusion gene Rv3346c/55c was discovered in Rio de Janeiro (Brazil) in 2007, called RDRio, associated to drug resistance. The few studies about prevalence of MTB RDRio strains in Latin America reported values ranging from 3% in Chile to 69.8% in Venezuela, although no information is available for countries like Ecuador. Methods A total of 814 MTB isolates from years 2012 to 2016 were screened by multiplex PCR for RDRio identification, followed by 24-loci MIRU-VNTR and spoligotyping. Results A total number of 17 MTB RDRio strains were identified, representing an overall prevalence of 2.09% among MTB strains in Ecuador. While 10.9% of the MTB isolates included in the study were multidrug resistance (MDR), 29.4% (5/17) of the RDRio strains were MDR. Discussion This is the first report of the prevalence of MTB RDRio in Ecuador, where a strong association with MDR was found, but also a very low prevalence compared to other countries in Latin America. It is important to improve molecular epidemiology tools as a part of MTB surveillance programs in Latin America to track the transmission of potentially dangerous MTB stains associated to MDR TB like MTB RDRio.
Collapse
Affiliation(s)
| | - Greta Franco-Sotomayor
- Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Guayaquil, Ecuador
- Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | | | | | - Natalia Jiménez-Pizarro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | | | | | - Solon Alberto Orlando
- Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Guayaquil, Ecuador
- Universidad Espiritu Santo, Guayaquil, Ecuador
| | | | | |
Collapse
|
6
|
Mejía-Ponce PM, Ramos-González EJ, Ramos-García AA, Lara-Ramírez EE, Soriano-Herrera AR, Medellín-Luna MF, Valdez-Salazar F, Castro-Garay CY, Núñez-Contreras JJ, De Donato-Capote M, Sharma A, Castañeda-Delgado JE, Zenteno-Cuevas R, Enciso-Moreno JA, Licona-Cassani C. Genomic epidemiology analysis of drug-resistant Mycobacterium tuberculosis distributed in Mexico. PLoS One 2023; 18:e0292965. [PMID: 37831695 PMCID: PMC10575498 DOI: 10.1371/journal.pone.0292965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Genomics has significantly revolutionized pathogen surveillance, particularly in epidemiological studies, the detection of drug-resistant strains, and disease control. Despite its potential, the representation of Latin American countries in the genomic catalogues of Mycobacterium tuberculosis (Mtb), the bacteria responsible for Tuberculosis (TB), remains limited. In this study, we present a whole genome sequencing (WGS)-based analysis of 85 Mtb clinical strains from 17 Mexican states, providing insights into local adaptations and drug resistance signatures in the region. Our results reveal that the Euro-American lineage (L4) accounts for 94% of our dataset, showing 4.1.2.1 (Haarlem, n = 32), and 4.1.1.3 (X-type, n = 34) sublineages as the most prevalent. We report the presence of the 4.1.1.3 sublineage, which is endemic to Mexico, in six additional locations beyond previous reports. Phenotypic drug resistance tests showed that 34 out of 85 Mtb samples were resistant, exhibiting a variety of resistance profiles to the first-line antibiotics tested. We observed high levels of discrepancy between phenotype and genotype associated with drug resistance in our dataset, including pyrazinamide-monoresistant Mtb strains lacking canonical variants of drug resistance. Expanding the Latin American Mtb genome databases will enhance our understanding of TB epidemiology and potentially provide new avenues for controlling the disease in the region.
Collapse
Affiliation(s)
- Paulina M. Mejía-Ponce
- Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Nuevo León, México
| | - Elsy J. Ramos-González
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - Axel A. Ramos-García
- Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Nuevo León, México
| | - Edgar E. Lara-Ramírez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - Alma R. Soriano-Herrera
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - Mitzy F. Medellín-Luna
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
- Posgrado en Ciencias Farmacobiológicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Fernando Valdez-Salazar
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - Claudia Y. Castro-Garay
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - José J. Núñez-Contreras
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | | | - Ashutosh Sharma
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Querétaro, México
| | - Julio E. Castañeda-Delgado
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
- Consejo Nacional de Ciencia y Tecnología, CONACYT, Ciudad de México, México
| | - Roberto Zenteno-Cuevas
- Instituto de Salud Pública, Universidad Veracruzana, Veracruz, México
- Red Multidisciplinaria de Investigación en Tuberculosis, Ciudad de México, México
| | - Jose Antonio Enciso-Moreno
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, México
| | - Cuauhtémoc Licona-Cassani
- Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Nuevo León, México
- Red Multidisciplinaria de Investigación en Tuberculosis, Ciudad de México, México
- Division of Integrative Biology, The Institute for Obesity Research, Tecnológico de Monterrey, Nuevo León, México
| |
Collapse
|
7
|
Proteome Profile Changes Induced by Heterologous Overexpression of Mycobacterium tuberculosis-Derived Antigens PstS-1 (Rv0934) and Ag85B (Rv1886c) in Mycobacterium microti. Biomolecules 2022; 12:biom12121836. [PMID: 36551264 PMCID: PMC9775975 DOI: 10.3390/biom12121836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/01/2022] [Accepted: 11/26/2022] [Indexed: 12/13/2022] Open
Abstract
The development of new tuberculosis vaccines remains a global priority, and recombinant vaccines are a frequently investigated option. These vaccines follow a molecular strategy that may enhance protective efficacy. However, their functional differences, particularly with respect to glycosylation, remain unknown. Recent studies have shown that glycosylation plays a key role in the host-pathogen interactions during immune recognition. The aim of this study was to determine the differences in the glycosylation profiles of two recombinant strains of Mycobacterium microti, overexpressing Ag85B (Rv1886c) and PstS-1 (Rv0934) antigens of M. tuberculosis. For each strain, the glycosylation profile was determined by Western blotting with lectins. The results showed the presence of mannosylated proteins and evidence of linked sialic acid proteins. Interestingly, different proteome and glycoproteome profiles were observed between the two recombinant strains and the wild-type strain. We have shown here that the construction of the recombinant strains of M. microti has altered the proteome and glycosylation profiles of these strains, leading us to ask what impact these changes might have on the immune response.
Collapse
|
8
|
Molina-Torres CA, Quinn FD, Castro-Garza J, Gómez-Velasco A, Ocampo-Candiani J, Bencomo-Alerm A, Sánchez-Pérez HJ, Muñoz-Jiménez S, Rendón A, Ansari A, Sharma M, Singh P, Vera-Cabrera L. Genetic Diversity of Mycobacterium tuberculosis Isolates From an Amerindian Population in Chiapas, México. Front Cell Infect Microbiol 2022; 12:875909. [PMID: 35909960 PMCID: PMC9326120 DOI: 10.3389/fcimb.2022.875909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
This is the first report of the genetic diversity of the Mycobacterium tuberculosis complex isolates found in a Mexican-Amerindian setting. In this study, we analyzed isolates collected from the Highlands region of Chiapas, Mexico, by using spoligotyping and whole-genome sequencing analyses. Seventy-three M. tuberculosis isolates were analyzed initially by spoligotyping; no new spoligotypes were identified. Nineteen percent of the isolates were identified as SIT53 (T1) (n = 14), followed by SIT42 (14%, n = 10, LAM9) and SIT119 (11%; n = 8, X1). SIT53, SIT42, and orphan isolates (16.4%, n = 12) constituted about 50% of the isolates studied and were subjected to whole-genome sequencing (WGS) analysis. Most SIT53 (10/12) isolates belonged to the Euro-American sub-lineage 4.8. Most SIT42 isolates (4/7) as .well as most orphan isolates (5/8) belonged to the lineage 4.3.3 LAM group. By comparing the single-nucleotide polymorphism (SNP) patterns of the SIT53 isolates, we found one clone (<7 SNPs) and four clustered isolates (<15 SNPs). In isolates from the SIT42 and orphan groups, we did not find any clones or clusters. This work demonstrates the success of sub-lineage 4.8 to predominate in Mexico and confirms the dominion of sub-lineage 4.3.3 in Central and South America.
Collapse
Affiliation(s)
- Carmen A. Molina-Torres
- Laboratorio Interdisciplinario de Investigación Dermatológica, Servicio de Dermatología, Hospital Universitario, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Frederick D. Quinn
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jorge Castro-Garza
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Mexico
| | - Anaximandro Gómez-Velasco
- Departamento de Ecología Humana, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Unidad Mérida, Mérida, Mexico
| | - Jorge Ocampo-Candiani
- Laboratorio Interdisciplinario de Investigación Dermatológica, Servicio de Dermatología, Hospital Universitario, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Alied Bencomo-Alerm
- Laboratorio de Micobacterias, Programa de Prevención y Control de la Tuberculosis, región Altos de Chiapas, Instituto de Salud del Estado de Chiapas, Secretaría de Salud (SSA), San Cristóbal de Las Casas, Mexico
| | | | - Sergio Muñoz-Jiménez
- Laboratorio de Micobacterias, Programa de Prevención y Control de la Tuberculosis, región Altos de Chiapas, Instituto de Salud del Estado de Chiapas, Secretaría de Salud (SSA), San Cristóbal de Las Casas, Mexico
| | - Adrián Rendón
- Centro de Investigación, Prevención y Tratamiento de Infecciones Respiratorias, Hospital Universitario, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Afzal Ansari
- Microbial Pathogenesis and Genomics Lab, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | - Mukul Sharma
- Microbial Pathogenesis and Genomics Lab, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | - Pushpendra Singh
- Microbial Pathogenesis and Genomics Lab, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | - Lucio Vera-Cabrera
- Laboratorio Interdisciplinario de Investigación Dermatológica, Servicio de Dermatología, Hospital Universitario, Universidad Autónoma de Nuevo León, Monterrey, Mexico
- *Correspondence: Lucio Vera-Cabrera,
| |
Collapse
|
9
|
Zenteno-Cuevas R, Munro-Rojas D, Pérez-Martínez D, Fernandez-Morales E, Jimenez-Ruano AC, Montero H, Escobar L, de Igartua E, Trigos Á, Fuentes-Dominguez J. Genetic diversity and drug susceptibility of Mycobacterium tuberculosis in a city with a high prevalence of drug resistant tuberculosis from Southeast of Mexico. BMC Infect Dis 2021; 21:1202. [PMID: 34847856 PMCID: PMC8630842 DOI: 10.1186/s12879-021-06904-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Background Mexico is on the top five countries with the highest number of TB cases in America continent, nevertheless, information about genotypes circulating is practically unknown. Considering the above this study aims to characterize the genetic diversity of TB in the city of Veracruz, México. Methods A cross-sectional study was conducted among positive smear samples from patients living in Veracruz City, samples were cultured, and first-line drug profiles determined. Genotyping was made by spoligotyping and MIRU-VNTR 24 loci. Associations of lineages, clusters, and variables were also analyzed. Results Among the 202 isolates analyzed resistance to at least one drug was observed in 60 (30%) isolates and 41(20%) were multidrug-resistant. Three major lineages were identified: L4/Euro-American (88%), L1/Indo-Oceanic (9%), and L2/East Asian (3%). The Euro-American lineage included more than six sublineages, the most abundant were: H (32%), T (23%), LAM (18%), and X (12%). 140 isolates (70%) were placed in 42 SITs patterns. Conclusions These results provide the first baseline data on the genetic structure of TB in the city of Veracruz. Sublineages H, X and LAM were predominant; however, it was founded an important diversity of genotypes that could contribute to the dispersion of TB and explain the high prevalence. This information might be useful for the development of further interventions to reduce impact of TB. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06904-z.
Collapse
Affiliation(s)
- Roberto Zenteno-Cuevas
- Public Health Institute, University of Veracruz, Av. Luis Castelazo Ayala S/N, A.P. 57, Col. Industrial Ánimas, Xalapa, 91190, Veracruz, México. .,Multidisciplinary Research Network on Tuberculosis, Veracruz, Mexico.
| | | | - Damián Pérez-Martínez
- Public Health Institute, University of Veracruz, Av. Luis Castelazo Ayala S/N, A.P. 57, Col. Industrial Ánimas, Xalapa, 91190, Veracruz, México.,Doctorate in Health Sciences Program, Health Sciences Institute, University of Veracruz, Veracruz, Mexico
| | - Esdras Fernandez-Morales
- Public Health Institute, University of Veracruz, Av. Luis Castelazo Ayala S/N, A.P. 57, Col. Industrial Ánimas, Xalapa, 91190, Veracruz, México.,Master of Health Science Program, Health Sciences Institute, University of Veracruz, Xalapa, Veracruz, Mexico
| | - Ana C Jimenez-Ruano
- Master of Health Science Program, Health Sciences Institute, University of Veracruz, Xalapa, Veracruz, Mexico
| | - Hilda Montero
- Public Health Institute, University of Veracruz, Av. Luis Castelazo Ayala S/N, A.P. 57, Col. Industrial Ánimas, Xalapa, 91190, Veracruz, México
| | | | | | - Ángel Trigos
- Research Center in Applied Mycology, University of Veracruz, Xalapa, Veracruz, Mexico
| | | |
Collapse
|
10
|
Characterization of genetic diversity and clonal complexes by whole genome sequencing of Mycobacterium tuberculosis isolates from Jalisco, Mexico. Tuberculosis (Edinb) 2021; 129:102106. [PMID: 34218194 DOI: 10.1016/j.tube.2021.102106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/14/2021] [Accepted: 06/20/2021] [Indexed: 11/24/2022]
Abstract
Whole genome sequencing (WGS) analysis in tuberculosis allows the prediction of drug-resistant phenotypes, identification of lineages, and to better understanding of the epidemiology and transmission chains. Nevertheless the procedure has been scarcely assessed in Mexico, in this work we analyze by WGS isolates of Mycobacterium tuberculosis circulating in Jalisco, Mexico. Lineage and phylogenetic characterization, drug resistant prediction, "in silico" spoligotyping determination, were provided by WGS in 32 M. tuberculosis clinical isolates. Lineage 4 (L4), with 28 isolates (87%) and eleven sublineages was dominant. Forty SNPs and INDELs were found in genes related to first-, and second-line drugs. Eleven isolates were sensitive, seven (22%) were predicted to be resistant to isoniazid, two resistant to rifampicin (6%) and two (6%) were multidrug-resistant tuberuclosis. Spoligotyping shows that SIT 53 (19%) and SIT 119 (16%) were dominant. Four clonal transmission complexes were found. This is the first molecular epidemiological description of TB isolates circulating in western Mexico, achieved through WGS. L4 was dominant and included a high diversity of sublineages. It was possible to track the transmission route of two clonal complexes. The WGS demonstrated to be of great utility and with further implications for clinical and epidemiological study of TB in the region.
Collapse
|
11
|
Cerezo-Cortés MI, Rodríguez-Castillo JG, Hernández-Pando R, Murcia MI. Circulation of M. tuberculosis Beijing genotype in Latin America and the Caribbean. Pathog Glob Health 2019; 113:336-351. [PMID: 31903874 PMCID: PMC7006823 DOI: 10.1080/20477724.2019.1710066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lineage 2 (East Asian), which includes the Beijing genotype, is one of the most prevalent lineages of Mycobacterium tuberculosis (Mtb) throughout the world. The Beijing family is associated to hypervirulence and drug-resistant tuberculosis. The study of this genotype's circulation in Latin America is crucial for achieving total control of TB, the goal established by the World Health Organization, for the American sub-continent, before 2035. In this sense, the present work presents an overview of the status of the Beijing genotype for this region, with a bibliographical review, and data analysis of MIRU-VNTRs for available Beijing isolates. Certain countries present a prevalent trend of <5%, suggesting low transmissibility for the region, with the exception of Cuba (17.2%), Perú (16%) and Colombia (5%). Minimum Spanning Tree analysis, obtained from MIRU-VNTR data, shows distribution of specific clonal complex strains in each country. From this data, in most countries, we found that molecular epidemiology has not been a tool used for the control of TB, suggesting that the Beijing genotype may be underestimated in Latin America. It is recommended that countries with the highest incidence of the Beijing genotype use effective control strategies and increased care, as a requirement for public health systems.
Collapse
Affiliation(s)
- MI Cerezo-Cortés
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - JG Rodríguez-Castillo
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - R Hernández-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition, México D.F., Mexico
| | - MI Murcia
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
12
|
Flores-Treviño S, Rodríguez-Noriega E, Garza-González E, González-Díaz E, Esparza-Ahumada S, Escobedo-Sánchez R, Pérez-Gómez HR, León-Garnica G, Morfín-Otero R. Clinical predictors of drug-resistant tuberculosis in Mexico. PLoS One 2019; 14:e0220946. [PMID: 31415616 PMCID: PMC6695153 DOI: 10.1371/journal.pone.0220946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 07/26/2019] [Indexed: 12/02/2022] Open
Abstract
Drug-resistant tuberculosis (DR-TB) remains a major global health problem. Early treatment of TB is critical; in the absence of rapid- susceptibility testing, the empiric selection of drugs should be guided by clinical data. This study aimed to determine the clinical predictors of DR-TB. From September 2010 to August 2017, sociodemographic and clinical characteristics were collected from 144 patients with tuberculosis at the Hospital Civil de Guadalajara, Mexico. Isolates were subjected to drug-susceptibility testing. Clinical predictors of DR-TB were determined using univariate and multivariate analysis. Any drug, isoniazid, and rifampin resistance rates were 47.7, 23.0, and 11.6%, respectively. The visualization of cavities and nodules through either chest radiography or computed tomography were independent predictors of DR-TB. In conclusion, early detection of DR-TB in this population could be based on multiple cavities being observed using chest imaging. This study’s results can be applied to future patients with TB in our community to optimize the DR-TB diagnostic process.
Collapse
Affiliation(s)
- Samantha Flores-Treviño
- Servicio de Gastroenterología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Eduardo Rodríguez-Noriega
- Hospital Civil de Guadalajara, Fray Antonio Alcalde, Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Elvira Garza-González
- Servicio de Gastroenterología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Esteban González-Díaz
- Hospital Civil de Guadalajara, Fray Antonio Alcalde, Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Sergio Esparza-Ahumada
- Hospital Civil de Guadalajara, Fray Antonio Alcalde, Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Rodrigo Escobedo-Sánchez
- Hospital Civil de Guadalajara, Fray Antonio Alcalde, Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Héctor R. Pérez-Gómez
- Hospital Civil de Guadalajara, Fray Antonio Alcalde, Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Gerardo León-Garnica
- Hospital Civil de Guadalajara, Fray Antonio Alcalde, Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Rayo Morfín-Otero
- Hospital Civil de Guadalajara, Fray Antonio Alcalde, Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
- * E-mail:
| |
Collapse
|
13
|
Characterization of clinical isolates of Mycobacterium tuberculosis from indigenous peoples of Colombia. ACTA ACUST UNITED AC 2019; 39:78-92. [PMID: 31529836 DOI: 10.7705/biomedica.v39i3.4318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Tuberculosis continues to be a public health priority. Indigenous peoples are vulnerable groups with cultural determinants that increase the risk of the disease. OBJECTIVE To determine molecular epidemiology and phenotypical features and of Mycobacterium tuberculosis isolates from indigenous people in Colombia during the period from 2009 to 2014. MATERIALS AND METHODS We conducted an analytical observational study; we analyzed 234 isolates to determine their patterns of sensitivity to antituberculosis drugs and their molecular structures by spoligotyping. RESULTS The isolates came from 41 indigenous groups, predominantly the Wayúu (13.10%) and Emberá Chamí (11.35%). We found 102 spoligotypes distributed among seven genetic families (37.2% LAM, 15.8% Haarlem, 8.1% T, 3.4% U, 2.6% S, 2.1% X, and 0.9%, Beijing). The association analysis showed that the non-clustered isolates were related to prior treatment, relapse, orphan spoligotypes, and the Beijing family. The H family presented an association with the Arhuaco and Camëntŝá indigenous groups, the U family was associated with the Wounaan group, and the T family was associated with the Motilón Barí group. CONCLUSIONS This is the first national study on M. tuberculosis characterization in indigenous groups. The study evidenced that diagnosis in indigenous people is late. We described 53% of orphan patterns that could be typical of the Colombian indigenous population. The high percentage of grouping by spoligotyping (62%) could indicate cases of active transmission, a situation that should be corroborated using a second genotyping marker. A new Beijing spoligotype (Beijing-like SIT 406) was identified in Colombia.
Collapse
|
14
|
Woodman M, Haeusler IL, Grandjean L. Tuberculosis Genetic Epidemiology: A Latin American Perspective. Genes (Basel) 2019; 10:genes10010053. [PMID: 30654542 PMCID: PMC6356704 DOI: 10.3390/genes10010053] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 11/16/2022] Open
Abstract
There are an estimated 10 million new cases of tuberculosis worldwide annually, with 282,000 new or relapsed cases each year reported from the Americas. With improvements in genome sequencing technology, it is now possible to study the genetic diversity of tuberculosis with much greater resolution. Although tuberculosis bacteria do not engage in horizontal gene transfer, the genome is far more variable than previously thought. The study of genome-wide variation in tuberculosis has improved our understanding of the evolutionary origins of tuberculosis, the arrival of tuberculosis in Latin America, the genetic determinants of drug resistance, and lineage-specific associations with important clinical phenotypes. This article reviews what is known about the arrival of tuberculosis in Latin America, the genetic diversity of tuberculosis in Latin America, and the genotypic determinants of clinical phenotypes.
Collapse
Affiliation(s)
- Marc Woodman
- Institute of Child Health, University College London, London WC1N 3JH, UK.
| | - Ilsa L Haeusler
- Institute of Child Health, University College London, London WC1N 3JH, UK.
| | - Louis Grandjean
- Institute of Child Health, University College London, London WC1N 3JH, UK.
- Department of Medicine, Imperial College London, London W2 1NY, UK.
- Great Ormond Street Hospital, Institute of Child Health, University College London, London WC1N 3JH, UK.
- Laboratorio de Investigacion y Desarollo, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martin de Porres 15102, Lima, Peru.
| |
Collapse
|
15
|
Feyisa SG, Abdurahman AA, Jimma W, Chaka EE, Kardan-Yamchi J, Kazemian H. Resistance of Mycobacterium tuberculosis strains to Rifampicin: A systematic review and meta-analysis. Heliyon 2019; 5:e01081. [PMID: 30619960 PMCID: PMC6314001 DOI: 10.1016/j.heliyon.2018.e01081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/15/2018] [Accepted: 12/18/2018] [Indexed: 12/01/2022] Open
Abstract
Introduction Antitubercular drug resistance strain is a horrifying barrier to effective TB treatment and prevention. The present study aimed to determine the prevalence and geographical distribution of rifampicin-resistance M. tuberculosis (MTB) strains. Methods We searched two electronic databases, PubMed and EMBASE, until 26 March 2017 and updated our search on 27 April 2018 and accessed all prevalence studies of MTB strain and their drug susceptibility patterns to rifampicin. The pooled prevalence estimate was determined using random effects model. Results We identified 23 studies satisfying the inclusion criteria. The proportion of rifampicin resistance strains was diverged depending on the type of strains, country and Regions. The pooled estimate of rifampicin-resistance strains of MTB for the included studies was 4% (95% CI: 3–5%). In subgroup analysis based on World Health Organization (WHO) Regions, the pooled estimate of rifampicin-resistance strains of MTB was 11% (95% CI: 9–13%) with the Western Pacific Region 24%, Europian Region 10%, South-East Asian Region 6%, African Region 3% and Region of American 1%. Beijing family was the most dominant strain resistance to rifampicin with pooled prevalence of 14% (95% CI: 10–18%). The pooled prevalence of other families, i.e. EAI, T, CAS, MANU, Haarlem, LAM and Ural, was ≤2% for each. Conclusion High burden of rifampicin resistance MTB strains was identified in the Western Pacific Region. Of these, Beijing family was predominantly resistance to rifampicin in Western Pacific Region and South-East Asian Region and also spread to European Region and Region of American.
Collapse
Affiliation(s)
- Seifu Gizaw Feyisa
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Biology, College of Natural Sciences, Jimma University, Ethiopia
| | - Ahmed Abdulahi Abdurahman
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Worku Jimma
- Department of Health Information Management, School of School of Allied Medical Sciences, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Department of Information Science, Jimma Institute of Technology, Jimma University, Ethiopia
| | - Eshetu Ejeta Chaka
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Public Health, College of Medical and Health Sciences, Ambo University, Ethiopia
| | - Jalil Kardan-Yamchi
- Department of Pathobiology, Division of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran.,Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Ferreira LM, Sáfadi T, Ferreira JL. Wavelet-domain elastic net for clustering on genomes strains. Genet Mol Biol 2018; 41:884-892. [PMID: 30508009 PMCID: PMC6415607 DOI: 10.1590/1678-4685-gmb-2018-0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/11/2018] [Indexed: 11/22/2022] Open
Abstract
We propose to evaluate genome similarity by combining discrete non-decimated
wavelet transform (NDWT) and elastic net. The wavelets represent a signal with
levels of detail, that is, hidden components are detected by means of the
decomposition of this signal, where each level provides a different
characteristic. The main feature of the elastic net is the grouping of
correlated variables where the number of predictors is greater than the number
of observations. The combination of these two methodologies applied in the
clustering analysis of the Mycobacterium tuberculosis genome
strains proved very effective, being able to identify clusters at each level of
decomposition.
Collapse
Affiliation(s)
- Leila Maria Ferreira
- Programa de Pós-Graduação em Estatística e Experimentação Agropecuária, Departamento de Estatística, Universidade Federal de Lavras (UFLA), Lavras, MG, Brazil
| | - Thelma Sáfadi
- Departamento de Estatística, Universidade Federal de Lavras (UFLA), Lavras, MG, Brazil
| | - Juliano Lino Ferreira
- Empresa Brasileira de Pesquisa Agropecuária (Embrapa) Pecuária Sul. Bagé, RS, Brazil
| |
Collapse
|
17
|
Zenteno-Cuevas R, Cuevas-Córdoba B, Parissi-Crivelli A. rpoB, katG and inhA mutations in multi-drug resistant strains of Mycobacterium tuberculosis clinical isolates from southeast Mexico. Enferm Infecc Microbiol Clin 2018; 37:307-313. [PMID: 30316618 DOI: 10.1016/j.eimc.2018.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/14/2018] [Accepted: 09/04/2018] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Previous knowledge of molecular mechanisms related with multi-drug resistances in tuberculosis is important if molecular diagnostic procedures want to be used in specific geographical regions. For that reason, the aim of this study was to investigate the mutations at rpoB, katG and inhA in multi-drug resistant tuberculosis isolates from Southeast Mexico. METHODS Isolates of tuberculosis with a confirmed resistance against rifampicin and isoniazid were collected and sequencing analysis was performed of the rpoB rifampicin resistance-determining region, the katG and the encoding region of inhA. RESULT Of 74 isolates with multidrug resistance, 34 (46%) presented six mutations in katG; the most abundant was katG315 in 29 (39%) isolates. At inhA, nine (11%) isolates presented three mutations; the most frequent was inhA21, located in five (6%) strains. Eleven polymorphisms were observed at rpoB in 61 (82%) isolates, prevailing rpoB531 and rpoB 526 in 48 (64%) and ten (12%) isolates, respectively. Eleven double combinations were observed in 39 (52%) isolates, the most common of which was rpoB531+katG315, found in 22 (29%) strains. CONCLUSION This study provides valuable information on the diversity of polymorphisms in genes related to multidrug-resistant tuberculosis, as well as the presence of new mutations not previously described; this information should be considered in the implementation of molecular diagnostic tests.
Collapse
|
18
|
Shi J, Zheng D, Zhu Y, Ma X, Wang S, Li H, Xing J. Role of MIRU-VNTR and spoligotyping in assessing the genetic diversity of Mycobacterium tuberculosis in Henan Province, China. BMC Infect Dis 2018; 18:447. [PMID: 30176820 PMCID: PMC6122615 DOI: 10.1186/s12879-018-3351-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 08/21/2018] [Indexed: 01/31/2023] Open
Abstract
Background Tuberculosis remains a serious threat to human health as an infectious disease in China. Henan, a most populated province in China, has a high incidence of tuberculosis (TB). Though the genetic diversity of Mycobacterium tuberculosis (MTB) has been investigated in many regions, there have been only a few studies on the molecular characteristics and drug resistance phenotypes in Henan. This is the first study on the genetic profile of MTB from Henan. Methods A total of 668 MTB isolates from various areas were genotyped with spoligotyping and 26-locus MIRU-VNTR (classical 24-locus MIRU-VNTR and 2 other loci). The association between TB spoligotype signatures and drug-resistant profiles was analysed. Results Our data revealed that MTB isolates circulating in Henan had a high degree of genetic variation. The Beijing family was the most predominant genotype (83.53%,n = 558), and the typical Beijing type(ST1) was the major sublineage (81.73%,n = 546). In total,668 isolates were divided into 567 different types, forming 38 clusters (2–15 isolates per cluster), and 529 unique types by 26-locus MIRU-VNTR analysis. There was no correlation between the Beijing family and gender, age at diagnosis or treatment history, whereas the Beijing family was significantly associated with all four first-line drug resistance and multidrug-resistant phenotypes. For these samples, 15 of 26 MIRU-VNTR loci had high or moderate discriminatory power according to the Hunter-Gaston discriminatory index. A combination of the 10 most polymorphic loci had similar discriminatory power as the 26-locus set. Conclusion The Beijing genotype is the most prevalent family. Ten-locus MIRU-VNTR in combination with spoligotyping can efficiently classify the molecular type of MTB in Henan Province. Electronic supplementary material The online version of this article (10.1186/s12879-018-3351-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Shi
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China.
| | - Danwei Zheng
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China
| | - Yankun Zhu
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China
| | - Xiaoguang Ma
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China
| | - Shaohua Wang
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China
| | - Hui Li
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China.
| | - Jin Xing
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China
| |
Collapse
|
19
|
Lopez-Lopez N, Martinez AGR, Garcia-Hernandez MH, Hernandez-Pando R, Castañeda-Delgado JE, Lugo-Villarino G, Cougoule C, Neyrolles O, Rivas-Santiago B, Valtierra-Alvarado MA, Rubio-Caceres M, Enciso-Moreno JA, Serrano CJ. Type-2 diabetes alters the basal phenotype of human macrophages and diminishes their capacity to respond, internalise, and control Mycobacterium tuberculosis. Mem Inst Oswaldo Cruz 2018; 113:e170326. [PMID: 29513874 PMCID: PMC5851047 DOI: 10.1590/0074-02760170326] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/31/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is a risk factor for the development of tuberculosis (TB), although the associated mechanisms are not known. OBJECTIVES To study the association between T2D and the basal phenotype of macrophages, and their immune response to Mycobacterium tuberculosis (Mtb) infection. METHODS We evaluated the influence of T2D on the response of monocyte-derived macrophages (MDM) to Mtb in patients with T2D (n = 10) compared to healthy subjects (n = 9), before and after infection with Mtb clinical isolates bearing different degrees of virulence. The levels of cell surface markers for activation secreted cytokines and chemokines, bacterial association, and intracellular bacterial growth were evaluated. FINDINGS The expression levels of HLA-DR, CD80, and CD86 were low while those of of PD-L1 were high in uninfected MDMs derived from patients with diabetes; as a result of Mtb infection, changes were only observed in the expression levels of PD-L1. The levels of cytokines (e.g., IL-6, IL-1β, IL-10, and IL-12) and chemokines (e.g., MCP-1, MIG, and RANTES) are perturbed in MDMs derived from patients with diabetes, both before infection and in response to Mtb infection. In response to the more virulent Mtb strains, the levels of association and bacterial clearance were diminished in MDMs derived from patients with diabetes. CONCLUSIONS T2D affects the basal activation state of the macrophages and its capacity to respond and control Mtb infection.
Collapse
Affiliation(s)
- Nallely Lopez-Lopez
- Instituto Mexicano del Seguro Social, Unidad de Investigación Biomédica Zacatecas, Zacatecas, Mexico
- Universidad Autónoma de San Luis Potosí, Escuela de Medicina, Departamento de Inmunología, San Luis Potosí, Mexico
| | - Ana Gabriela Ramos Martinez
- Instituto Mexicano del Seguro Social, Unidad de Investigación Biomédica Zacatecas, Zacatecas, Mexico
- Universidad Autónoma de San Luis Potosí, Escuela de Medicina, Departamento de Inmunología, San Luis Potosí, Mexico
| | | | - Rogelio Hernandez-Pando
- Instituto Nacional de Ciencias Médicas y de la Nutrición Salvador Zubirán, Departamento de Patología, Sección de Patología Experimental, Ciudad de México, México
| | - Julio Enrique Castañeda-Delgado
- Consejo Nacional de Ciencia Y Tecnología-CONACyT, Cátedras CONACyT, Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, México
| | - Geanncarlo Lugo-Villarino
- Université Paul Sabatier, Centre National de la Recherche Scientifique, Institut de Pharmacologie et Biologie Structurale, Toulouse, France
| | - Céline Cougoule
- Université Paul Sabatier, Centre National de la Recherche Scientifique, Institut de Pharmacologie et Biologie Structurale, Toulouse, France
| | - Olivier Neyrolles
- Université Paul Sabatier, Centre National de la Recherche Scientifique, Institut de Pharmacologie et Biologie Structurale, Toulouse, France
| | - Bruno Rivas-Santiago
- Instituto Mexicano del Seguro Social, Unidad de Investigación Biomédica Zacatecas, Zacatecas, Mexico
| | - Monica Alejandra Valtierra-Alvarado
- Instituto Mexicano del Seguro Social, Unidad de Investigación Biomédica Zacatecas, Zacatecas, Mexico
- Universidad Autónoma de San Luis Potosí, Escuela de Medicina, Departamento de Inmunología, San Luis Potosí, Mexico
| | - Marisela Rubio-Caceres
- Instituto Mexicano del Seguro Social, Unidad de Medicina Familiar No. 4, Guadalupe, Zacatecas, México
| | | | - Carmen Judith Serrano
- Instituto Mexicano del Seguro Social, Unidad de Investigación Biomédica Zacatecas, Zacatecas, Mexico
| |
Collapse
|
20
|
Juarez-Eusebio DM, Munro-Rojas D, Muñiz-Salazar R, Laniado-Laborín R, Martinez-Guarneros JA, Flores-López CA, Zenteno-Cuevas R. Molecular characterization of multidrug-resistant Mycobacterium tuberculosis isolates from high prevalence tuberculosis states in Mexico. INFECTION GENETICS AND EVOLUTION 2016; 55:384-391. [PMID: 27637930 DOI: 10.1016/j.meegid.2016.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/20/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
Abstract
Mexico is one of the most important contributors of multidrug resistance tuberculosis (MDR-TB) in Latin-America, however little is known about the molecular characteristics of these strains. For this reason, the objective of this work was to determine the genotype and characterize polymorphisms in genes associated with resistance to rifampicin, isoniazid, and second-line drugs in isolates from two regions of Mexico with high prevalence of drug resistant tuberculosis. Clinical isolates from individuals with confirmed MDR-TB were genotyped using MIRU-VNTR 12 loci. To characterize the polymorphisms in genes associated with resistance to rifampicin, isoniazid and second-line drugs; rpoB, katG, inhA, rrs, eis, gyrA, gyrB and tlyA were sequenced. 22 (41%) of the 54 MDR-TB isolates recovered were from the state of Baja California, while 32 (59%) were from Veracruz. The results show the katGS315T mutation was observed in 20% (11/54) of the isolates, while rpoBS315L was present in 33% (18/54). rrs had three polymorphisms (T1239C, ntA1401C and ntA1401G), gyrB presented no modifications, whereas gyrA showed five (S95T, F60Y, A90V, S91P and P124A), eis two (G-10A and A431G) and tlyA one (insertion at codon 67). Only 20% (11/54) of isolates were confirmed as MDR-TB by sequencing, and no mutations at any of the genes sequenced were observed in 43% (23/54) of the strains. Two isolates were recognized with the proper set of mutations like pre-XDR and one was XDR-TB. Eighteen isolates were classified as orphans and the remaining thirty-six were distributed in fourteen lineages, the most frequent were S (11%), Haarlem (9%), Ghana (9%) and LAM (7%). Out of the fourteen clusters identified, seven included unknown genotypes and nine had lineages. This is one of the most detailed analyses of genotypic characteristics and mutations associated with drug resistance to first and second-line drugs in MDR-TB isolates from Mexico. An important genetic variability and significant discrepancy between phenotypic tests and polymorphisms was observed. Our results set the need to screen additional loci as well as implement a molecular epidemiological surveillance system of MDR-TB in the country.
Collapse
Affiliation(s)
- Dulce Maria Juarez-Eusebio
- Instituto de Salud Pública, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, Col. Industrial Animas, CP 91190 Jalapa, Veracruz, Mexico
| | - Daniela Munro-Rojas
- Instituto de Salud Pública, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, Col. Industrial Animas, CP 91190 Jalapa, Veracruz, Mexico; Instituto de Ciencias de Salud, Universidad Veracruzana, Veracruz, Mexico
| | - Raquel Muñiz-Salazar
- Laboratorio de Epidemiología y Ecología y Molecular, Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico; Red Multidisciplinaria de Investigación en Tuberculosis (www.remitb.org), Mexico
| | - Rafael Laniado-Laborín
- Clínica de Tuberculosis, Hospital General de Tijuana, ISESALUD, Tijuana, Baja California, Mexico; Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Baja California, Mexico; Red Multidisciplinaria de Investigación en Tuberculosis (www.remitb.org), Mexico
| | - Jose Armando Martinez-Guarneros
- Red Multidisciplinaria de Investigación en Tuberculosis (www.remitb.org), Mexico; Departamento de Mycobacterias, Instituto Nacional de Diagnóstico y Referencia Epidemiológica, Mexico
| | - Carlos A Flores-López
- Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico; Red Multidisciplinaria de Investigación en Tuberculosis (www.remitb.org), Mexico
| | - Roberto Zenteno-Cuevas
- Instituto de Salud Pública, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, Col. Industrial Animas, CP 91190 Jalapa, Veracruz, Mexico; Red Multidisciplinaria de Investigación en Tuberculosis (www.remitb.org), Mexico.
| |
Collapse
|
21
|
Mbugi EV, Katale BZ, Streicher EM, Keyyu JD, Kendall SL, Dockrell HM, Michel AL, Rweyemamu MM, Warren RM, Matee MI, van Helden PD, Couvin D, Rastogi N. Mapping of Mycobacterium tuberculosis Complex Genetic Diversity Profiles in Tanzania and Other African Countries. PLoS One 2016; 11:e0154571. [PMID: 27149626 PMCID: PMC4858144 DOI: 10.1371/journal.pone.0154571] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/15/2016] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to assess and characterize Mycobacterium tuberculosis complex (MTBC) genotypic diversity in Tanzania, as well as in neighbouring East and other several African countries. We used spoligotyping to identify a total of 293 M. tuberculosis clinical isolates (one isolate per patient) collected in the Bunda, Dar es Salaam, Ngorongoro and Serengeti areas in Tanzania. The results were compared with results in the SITVIT2 international database of the Pasteur Institute of Guadeloupe. Genotyping and phylogeographical analyses highlighted the predominance of the CAS, T, EAI, and LAM MTBC lineages in Tanzania. The three most frequent Spoligotype International Types (SITs) were: SIT21/CAS1-Kili (n = 76; 25.94%), SIT59/LAM11-ZWE (n = 22; 7.51%), and SIT126/EAI5 tentatively reclassified as EAI3-TZA (n = 18; 6.14%). Furthermore, three SITs were newly created in this study (SIT4056/EAI5 n = 2, SIT4057/T1 n = 1, and SIT4058/EAI5 n = 1). We noted that the East-African-Indian (EAI) lineage was more predominant in Bunda, the Manu lineage was more common among strains isolated in Ngorongoro, and the Central-Asian (CAS) lineage was more predominant in Dar es Salaam (p-value<0.0001). No statistically significant differences were noted when comparing HIV status of patients vs. major lineages (p-value = 0.103). However, when grouping lineages as Principal Genetic Groups (PGG), we noticed that PGG2/3 group (Haarlem, LAM, S, T, and X) was more associated with HIV-positive patients as compared to PGG1 group (Beijing, CAS, EAI, and Manu) (p-value = 0.03). This study provided mapping of MTBC genetic diversity in Tanzania (containing information on isolates from different cities) and neighbouring East African and other several African countries highlighting differences as regards to MTBC genotypic distribution between Tanzania and other African countries. This work also allowed underlining of spoligotyping patterns tentatively grouped within the newly designated EAI3-TZA lineage (remarkable by absence of spacers 2 and 3, and represented by SIT126) which seems to be specific to Tanzania. However, further genotyping information would be needed to confirm this specificity.
Collapse
Affiliation(s)
- Erasto V. Mbugi
- Department of Biochemistry, Muhimbili University of Health and Allied Sciences, P. O. Box 65001, Dar es Salaam, Tanzania
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Bugwesa Z. Katale
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
- Tanzania Wildlife Research Institute (TAWIRI), P.O. Box 661, Arusha, Tanzania
| | - Elizabeth M. Streicher
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/ South African Medical Research Council (MRC) Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| | - Julius D. Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), P.O. Box 661, Arusha, Tanzania
| | - Sharon L. Kendall
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Hazel M. Dockrell
- The Royal Veterinary College, Royal College Street, London, NW1 0TU, United Kingdom
| | - Anita L. Michel
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Mark M. Rweyemamu
- Southern African Centre for Infectious Disease Surveillance, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Robin M. Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/ South African Medical Research Council (MRC) Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| | - Mecky I. Matee
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Paul D. van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/ South African Medical Research Council (MRC) Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| | - David Couvin
- WHO Supranational TB Reference Laboratory, Tuberculosis & Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Joliviere, BP 484, 97183, Abymes, Guadeloupe
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Tuberculosis & Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Joliviere, BP 484, 97183, Abymes, Guadeloupe
| |
Collapse
|