1
|
Slane EG, Tambrini SJ, Cummings BS. Therapeutic potential of lipin inhibitors for the treatment of cancer. Biochem Pharmacol 2024; 222:116106. [PMID: 38442792 DOI: 10.1016/j.bcp.2024.116106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/28/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Lipins are phosphatidic acid phosphatases (PAP) that catalyze the conversion of phosphatidic acid (PA) to diacylglycerol (DAG). Three lipin isoforms have been identified: lipin-1, -2 and -3. In addition to their PAP activity, lipin-1 and -2 act as transcriptional coactivators and corepressors. Lipins have been intensely studied for their role in regulation of lipid metabolism and adipogenesis; however, lipins are hypothesized to mediate several pathologies, such as those involving metabolic diseases, neuropathy and even cognitive impairment. Recently, an emerging role for lipins have been proposed in cancer. The study of lipins in cancer has been hampered by lack of inhibitors that have selectivity for lipins, that differentiate between lipin family members, or that are suitable for in vivo studies. Such inhibitors have the potential to be extremely useful as both molecular tools and therapeutics. This review describes the expression and function of lipins in various tissues and their roles in several diseases, but with an emphasis on their possible role in cancer. The mechanisms by which lipins mediate cancer cell growth are discussed and the potential usefulness of selective lipin inhibitors is hypothesized. Finally, recent studies reporting the crystallization of lipin-1 are discussed to facilitate rational design of novel lipin inhibitors.
Collapse
Affiliation(s)
- Elizabeth G Slane
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Samantha J Tambrini
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Brian S Cummings
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
2
|
Benesch MG, Tang X, Brindley DN, Takabe K. Autotaxin and Lysophosphatidate Signaling: Prime Targets for Mitigating Therapy Resistance in Breast Cancer. World J Oncol 2024; 15:1-13. [PMID: 38274724 PMCID: PMC10807915 DOI: 10.14740/wjon1762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
Overcoming and preventing cancer therapy resistance is the most pressing challenge in modern breast cancer management. Consequently, most modern breast cancer research is aimed at understanding and blocking these therapy resistance mechanisms. One increasingly promising therapeutic target is the autotaxin (ATX)-lysophosphatidate (LPA)-lipid phosphate phosphatase (LPP) axis. Extracellular LPA, produced from albumin-bound lysophosphatidylcholine by ATX and degraded by the ecto-activity of the LPPs, is a potent cell-signaling mediator of tumor growth, invasion, angiogenesis, immune evasion, and resistance to cancer treatment modalities. LPA signaling in the post-natal organism has central roles in physiological wound healing, but these mechanisms are subverted to fuel pathogenesis in diseases that arise from chronic inflammatory processes, including cancer. Over the last 10 years, our understanding of the role of LPA signaling in the breast tumor microenvironment has begun to mature. Tumor-promoting inflammation in breast cancer leads to increased ATX production within the tumor microenvironment. This results in increased local concentrations of LPA that are maintained in part by decreased overall cancer cell LPP expression that would otherwise more rapidly break it down. LPA signaling through six G-protein-coupled LPA receptors expressed by cancer cells can then activate virtually every known tumorigenic pathway. Consequently, to target therapy resistance and tumor growth mediated by LPA signaling, multiple inhibitors against the LPA signaling axis are entering clinical trials. In this review, we summarize recent developments in LPA breast cancer biology, and illustrate how these novel therapeutics against the LPA signaling pathway may be excellent adjuncts to extend the efficacy of evolving breast cancer treatments.
Collapse
Affiliation(s)
- Matthew G.K. Benesch
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Xiaoyun Tang
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - David N. Brindley
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
| |
Collapse
|
3
|
Benesch MGK, Wu R, Tang X, Brindley DN, Ishikawa T, Takabe K. Decreased Lipid Phosphate Phosphatase 1/3 and Increased Lipid Phosphate Phosphatase 2 Expression in the Human Breast Cancer Tumor Microenvironment Promotes Tumor Progression and Immune System Evasion. Cancers (Basel) 2023; 15:2299. [PMID: 37190226 PMCID: PMC10136837 DOI: 10.3390/cancers15082299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The LPP family is comprised of three enzymes that dephosphorylate bioactive lipid phosphates both intracellularly and extracellularly. Pre-clinical breast cancer models have demonstrated that decreased LPP1/3 with increased LPP2 expression correlates to tumorigenesis. This though has not been well verified in human specimens. In this study, we correlate LPP expression data to clinical outcomes in over 5000 breast cancers from three independent cohorts (TCGA, METABRIC, and GSE96058), investigate biological function using gene set enrichment analysis (GSEA) and the xCell cell-type enrichment analysis, and confirm sources of LPP production in the tumor microenvironment (TME) using single-cell RNA-sequencing (scRNAseq) data. Decreased LPP1/3 and increased LPP2 expression correlated to increased tumor grade, proliferation, and tumor mutational burden (all p < 0.001), as well as worse overall survival (hazard ratios 1.3-1.5). Further, cytolytic activity was decreased, consistent with immune system invasion. GSEA data demonstrated multiple increased inflammatory signaling, survival, stemness, and cell signaling pathways with this phenotype across all three cohorts. scRNAseq and the xCell algorithm demonstrated that most tumor LPP1/3 was expressed by endothelial cells and tumor-associated fibroblasts and LPP2 by cancer cells (all p < 0.01). Restoring the balance in LPP expression levels, particularly through LPP2 inhibition, could represent novel adjuvant therapeutic options in breast cancer treatment.
Collapse
Affiliation(s)
- Matthew G. K. Benesch
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Rongrong Wu
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan; (R.W.); (T.I.)
| | - Xiaoyun Tang
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (X.T.); (D.N.B.)
| | - David N. Brindley
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (X.T.); (D.N.B.)
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan; (R.W.); (T.I.)
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan; (R.W.); (T.I.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
| |
Collapse
|
4
|
Tabury K, Monavarian M, Listik E, Shelton AK, Choi AS, Quintens R, Arend RC, Hempel N, Miller CR, Györrfy B, Mythreye K. PVT1 is a stress-responsive lncRNA that drives ovarian cancer metastasis and chemoresistance. Life Sci Alliance 2022; 5:5/11/e202201370. [PMID: 35820706 PMCID: PMC9275596 DOI: 10.26508/lsa.202201370] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/18/2023] Open
Abstract
Metastatic growth of ovarian cancer cells into the peritoneal cavity requires adaptation to various cellular stress factors to facilitate cell survival and growth. Here, we demonstrate the role of PVT1, one such stress induced long non-coding RNA, in ovarian cancer growth and metastasis. PVT1 is an amplified and overexpressed lncRNA in ovarian cancer with strong predictive value for survival and response to targeted therapeutics. We find that expression of PVT1 is regulated by tumor cells in response to cellular stress, particularly loss of cell-cell contacts and changes in matrix rigidity occurring in a YAP1-dependent manner. Induction of PVT1 promotes tumor cell survival, growth, and migration. Conversely, reducing PVT1 levels robustly abrogates metastatic behavior and tumor cell dissemination in cell lines and syngeneic transplantation models in vivo. We find that reducing PVT1 causes widespread changes in the transcriptome leading to alterations in cellular stress response and metabolic pathways including doxorubicin metabolism, which impacts chemosensitivity. Together, these findings implicate PVT1 as a promising therapeutic target to suppress metastasis and chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Kevin Tabury
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC, USA,Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium,Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Mehri Monavarian
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Eduardo Listik
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Abigail K Shelton
- Division of Neuropathology, Department of Pathology, O’Neal Comprehensive Cancer Center, Comprehensive Neuroscience Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Alex Seok Choi
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Rebecca C Arend
- Department of Gynecology Oncology, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Nadine Hempel
- Department of Medicine, Division of Hematology Oncology, University of Pittsburgh School of Medicine Pittsburgh, PA, USA,Department of Pharmacology, and Obstetrics and Gynecology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - C Ryan Miller
- Division of Neuropathology, Department of Pathology, O’Neal Comprehensive Cancer Center, Comprehensive Neuroscience Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Balázs Györrfy
- TTK Cancer Biomarker Research Group, Institute of Enzymology, and Semmelweis University Department of Bioinformatics and 2nd Department of Pediatrics, Budapest, Hungary
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA,Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA,Correspondence:
| |
Collapse
|
5
|
Horst B, Pradhan S, Chaudhary R, Listik E, Quintero-Macias L, Choi AS, Southard M, Liu Y, Whitaker R, Hempel N, Berchuck A, Nixon AB, Lee NY, Henis YI, Mythreye K. Hypoxia-induced inhibin promotes tumor growth and vascular permeability in ovarian cancers. Commun Biol 2022; 5:536. [PMID: 35654828 PMCID: PMC9163327 DOI: 10.1038/s42003-022-03495-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/17/2022] [Indexed: 12/21/2022] Open
Abstract
Hypoxia, a driver of tumor growth and metastasis, regulates angiogenic pathways that are targets for vessel normalization and ovarian cancer management. However, toxicities and resistance to anti-angiogenics can limit their use making identification of new targets vital. Inhibin, a heteromeric TGFβ ligand, is a contextual regulator of tumor progression acting as an early tumor suppressor, yet also an established biomarker for ovarian cancers. Here, we find that hypoxia increases inhibin levels in ovarian cancer cell lines, xenograft tumors, and patients. Inhibin is regulated primarily through HIF-1, shifting the balance under hypoxia from activins to inhibins. Hypoxia regulated inhibin promotes tumor growth, endothelial cell invasion and permeability. Targeting inhibin in vivo through knockdown and anti-inhibin strategies robustly reduces permeability in vivo and alters the balance of pro and anti-angiogenic mechanisms resulting in vascular normalization. Mechanistically, inhibin regulates permeability by increasing VE-cadherin internalization via ACVRL1 and CD105, a receptor complex that we find to be stabilized directly by inhibin. Our findings demonstrate direct roles for inhibins in vascular normalization via TGF-β receptors providing new insights into the therapeutic significance of inhibins as a strategy to normalize the tumor vasculature in ovarian cancer. Hypoxia increases levels of the heteromeric TGFβ ligand inhibin in ovarian cancer and inhibin promotes tumor growth, endothelial cell invasion and permeability.
Collapse
|
6
|
Tang X, Brindley DN. Lipid Phosphate Phosphatases and Cancer. Biomolecules 2020; 10:biom10091263. [PMID: 32887262 PMCID: PMC7564803 DOI: 10.3390/biom10091263] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/22/2022] Open
Abstract
Lipid phosphate phosphatases (LPPs) are a group of three enzymes (LPP1–3) that belong to a phospholipid phosphatase (PLPP) family. The LPPs dephosphorylate a wide spectrum of bioactive lipid phosphates, among which lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P) are two important extracellular signaling molecules. The LPPs are integral membrane proteins, which are localized on plasma membranes and intracellular membranes, including the endoplasmic reticulum and Golgi network. LPPs regulate signaling transduction in cancer cells and demonstrate different effects in cancer progression through the breakdown of extracellular LPA and S1P and other intracellular substrates. This review is intended to summarize an up-to-date understanding about the functions of LPPs in cancers.
Collapse
Affiliation(s)
- Xiaoyun Tang
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - David N. Brindley
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence:
| |
Collapse
|
7
|
Role of Adipose Tissue-Derived Autotaxin, Lysophosphatidate Signaling, and Inflammation in the Progression and Treatment of Breast Cancer. Int J Mol Sci 2020; 21:ijms21165938. [PMID: 32824846 PMCID: PMC7460696 DOI: 10.3390/ijms21165938] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
Autotaxin (ATX) is a secreted enzyme that produces lysophosphatidate (LPA), which signals through six G-protein coupled receptors, promoting tumor growth, metastasis, and survival from chemotherapy and radiotherapy. Many cancer cells produce ATX, but breast cancer cells express little ATX. In breast tumors, ATX is produced by tumor-associated stroma. Breast tumors are also surrounded by adipose tissue, which is a major bodily source of ATX. In mice, a high-fat diet increases adipocyte ATX production. ATX production in obesity is also increased because of low-level inflammation in the expanded adipose tissue. This increased ATX secretion and consequent LPA signaling is associated with decreased adiponectin production, which results in adverse metabolic profiles and glucose homeostasis. Increased ATX production by inflamed adipose tissue may explain the obesity-breast cancer association. Breast tumors produce inflammatory mediators that stimulate ATX transcription in tumor-adjacent adipose tissue. This drives a feedforward inflammatory cycle since increased LPA signaling increases production of more inflammatory mediators and cyclooxygenase-2. Inhibiting ATX activity, which has implications in breast cancer adjuvant treatments, attenuates this cycle. Targeting ATX activity and LPA signaling may potentially increase chemotherapy and radiotherapy efficacy, and decrease radiation-induced fibrosis morbidity independently of breast cancer type because most ATX is not derived from breast cancer cells.
Collapse
|
8
|
Notch3 signaling promotes tumor cell adhesion and progression in a murine epithelial ovarian cancer model. PLoS One 2020; 15:e0233962. [PMID: 32525899 PMCID: PMC7289394 DOI: 10.1371/journal.pone.0233962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 05/15/2020] [Indexed: 11/26/2022] Open
Abstract
High grade serous ovarian cancer (HGSC) is the most common and deadly type of ovarian cancer, largely due to difficulties in early diagnosis and rapid metastasis throughout the peritoneal cavity. Previous studies have shown that expression of Notch3 correlates with worse prognosis and increased tumorigenic cell behaviors in HGSC. We investigated the mechanistic role of Notch3 in a model of metastatic ovarian cancer using the murine ovarian surface epithelial cell line, ID8 IP2. Notch3 was activated in ID8 IP2 cells via expression of the Notch3 intracellular domain (Notch3IC). Notch3IC ID8 IP2 cells injected intraperitoneally caused accelerated ascites and reduced survival compared to control ID8 IP2, particularly in early stages of disease. We interrogated downstream targets of Notch3IC in ID8 IP2 cells by RNA sequencing and found significant induction of genes that encode adhesion and extracellular matrix proteins. Notch3IC ID8 IP2 showed increased expression of ITGA1 mRNA and cell-surface protein. Notch3IC-mediated increase of ITGA1 was also seen in two human ovarian cancer cells. Notch3IC ID8 IP2 cells showed increased adhesion to collagens I and IV in vitro. We propose that Notch3 activation in ovarian cancer cells causes increased adherence to collagen-rich peritoneal surfaces. Thus, the correlation between increased Notch3 signaling and poor prognosis may be influenced by increased metastasis of HGSC via increased adherence of disseminating cells to new metastatic sites in the peritoneum.
Collapse
|
9
|
Qian D, Liu H, Zhao L, Wang X, Luo S, Moorman PG, Patz EF, Su L, Shen S, Christiani DC, Wei Q. Novel genetic variants in genes of the Fc gamma receptor-mediated phagocytosis pathway predict non-small cell lung cancer survival. Transl Lung Cancer Res 2020; 9:575-586. [PMID: 32676321 PMCID: PMC7354140 DOI: 10.21037/tlcr-19-318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Both antibody-dependent cellular cytotoxicity and phagocytosis activate innate immunity, and the Fc gamma receptor (FCGR)-mediated phagocytosis is an integral part of the process. We assessed associations between single-nucleotide polymorphisms (SNPs) in FCGR-related genes and survival of patients with non-small cell lung cancer (NSCLC). Methods We evaluated associations between 24,734 (SNPs) in 97 FCGR-related genes and survival of 1,185 patients with NSCLC using a published genome-wide association study (GWAS) dataset from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial and validated the results in another independent dataset of 894 NSCLC patients. Results In the single-locus analysis with Bayesian false discovery probability (BFDP) for multiple testing correction, we found 1,084 SNPs to be significantly associated overall survival (OS) (P<0.050 and BFDP ≤0.80), of which two independent SNPs (PLCG2 rs9673682 T>G and PLPP1 rs115613985 T>A) were further validated in another GWAS dataset of 894 patients from the Harvard Lung Cancer Susceptibility (HLCS) Study, with combined allelic hazards ratios for OS of 0.87 [95% confidence interval (CI): 0.81-0.94 and P=5.90×10-4] and 1.18 (95% CI: 1.08-1.29 and 1.32×10-4, respectively). Expression quantitative trait loci analysis showed that the rs9673682 G allele was significantly correlated with increased mRNA expression levels of PLCG2 in 373 transformed lymphoblastoid cell-lines (P=7.20×10-5). Additional evidence from differential expression analysis further supported a tumor-suppressive effect of PLCG2 on OS of patients with lung cancer, with lower mRNA expression levels in both lung squamous carcinoma and adenocarcinoma than in adjacent normal tissues. Conclusions Genetic variants in PLCG2 of the FCGR-mediated phagocytosis pathway may be promising predictors of NSCLC survival, possibly through modulating gene expression, but additional investigation of the molecular mechanisms of PLPP1 rs115613985 is warranted.
Collapse
Affiliation(s)
- Danwen Qian
- Cancer Institute, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Lingling Zhao
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Xiaomeng Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Patricia G Moorman
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Family Medicine and Community Health, Duke University School of Medicine, Durham, NC, USA
| | - Edward F Patz
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Radiology, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Li Su
- Department of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Sipeng Shen
- Department of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - David C Christiani
- Department of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA.,Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
10
|
Benesch MGK, Tang X, Brindley DN. Autotaxin and Breast Cancer: Towards Overcoming Treatment Barriers and Sequelae. Cancers (Basel) 2020; 12:cancers12020374. [PMID: 32041123 PMCID: PMC7072337 DOI: 10.3390/cancers12020374] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/27/2020] [Accepted: 02/01/2020] [Indexed: 02/06/2023] Open
Abstract
After a decade of intense preclinical investigations, the first in-class autotaxin inhibitor, GLPG1690, has entered Phase III clinical trials for idiopathic pulmonary fibrosis. In the intervening time, a deeper understanding of the role of the autotaxin–lysophosphatidate (LPA)–lipid phosphate phosphatase axis in breast cancer progression and treatment resistance has emerged. Concordantly, appreciation of the tumor microenvironment and chronic inflammation in cancer biology has matured. The role of LPA as a central mediator behind these concepts has been exemplified within the breast cancer field. In this review, we will summarize current challenges in breast cancer therapy and delineate how blocking LPA signaling could provide novel adjuvant therapeutic options for overcoming therapy resistance and adverse side effects, including radiation-induced fibrosis. The advent of autotaxin inhibitors in clinical practice could herald their applications as adjuvant therapies to improve the therapeutic indexes of existing treatments for breast and other cancers.
Collapse
Affiliation(s)
- Matthew G. K. Benesch
- Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL AlB 3V6, Canada
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| | - Xiaoyun Tang
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| | - David N. Brindley
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
- Correspondence: ; Tel.: +1-780-492-2078
| |
Collapse
|
11
|
Xu Y. Targeting Lysophosphatidic Acid in Cancer: The Issues in Moving from Bench to Bedside. Cancers (Basel) 2019; 11:E1523. [PMID: 31658655 PMCID: PMC6826372 DOI: 10.3390/cancers11101523] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Since the clear demonstration of lysophosphatidic acid (LPA)'s pathological roles in cancer in the mid-1990s, more than 1000 papers relating LPA to various types of cancer were published. Through these studies, LPA was established as a target for cancer. Although LPA-related inhibitors entered clinical trials for fibrosis, the concept of targeting LPA is yet to be moved to clinical cancer treatment. The major challenges that we are facing in moving LPA application from bench to bedside include the intrinsic and complicated metabolic, functional, and signaling properties of LPA, as well as technical issues, which are discussed in this review. Potential strategies and perspectives to improve the translational progress are suggested. Despite these challenges, we are optimistic that LPA blockage, particularly in combination with other agents, is on the horizon to be incorporated into clinical applications.
Collapse
Affiliation(s)
- Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 950 W. Walnut Street R2-E380, Indianapolis, IN 46202, USA.
| |
Collapse
|
12
|
Tang X, McMullen TP, Brindley DN. Increasing the low lipid phosphate phosphatase 1 activity in breast cancer cells decreases transcription by AP-1 and expressions of matrix metalloproteinases and cyclin D1/D3. Am J Cancer Res 2019; 9:6129-6142. [PMID: 31534541 PMCID: PMC6735510 DOI: 10.7150/thno.37094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the leading cause of mortality in breast cancer patients and lysophosphatidate (LPA) signaling promotes this process. LPA signaling is attenuated by lipid phosphate phosphatase-1 (LPP1) whose activity is decreased in cancers. Consequently, increasing LPP1 levels suppresses breast tumor growth and metastasis. This study shows that increasing LPP1 in breast cancer cells decreases transcription through cFos and cJun. This decreases production of cyclin D1/D3 and matrix metalloproteinases (MMPs), which provides new insights into the role of LPP1 in controlling tumor growth and metastasis. Methods: Invasiveness was determined by a Matrigel invasion assay. MMP expression was measured by qPCR, multiplex LASER bead technology and gelatin zymography. Levels of cJUN, cFOS, FRA1, cyclin D1, and cyclin D3 were determined by qPCR and western blotting. Collagen was determined by Picro-Sirius Red staining. Results: Increasing LPP1 expression inhibited invasion of MDA-MB-231 breast cancer cells through Matrigel. This was accompanied by decreases in expression of MMP-1, -3, -7, -9, -10, -12 and -13, which are transcriptionally regulated by the AP-1 complex. Increasing LPP1 attenuated the induction of mRNA of MMP-1, -3, cFOS, and cJUN by EGF or TNFα, but increased FRA1. LPP1 expression also decreased the induction of protein levels for cFOS and cJUN in nuclei and cytoplasmic fractions by EGF and TNFα. Protein levels of cyclin D1 and D3 were also decreased by LPP1. Although FRA1 in total cell lysates or cytoplasm was increased by LPP1, nuclear FRA1 was not affected. LPP1-induced decreases in MMPs in mouse tumors created with MDA-MB-231 cells were accompanied by increased collagen in the tumors and fewer lung metastases. Knockdown of LPP1 in MDA-MB-231 cells increased the protein levels of MMP-1 and -3. Human breast tumors also have lower levels of LPP1 and higher levels of cJUN, cFOS, MMP-1, -7, -8, -9, -12, -13, cyclin D1, and cyclin D3 relative to normal breast tissue. Conclusion: This study demonstrated that the low LPP1 expression in breast cancer cells is associated with high levels of cyclin D1/D3 and MMPs as a result of increased transcription by cFOS and cJUN. Increasing LPP1 expression provides a novel approach for decreasing transcription through AP-1, which could provide a strategy for decreasing tumor growth and metastasis.
Collapse
|
13
|
Kouba S, Ouldamer L, Garcia C, Fontaine D, Chantome A, Vandier C, Goupille C, Potier-Cartereau M. Lipid metabolism and Calcium signaling in epithelial ovarian cancer. Cell Calcium 2019; 81:38-50. [PMID: 31200184 DOI: 10.1016/j.ceca.2019.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023]
Abstract
Epithelial Ovarian cancer (EOC) is the deadliest gynecologic malignancy and represents the fifth leading cause of all cancer-related deaths in women. The majority of patients are diagnosed at an advanced stage of the disease that has spread beyond the ovaries to the peritoneum or to distant organs (stage FIGO III-IV) with a 5-year overall survival of about 29%. Consequently, it is necessary to understand the pathogenesis of this disease. Among the factors that contribute to cancer development, lipids and ion channels have been described to be associated to cancerous diseases particularly in breast, colorectal and prostate cancers. Here, we reviewed the literature data to determine how lipids or lipid metabolites may influence EOC risk or progression. We also highlighted the role and the expression of the calcium (Ca2+) and calcium-activated potassium (KCa) channels in EOC and how lipids might regulate them. Although lipids and some subclasses of nutritional lipids may be associated to EOC risk, lipid metabolism of LPA (lysophosphatidic acid) and AA (arachidonic acid) emerges as an important signaling network in EOC. Clinical data showed that they are found at high concentrations in EOC patients and in vitro and in vivo studies referred to them as triggers of the Ca2+entry in the cancer cells inducing their proliferation, migration or drug resistance. The cross-talk between lipid mediators and Ca2+ and/or KCa channels needs to be elucidated in EOC in order to facilitate the understanding of its outcomes and potentially suggest novel therapeutic strategies including treatment and prevention.
Collapse
Affiliation(s)
- Sana Kouba
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Lobna Ouldamer
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Université de Tours, INSERM, N2C UMR 1069, CHRU de Tours, Service de gynécologie et d'obstétrique, Tours, France
| | - Céline Garcia
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Delphine Fontaine
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Aurélie Chantome
- Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France; Université de Tours, INSERM, N2C UMR 1069, Faculté de Pharmacie, Tours, France
| | - Christophe Vandier
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Caroline Goupille
- Réseau CASTOR du Cancéropôle Grand Ouest, France; Université de Tours, INSERM, N2C UMR 1069, CHRU de Tours, Faculté de Médecine, Tours, France
| | - Marie Potier-Cartereau
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France.
| |
Collapse
|
14
|
Lysophospholipid Signaling in the Epithelial Ovarian Cancer Tumor Microenvironment. Cancers (Basel) 2018; 10:cancers10070227. [PMID: 29987226 PMCID: PMC6071084 DOI: 10.3390/cancers10070227] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022] Open
Abstract
As one of the important cancer hallmarks, metabolism reprogramming, including lipid metabolism alterations, occurs in tumor cells and the tumor microenvironment (TME). It plays an important role in tumorigenesis, progression, and metastasis. Lipids, and several lysophospholipids in particular, are elevated in the blood, ascites, and/or epithelial ovarian cancer (EOC) tissues, making them not only useful biomarkers, but also potential therapeutic targets. While the roles and signaling of these lipids in tumor cells are extensively studied, there is a significant gap in our understanding of their regulations and functions in the context of the microenvironment. This review focuses on the recent study development in several oncolipids, including lysophosphatidic acid and sphingosine-1-phosphate, with emphasis on TME in ovarian cancer.
Collapse
|
15
|
Hopkins MM, Meier KE. Free fatty acid receptor (FFAR) agonists inhibit proliferation of human ovarian cancer cells. Prostaglandins Leukot Essent Fatty Acids 2017; 122:24-29. [PMID: 28735625 DOI: 10.1016/j.plefa.2017.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 05/12/2017] [Accepted: 06/29/2017] [Indexed: 12/26/2022]
Abstract
Many cellular actions of omega-3 fatty acids are mediated by two G protein-coupled receptors, FFA1 and FFA4, free fatty acid receptor (FFAR) family members that are activated by these dietary constituents. FFAR agonists inhibit proliferation of human prostate and breast cancer cells. Since omega-3 fatty acids can inhibit ovarian cancer cell growth, the current study tested the potential role of FFARs in the response. OVCAR3 and SKOV3 human ovarian cancer cell lines express mRNA for FFA1; FFA4 mRNA was detected at low levels in SKOV3 but not OVCAR3. Lysophosphatidic acid (LPA) and epidermal growth factor (EGF) stimulated proliferation of both cell lines; these responses were inhibited by eicosopentaneoic acid (EPA) and by GW9508, a synthetic FFAR agonist. The LPA antagonist Ki16425 also inhibited LPA- and EGF-induced proliferation; FFAR agonists had no further effect when added with Ki16425. The results suggest that FFARs are potential targets for ovarian cancer therapy.
Collapse
Affiliation(s)
- Mandi M Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - Kathryn E Meier
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, USA.
| |
Collapse
|
16
|
Taddeo EP, Hargett SR, Lahiri S, Nelson ME, Liao JA, Li C, Slack-Davis JK, Tomsig JL, Lynch KR, Yan Z, Harris TE, Hoehn KL. Lysophosphatidic acid counteracts glucagon-induced hepatocyte glucose production via STAT3. Sci Rep 2017; 7:127. [PMID: 28273928 PMCID: PMC5428006 DOI: 10.1038/s41598-017-00210-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/14/2017] [Indexed: 01/25/2023] Open
Abstract
Hepatic glucose production (HGP) is required to maintain normoglycemia during fasting. Glucagon is the primary hormone responsible for increasing HGP; however, there are many additional hormone and metabolic factors that influence glucagon sensitivity. In this study we report that the bioactive lipid lysophosphatidic acid (LPA) regulates hepatocyte glucose production by antagonizing glucagon-induced expression of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK). Treatment of primary hepatocytes with exogenous LPA blunted glucagon-induced PEPCK expression and glucose production. Similarly, knockout mice lacking the LPA-degrading enzyme phospholipid phosphate phosphatase type 1 (PLPP1) had a 2-fold increase in endogenous LPA levels, reduced PEPCK levels during fasting, and decreased hepatic gluconeogenesis in response to a pyruvate challenge. Mechanistically, LPA antagonized glucagon-mediated inhibition of STAT3, a transcriptional repressor of PEPCK. Importantly, LPA did not blunt glucagon-stimulated glucose production or PEPCK expression in hepatocytes lacking STAT3. These data identify a novel role for PLPP1 activity and hepatocyte LPA levels in glucagon sensitivity via a mechanism involving STAT3.
Collapse
Affiliation(s)
- Evan P Taddeo
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Stefan R Hargett
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Sujoy Lahiri
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Marin E Nelson
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jason A Liao
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Chien Li
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jill K Slack-Davis
- Department of Microbiology, Immunology and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jose L Tomsig
- Department of Toxicology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kevin R Lynch
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Zhen Yan
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA.,Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Thurl E Harris
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kyle L Hoehn
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA. .,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia.
| |
Collapse
|
17
|
Worzfeld T, Pogge von Strandmann E, Huber M, Adhikary T, Wagner U, Reinartz S, Müller R. The Unique Molecular and Cellular Microenvironment of Ovarian Cancer. Front Oncol 2017; 7:24. [PMID: 28275576 PMCID: PMC5319992 DOI: 10.3389/fonc.2017.00024] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
The reciprocal interplay of cancer cells and host cells is an indispensable prerequisite for tumor growth and progression. Cells of both the innate and adaptive immune system, in particular tumor-associated macrophages (TAMs) and T cells, as well as cancer-associated fibroblasts enter into a malicious liaison with tumor cells to create a tumor-promoting and immunosuppressive tumor microenvironment (TME). Ovarian cancer, the most lethal of all gynecological malignancies, is characterized by a unique TME that enables specific and efficient metastatic routes, impairs immune surveillance, and mediates therapy resistance. A characteristic feature of the ovarian cancer TME is the role of resident host cells, in particular activated mesothelial cells, which line the peritoneal cavity in huge numbers, as well as adipocytes of the omentum, the preferred site of metastatic lesions. Another crucial factor is the peritoneal fluid, which enables the transcoelomic spread of tumor cells to other pelvic and peritoneal organs, and occurs at more advanced stages as a malignancy-associated effusion. This ascites is rich in tumor-promoting soluble factors, extracellular vesicles and detached cancer cells as well as large numbers of T cells, TAMs, and other host cells, which cooperate with resident host cells to support tumor progression and immune evasion. In this review, we summarize and discuss our current knowledge of the cellular and molecular interactions that govern this interplay with a focus on signaling networks formed by cytokines, lipids, and extracellular vesicles; the pathophysiologial roles of TAMs and T cells; the mechanism of transcoelomic metastasis; and the cell type selective processing of signals from the TME.
Collapse
Affiliation(s)
- Thomas Worzfeld
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), Philipps University, Marburg, Germany; Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Elke Pogge von Strandmann
- Experimental Tumor Research, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| | - Magdalena Huber
- Institute of Medical Microbiology and Hygiene, Biomedical Research Center, Philipps University , Marburg , Germany
| | - Till Adhikary
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital of Giessen and Marburg (UKGM) , Marburg , Germany
| | - Silke Reinartz
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, Center for Tumor Biology and Immunology (ZTI), Philipps University , Marburg , Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| |
Collapse
|
18
|
Benesch MGK, Tang X, Venkatraman G, Bekele RT, Brindley DN. Recent advances in targeting the autotaxin-lysophosphatidate-lipid phosphate phosphatase axis in vivo. J Biomed Res 2015; 30:272-84. [PMID: 27533936 PMCID: PMC4946318 DOI: 10.7555/jbr.30.20150058] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/12/2015] [Accepted: 05/20/2015] [Indexed: 12/21/2022] Open
Abstract
Extracellular lysophosphatidate (LPA) is a potent bioactive lipid that signals through six G-protein-coupled receptors. This signaling is required for embryogenesis, tissue repair and remodeling processes. LPA is produced from circulating lysophosphatidylcholine by autotaxin (ATX), and is degraded outside cells by a family of three enzymes called the lipid phosphate phosphatases (LPPs). In many pathological conditions, particularly in cancers, LPA concentrations are increased due to high ATX expression and low LPP activity. In cancers, LPA signaling drives tumor growth, angiogenesis, metastasis, resistance to chemotherapy and decreased efficacy of radiotherapy. Hence, targeting the ATX-LPA-LPP axis is an attractive strategy for introducing novel adjuvant therapeutic options. In this review, we will summarize current progress in targeting the ATX-LPA-LPP axis with inhibitors of autotaxin activity, LPA receptor antagonists, LPA monoclonal antibodies, and increasing low LPP expression. Some of these agents are already in clinical trials and have applications beyond cancer, including chronic inflammatory diseases.
Collapse
Affiliation(s)
- Matthew G K Benesch
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - Xiaoyun Tang
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - Ganesh Venkatraman
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - Raie T Bekele
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada.
| |
Collapse
|
19
|
Tang X, Benesch MGK, Brindley DN. Lipid phosphate phosphatases and their roles in mammalian physiology and pathology. J Lipid Res 2015; 56:2048-60. [PMID: 25814022 DOI: 10.1194/jlr.r058362] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Indexed: 12/20/2022] Open
Abstract
Lipid phosphate phosphatases (LPPs) are a group of enzymes that belong to a phosphatase/phosphotransferase family. Mammalian LPPs consist of three isoforms: LPP1, LPP2, and LPP3. They share highly conserved catalytic domains and catalyze the dephosphorylation of a variety of lipid phosphates, including phosphatidate, lysophosphatidate (LPA), sphingosine 1-phosphate (S1P), ceramide 1-phosphate, and diacylglycerol pyrophosphate. LPPs are integral membrane proteins, which are localized on plasma membranes with the active site on the outer leaflet. This enables the LPPs to degrade extracellular LPA and S1P, thereby attenuating their effects on the activation of surface receptors. LPP3 also exhibits noncatalytic effects at the cell surface. LPP expression on internal membranes, such as endoplasmic reticulum and Golgi, facilitates the metabolism of internal lipid phosphates, presumably on the luminal surface of these organelles. This action probably explains the signaling effects of the LPPs, which occur downstream of receptor activation. The three isoforms of LPPs show distinct and nonredundant effects in several physiological and pathological processes including embryo development, vascular function, and tumor progression. This review is intended to present an up-to-date understanding of the physiological and pathological consequences of changing the activities of the different LPPs, especially in relation to cell signaling by LPA and S1P.
Collapse
Affiliation(s)
- Xiaoyun Tang
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Matthew G K Benesch
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| |
Collapse
|