1
|
Li S, Guo C, Liao C, Ke J, Hansen AG, Shi X, Zhang T, Jeppesen E, Li W, Liu J. Improvement of water quality through coordinated multi-trophic level biomanipulations: Application to a subtropical emergency water supply lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176888. [PMID: 39419218 DOI: 10.1016/j.scitotenv.2024.176888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/22/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Artificial emergency water source lakes have been built in most cities in the middle and lower reaches of the Yangtze River, China, to ensure water safety for residents. However, these new ecosystems are prone to algal blooms or other degraded water quality conditions. A newly built water supply lake in the lower reaches of the Yangtze River was selected as a model system to test whether the coordinated manipulation of fish and submerged macrophyte communities could enhance ecosystem function and quality. The coordinated manipulations spanned a five-year period, aiming to enhance both top-down and bottom-up control of phytoplankton. As a result of these manipulations, the catch per unit effort of small-bodied zooplanktivorous fishes decreased by >95 % from year two and remained low. The coverage and biomass of submerged macrophytes increased year by year. Water transparency increased from 1.07 to 3.33 m. Total phosphorus and total nitrogen showed a decreasing trend (not significant though). The annual mean biomass of Cyanophyta, Chlorophyta and Bacillariophyta decreased from 2.99 to 0.03 mg/L, 3.90 to 0.16 mg/L, and 3.50 to 0.3 mg/L, respectively. The biomass of phytoplankton in different groups decreased in all four seasons. The annual mean biomass of Cladocera and Copepoda remained low. The biomass of Cladocera and Copepoda decreased in summer, fall, and winter. The Ecosystem Health Index - increased from 15.9 to 32.0. The pros and cons of the various top-down and bottom-up control measures employed are discussed. This research presents a valuable case study on the enhancement of ecosystem structure and function in newly constructed emergency water supply lakes and offers insights into the restoration of other subtropical shallow lakes.
Collapse
Affiliation(s)
- Shiqi Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Guo
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chuansong Liao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jie Ke
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Adam G Hansen
- Colorado Parks and Wildlife, Aquatic Research Section, Fort Collins, CO, USA
| | - Xuefeng Shi
- Jiangsu Sino-French Water Co., LTD, Changshu 215500, China
| | - Tanglin Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Erik Jeppesen
- Department of Ecoscience and WATEC, Aarhus University, Aarhus 8000, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing 100190, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and implementation, Middle East Technical University, Ankara 06800, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Wei Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiashou Liu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Peng XY, Wang KL, Li L, Li B, Wu XY, Zhang ZW, Li N, Liu LH, Nie P, Chen SN. Transcription of NOD1 and NOD2 and their interaction with CARD9 and RIPK2 in IFN signaling in a perciform fish, the Chinese perch, Siniperca chuatsi. Front Immunol 2024; 15:1374368. [PMID: 38715616 PMCID: PMC11074466 DOI: 10.3389/fimmu.2024.1374368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/09/2024] [Indexed: 06/05/2024] Open
Abstract
NOD1 and NOD2 as two representative members of nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family play important roles in antimicrobial immunity. However, transcription mechanism of nod1 and nod2 and their signal circle are less understood in teleost fish. In this study, with the cloning of card9 and ripk2 in Chinese perch, the interaction between NOD1, NOD2, and CARD9 and RIPK2 were revealed through coimmunoprecipitation and immunofluorescence assays. The overexpression of NOD1, NOD2, RIPK2 and CARD9 induced significantly the promoter activity of NF-κB, IFNh and IFNc. Furthermore, it was found that nod1 and nod2 were induced by poly(I:C), type I IFNs, RLR and even NOD1/NOD2 themselves through the ISRE site of their proximal promoters. It is thus indicated that nod1 and nod2 can be classified also as ISGs due to the presence of ISRE in their proximal promoter, and their expression can be mechanistically controlled through PRR pathway as well as through IFN signaling in antiviral immune response.
Collapse
Affiliation(s)
- Xue Yun Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kai Lun Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Bo Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xiang Yang Wu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zhi Wei Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Lan Hao Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
| | - P. Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
3
|
Guo C, Li S, Ke J, Liao C, Hansen AG, Jeppesen E, Zhang T, Li W, Liu J. The feeding habits of small-bodied fishes mediate the strength of top-down effects on plankton and water quality in shallow subtropical lakes. WATER RESEARCH 2023; 233:119705. [PMID: 36801569 DOI: 10.1016/j.watres.2023.119705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/19/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The proliferation of small-bodied fishes in lakes is often accompanied by deterioration of water quality and ecosystem function. However, the potential impacts of different types of small-bodied fish species (e.g., obligate zooplanktivores and omnivores) on subtropical lake ecosystems in particular have been overlooked mainly due to their small size, shorter life spans and lower economic value. Therefore, we conducted a mesocosm experiment to elucidate how plankton communities and water quality respond to different types of small-bodied fishes, including a common zooplanktivorous fish (thin sharpbelly Toxabramis swinhonis) and other small-bodied omnivorous fishes (bitterling Acheilognathus macropterus, crucian carp Carassius auratus and sharpbelly Hemiculter leucisculus). During the experiment, the mean weekly total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (CODMn), turbidity, chlorophyll-a (Chl.α) and trophic level index (TLI) values were generally higher in treatments where fish were present compared to treatments where fish were absent, but responses varied. At the end of the experiment, phytoplankton abundance and biomass and the relative abundance and biomass of cyanophyta were higher while the abundance and biomass of large-bodied zooplankton were lower in the fish-present treatments. Moreover, the mean weekly TP, CODMn, Chl.α and TLI values were generally higher in treatments with the obligate zooplanktivore, thin sharpbelly, when compared to treatments with omnivorous fishes. Also, the ratio of zooplankton to phytoplankton biomass was the lowest, and the ratio of Chl.α to TP was the highest in treatments with thin sharpbelly. Collectively, these general findings indicate that an overabundance of small-bodied fishes can have adverse effects on water quality and plankton communities and that small-bodied zooplanktivorous fishes likely induce stronger top-down effects on plankton and water quality than omnivorous fishes. Our results emphasise that small-bodied fishes should be monitored and controlled if overabundant when managing or restoring shallow subtropical lakes. From the perspective of environmental protection, the combined stocking of different piscivorous fish species that feed in different habitat types could be a way forward to control small-bodied fishes with different feeding habits, but more research is needed to assess the feasibility of this approach.
Collapse
Affiliation(s)
- Chao Guo
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiqi Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ke
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuansong Liao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Adam G Hansen
- Colorado Parks and Wildlife, Aquatic Research Section, Fort Collins, CO, United States
| | - Erik Jeppesen
- Department of Ecoscience and WATEC, Aarhus University, Silkeborg 8600, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China; Limnology Laboratory, Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey; Centre for Ecosystem Research and Implementation (EKOSAM), Middle East Technical University, Ankara 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, Mersin 33731, Turkey
| | - Tanglin Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiashou Liu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Chen SN, Zhang S, Li L, Laghari ZA, Nie P. Molecular and functional characterization of zinc finger aspartate-histidine-histidine-cysteine (DHHC)-type containing 1, ZDHHC1 in Chinese perch Siniperca chuatsi. FISH & SHELLFISH IMMUNOLOGY 2022; 130:215-222. [PMID: 36122636 DOI: 10.1016/j.fsi.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
In the present study, the zinc finger aspartate-histidine-histidine-cysteine (DHHC)-type containing 1 (ZDHHC1) gene was identified in a commercial fish, the Chinese perch Siniperca chuatsi. The ZDHHC1 has five putative transmembrane motifs and conserved DHHC domain, showing high amino-acid identity with other teleost fish, and vertebrate ZDHHC1 loci are conserved from fish to human. In vivo expression analysis indicated that ZDHHC1 gene was constitutively transcribed in all the examined organs/tissues, and was induced following infectious spleen and kidney necrosis virus (ISKNV) infection. It is further observed that ZDHHC1 interacts with MITA and the overexpression of ZDHHC1 in cells resulted in the upregulated expression of ISGs, such as Mx, RSAD2, IRF3 and type I IFNs such as IFNh and IFNc, exhibiting its antiviral function in fish as reported in mammals.
Collapse
Affiliation(s)
- Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Shan Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong Province, 266237, China
| | - Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Zubair Ahmed Laghari
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Pin Nie
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
5
|
The Analysis of Environmental Cost Control of Manufacturing Enterprises Using Deep Learning Optimization Algorithm and Internet of Things. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:1721157. [PMID: 36210986 PMCID: PMC9546652 DOI: 10.1155/2022/1721157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
Under the background of the Internet of things (IoT), the problems between the actual production and the environment are also prominent. The environmental cost control in the production process of manufacturing enterprises are discussed to reduce the environmental cost and promote the improvement of production efficiency. First, the environmental cost under the background of IoT is analyzed. Also, the environmental cost control methods in the production process of traditional manufacturing enterprises are investigated. Second, based on the principle of traditional genetic algorithm, the fast-nondominated sorting genetic algorithm (NSGA-II) of multiobjective genetic algorithm is introduced to complete the optimization of BP neural network (BPNN) algorithm in deep learning (DL), and the multiobjective GA optimization BPNN model is established. Finally, the multiobjective GA algorithm is used to empirically analyze the environmental cost control capability of a paper-making enterprise. It is compared with enterprises with excellent and poor environmental cost control capabilities in the same industry to find out secondary indexes. The results show that environmental costs have long-term and economic characteristics. The global search ability of BPNN optimized by multiobjective GA is improved, and the local optimal dilemma is avoided. Through empirical analysis, it is found that the comprehensive capability of the environmental cost control of the enterprise is better, scored 79 or more, and the indexes of insufficient development and advantages are obtained. As IoT rapidly develops, it is necessary to further improve the ability of enterprises in environmental cost management, which is very important to promote the development of enterprises and enhance their core competitiveness. It is hoped that this investigation can provide certain reference significance for improving the environmental cost management capability of enterprises, increasing production efficiency, and reducing environmental costs.
Collapse
|
6
|
Qian J, Xiao L, Feng K, Li W, Liao C, Zhang T, Liu J. Effect of dietary protein levels on the growth, enzyme activity, and immunological status of Culter mongolicus fingerlings. PLoS One 2022; 17:e0263507. [PMID: 35120192 PMCID: PMC8815975 DOI: 10.1371/journal.pone.0263507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/20/2022] [Indexed: 11/19/2022] Open
Abstract
A 65-day growth trial was conducted to investigate the dietary protein requirements for Culter mongolicus fingerlings. Isolipidic and isoenergetic diets were formulated with five dietary protein levels (32%, 37%, 42%, 47%, and 52%). Each diet was assigned to triplicate groups of 70 C. mongolicus fingerlings (0.99±0.08 g). The results indicated that weight gain and specific growth rate (SGR) increased with increasing dietary protein levels up to 47%. The activities of intestinal trypsin and lipase were the lowest in the 32% protein and 52% protein groups, while amylase activity reduced markedly in the 47% protein group. These results suggest that different dietary protein levels may cause different transformations of nutrients. The activities of superoxide dismutase (SOD) and lysozyme were not affected by varying dietary protein levels, except for those in the 32% protein group. In contrast, the content of malondialdehyde (MDA) increased with increasing dietary protein levels and reaching a maximum in the 52% protein group, suggesting that MDA accumulation depends on the protein concentration and the potential oxidative stress. Taken together, based on the broken-line analysis of SGR, we recommended the optimum dietary protein for C. mongolicus fingerlings to be 48.97%~49.31%.
Collapse
Affiliation(s)
- Jing Qian
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Lingjun Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Kai Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Wei Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- National Research Centre for Freshwater Fisheries Engineering, Wuhan, PR China
| | - Chuansong Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- National Research Centre for Freshwater Fisheries Engineering, Wuhan, PR China
| | - Tanglin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- University of Chinese Academy of Sciences, Beijing, PR China
- National Research Centre for Freshwater Fisheries Engineering, Wuhan, PR China
| | - Jiashou Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- University of Chinese Academy of Sciences, Beijing, PR China
- National Research Centre for Freshwater Fisheries Engineering, Wuhan, PR China
| |
Collapse
|
7
|
Zhong S, Li Y, Li J, Yang H. Measurement of total factor productivity of green agriculture in China: Analysis of the regional differences based on China. PLoS One 2021; 16:e0257239. [PMID: 34506570 PMCID: PMC8432857 DOI: 10.1371/journal.pone.0257239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/26/2021] [Indexed: 11/23/2022] Open
Abstract
China's agricultural economy is developing rapidly, but the unbalanced regional development is still a key issue that needs to be discussed today. By studying the total factor productivity of green agriculture and its factors, this paper analyzes the regional differences in time and space changes between the eastern, central and western parts of China. In this paper, the total factor productivity of green agriculture is calculated and decomposed by Metafrontier Malmquist-Luenberger index based on directional distance function. The results are as follows: First, the total factor productivity level of green agriculture in China is increasing year by year, but the overall level is still at a low level and has greater volatility; Second, although the total factor productivity of green agriculture shows an upward trend, the three regions show a downward trend in turn, which has great differences; Third, there are obvious differences in technological efficiency, optimal production potential and technological gap between the eastern, central and western regions, and there are great differences in productivity among regions and provinces. Based on the results, this paper puts forward policy recommendations, according to the regional heterogeneity, from a number of angles to rely on the joint efforts of many parties to improve the level of total factor productivity of green agriculture.
Collapse
Affiliation(s)
- Shen Zhong
- Northeast Agricultural University, Harbin, Heilongjiang, PR China
- School of Finance, Harbin University of Commerce, Harbin, Heilongjiang, PR China
| | - Yuexin Li
- School of Finance, Harbin University of Commerce, Harbin, Heilongjiang, PR China
| | - Jian Li
- School of Finance, Harbin University of Commerce, Harbin, Heilongjiang, PR China
| | - Huiying Yang
- School of Economics, Harbin University of Commerce, Harbin, Heilongjiang, PR China
| |
Collapse
|
8
|
Impacts of hatchery-reared mandarin fish Siniperca chuatsi stocking on wild fish community and water quality in a shallow Yangtze lake. Sci Rep 2018; 8:11481. [PMID: 30065279 PMCID: PMC6068200 DOI: 10.1038/s41598-018-29758-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/12/2018] [Indexed: 11/25/2022] Open
Abstract
Mandarin fish Siniperca chuatsi, a valuable piscivorous fish, have been stocked into many lakes in China since the 1990s. This study did the first attempt to evaluate the ecological effects of hatchery-reared mandarin fish stocking in the Yangtze River basin lakes. Our study demonstrated a significant change in fish community composition after mandarin fish stocking, but no fish extinction was observed. No significant difference was observed in the total density of 13 forage fish before and after mandarin fish stocking, but the total biomass showed a significant decline after mandarin fish stocking. Significant differences in length-frequency distributions were observed for Carassius auratus, Pseudorasbora parva and Toxabramis swinhonis captured before and after stocking mandarin fish. No significant change in habitat distribution was detected before and after mandarin fish stocking. A marked decline in total nitrogen and a slight decline in total phosphorus were observed while a slight increasing trend for Secchi depth was found after stocking. Our findings suggested that mandarin fish stocking can increase predation pressure on forage fish and subsequently optimize the food web structure. Also, mandarin fish stocking has the potential to improve water quality and may be a feasible strategy to alleviate eutrophication of shallow Yangtze lakes.
Collapse
|
9
|
Wang Q, Li Z, Gui JF, Liu J, Ye S, Yuan J, De Silva SS. Paradigm changes in freshwater aquaculture practices in China: Moving towards achieving environmental integrity and sustainability. AMBIO 2018; 47:410-426. [PMID: 29168121 PMCID: PMC5884763 DOI: 10.1007/s13280-017-0985-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/17/2017] [Accepted: 10/12/2017] [Indexed: 05/13/2023]
Abstract
Contribution of fisheries and aquaculture to global food security is linked to increased fish consumption. Projections indicate that an additional 30-40 million tonnes of fish will be required by 2030. China leads global aquaculture production accounting for 60% in volume and 45% in value. Many changes in the Chinese aquaculture sector are occurring to strive towards attaining environmental integrity and prudent use of resources. We focus on changes introduced in freshwater aquaculture developments in China, the main source of food fish supplies. We bring forth evidence in support of the contention that Chinese freshwater aquaculture sector has introduced major paradigm changes such as prohibition of fertilisation in large water bodies, introduction of stringent standards on nutrients in effluent and encouragement of practices that strip nutrients among others, which will facilitate long-term sustainability of the sector.
Collapse
Affiliation(s)
- Qidong Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan, 430072 Hubei People’s Republic of China
- National Research Centre for Freshwater Fisheries Engineering, 7 South Donghu Road, Wuhan, 430072 Hubei People’s Republic of China
| | - Zhongjie Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan, 430072 Hubei People’s Republic of China
- National Research Centre for Freshwater Fisheries Engineering, 7 South Donghu Road, Wuhan, 430072 Hubei People’s Republic of China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan, 430072 Hubei People’s Republic of China
| | - Jiashou Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan, 430072 Hubei People’s Republic of China
- National Research Centre for Freshwater Fisheries Engineering, 7 South Donghu Road, Wuhan, 430072 Hubei People’s Republic of China
| | - Shaowen Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan, 430072 Hubei People’s Republic of China
| | - Jing Yuan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan, 430072 Hubei People’s Republic of China
- National Research Centre for Freshwater Fisheries Engineering, 7 South Donghu Road, Wuhan, 430072 Hubei People’s Republic of China
| | - Sena S. De Silva
- School of Life & Environmental Sciences, Deakin University, Warrnambool, VIC 3280 Australia
| |
Collapse
|