1
|
de Alencar Morais Lima W, de Souza JG, García-Villén F, Loureiro JL, Raffin FN, Fernandes MAC, Souto EB, Severino P, Barbosa RDM. Next-generation pediatric care: nanotechnology-based and AI-driven solutions for cardiovascular, respiratory, and gastrointestinal disorders. World J Pediatr 2025; 21:8-28. [PMID: 39192003 DOI: 10.1007/s12519-024-00834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/21/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Global pediatric healthcare reveals significant morbidity and mortality rates linked to respiratory, cardiac, and gastrointestinal disorders in children and newborns, mostly due to the complexity of therapeutic management in pediatrics and neonatology, owing to the lack of suitable dosage forms for these patients, often rendering them "therapeutic orphans". The development and application of pediatric drug formulations encounter numerous challenges, including physiological heterogeneity within age groups, limited profitability for the pharmaceutical industry, and ethical and clinical constraints. Many drugs are used unlicensed or off-label, posing a high risk of toxicity and reduced efficacy. Despite these circumstances, some regulatory changes are being performed, thus thrusting research innovation in this field. DATA SOURCES Up-to-date peer-reviewed journal articles, books, government and institutional reports, data repositories and databases were used as main data sources. RESULTS Among the main strategies proposed to address the current pediatric care situation, nanotechnology is specially promising for pediatric respiratory diseases since they offer a non-invasive, versatile, tunable, site-specific drug release. Tissue engineering is in the spotlight as strategy to address pediatric cardiac diseases, together with theragnostic systems. The integration of nanotechnology and theragnostic stands poised to refine and propel nanomedicine approaches, ushering in an era of innovative and personalized drug delivery for pediatric patients. Finally, the intersection of drug repurposing and artificial intelligence tools in pediatric healthcare holds great potential. This promises not only to enhance efficiency in drug development in general, but also in the pediatric field, hopefully boosting clinical trials for this population. CONCLUSIONS Despite the long road ahead, the deepening of nanotechnology, the evolution of tissue engineering, and the combination of traditional techniques with artificial intelligence are the most recently reported strategies in the specific field of pediatric therapeutics.
Collapse
Affiliation(s)
| | - Jackson G de Souza
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande Do Norte, Natal, RN, 59078-970, Brazil
| | - Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja, 18071, Granada, Spain.
| | - Julia Lira Loureiro
- Laboratory of Galenic Pharmacy, Department of Pharmacy, Federal University of Rio Grande Do Norte, Natal, 59012-570, Brazil
| | - Fernanda Nervo Raffin
- Laboratory of Galenic Pharmacy, Department of Pharmacy, Federal University of Rio Grande Do Norte, Natal, 59012-570, Brazil
| | - Marcelo A C Fernandes
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande Do Norte, Natal, RN, 59078-970, Brazil
- Department of Computer Engineering and Automation, Federal University of Rio Grande Do Norte, Natal, RN, 59078-970, Brazil
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Patricia Severino
- Industrial Biotechnology Program, University of Tiradentes (UNIT), Aracaju, Sergipe, 49032-490, Brazil
| | - Raquel de M Barbosa
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Seville, C/Professor García González, 2, 41012, Seville, Spain.
| |
Collapse
|
2
|
Luo Y, Hu Z, Ni R, Xu R, Zhao J, Feng P, Zhu T, Chen Y, Yao J, Yao Y, Yang L, Zhang H, Zhu Y. Fabrication of 3D Biomimetic Smooth Muscle Using Magnetic Induction and Bioprinting for Tissue Regeneration. Biomater Res 2024; 28:0076. [PMID: 39253032 PMCID: PMC11382380 DOI: 10.34133/bmr.0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/18/2024] [Accepted: 08/10/2024] [Indexed: 09/11/2024] Open
Abstract
Smooth muscles play a vital role in peristalsis, tissue constriction, and relaxation but lack adequate self-repair capability for addressing extensive muscle defects. Engineering scaffolds have been broadly proposed to repair the muscle tissue. However, efforts to date have shown that those engineered scaffolds focus on cell alignment in 2-dimension (2D) and fail to direct muscle cells to align in 3D area, which is irresolvable to remodel the muscle architecture and restore the muscle functions like contraction and relaxation. Herein, we introduced an iron oxide (Fe3O4) filament-embedded gelatin (Gel)-silk fibroin composite hydrogel in which the oriented Fe3O4 self-assembled and functioned as micro/nanoscale geometric cues to induce cell alignment growth. The hydrogel scaffold can be designed to fabricate aligned or anisotropic muscle by combining embedded 3D bioprinting with magnetic induction to accommodate special architectures of muscular tissues in the body. Particularly, the bioprinted muscle-like matrices effectively promote the self-organization of smooth muscle cells (SMCs) and the directional differentiation of bone marrow mesenchymal stem cells (BMSCs) into SMCs. This biomimetic muscle accelerated tissue regeneration, enhancing intercellular connectivity within the muscular tissue, and the deposition of fibronectin and collagen I. This work provides a novel approach for constructing engineered biomimetic muscles, holding significant promise for clinical treatment of muscle-related diseases in the future.
Collapse
Affiliation(s)
- Yang Luo
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zeming Hu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Renhao Ni
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Rong Xu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Jianmin Zhao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Peipei Feng
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315046, China
| | - Tong Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yaoqi Chen
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jie Yao
- The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
- Research Institute of Smart Medicine and Biological Engineering, Ningbo University, Ningbo 315211, China
| | - Yudong Yao
- Health Science Center, Ningbo University, Ningbo 315211, China
- Research Institute of Smart Medicine and Biological Engineering, Ningbo University, Ningbo 315211, China
| | - Lu Yang
- The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Hua Zhang
- Health Science Center, Ningbo University, Ningbo 315211, China
- Research Institute of Smart Medicine and Biological Engineering, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
3
|
Chen YG, Dombaxe C, D'Amato AR, Van Herck S, Welch H, Fu Q, Zhang S, Wang Y. Transformation of metallo-elastomer grafts in a carotid artery interposition model over a year. Biomaterials 2024; 309:122598. [PMID: 38696943 DOI: 10.1016/j.biomaterials.2024.122598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
Current vascular grafts, primarily Gore-Tex® and Dacron®, don't integrate with the host and have low patency in small-diameter vessels (<6 mm). Biomaterials that possess appropriate viscoelasticity, compliance, and high biocompatibility are essential for their application in small blood vessels. We have developed metal ion crosslinked poly(propanediol-co-(hydroxyphenyl methylene)amino-propanediol sebacate) (M-PAS), a biodegradable elastomer with a wide range of mechanical properties. We call these materials metallo-elastomers. An initial test on Zn-, Fe-, and Cu-PAS grafts reveals that Cu-PAS is the most suitable because of its excellent elastic recoil and well-balanced polymer degradation/tissue regeneration rate. Here we report host remodeling of Cu-PAS vascular grafts in rats over one year. 76 % of the grafts remain patent and >90 % of the synthetic polymer is degraded by 12 months. Extensive cell infiltration leads to a positive host remodeling. The remodeled grafts feature a fully endothelialized lumen. Circumferentially organized smooth muscle cells, elastin fibers, and widespread mature collagen give the neoarteries mechanical properties similar to native arteries. Proteomic analysis further reveals the presence of important vascular proteins in the neoarteries. Evidence suggests that Cu-PAS is a promising material for engineering small blood vessels.
Collapse
Affiliation(s)
- Ying Grace Chen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Catia Dombaxe
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | | | - Simon Van Herck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Halle Welch
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Qin Fu
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14850, USA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14850, USA
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
4
|
Federici AS, Tornifoglio B, Lally C, Garcia O, Kelly DJ, Hoey DA. Melt electrowritten scaffold architectures to mimic tissue mechanics and guide neo-tissue orientation. J Mech Behav Biomed Mater 2024; 150:106292. [PMID: 38109813 DOI: 10.1016/j.jmbbm.2023.106292] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/16/2023] [Accepted: 12/02/2023] [Indexed: 12/20/2023]
Abstract
All human tissues present with unique mechanical properties critical to their function. This is achieved in part through the specific architecture of the extracellular matrix (ECM) fibres within each tissue. An example of this is seen in the walls of the vasculature where each layer presents with a unique ECM orientation critical to its functions. Current adopted vascular grafts to bypass a stenosed/damaged vessel fail to recapitulate this unique mechanical behaviour, particularly in the case of small diameter vessels (<6 mm), leading to failure. Therefore, in this study, melt-electrowriting (MEW) was adopted to produce a range of fibrous scaffolds to mimic the extracellular matrix (ECM) architecture of the tunica media of the vasculature, in an attempt to match the mechanical and biological behaviour of the native porcine tissue. Initially, the range of collagen architectures within the native vessel was determined, and subsequently replicated using MEW (winding angles (WA) 45°, 26.5°, 18.4°, 11.3°). These scaffolds recapitulated the anisotropic, non-linear mechanical behaviour of native carotid blood vessels. Moreover, these grafts facilitated human mesenchymal stem cell (hMSC) infiltration, differentiation, and ECM deposition that was independent of WA. The bioinspired MEW fibre architecture promoted cell alignment and preferential neo-tissue orientation in a manner similar to that seen in native tissue, particularly for WA 18.4° and 11.3°, which is a mandatory requirement for long-term survival of the regenerated tissue post-scaffold degradation. Lastly, the WA 18.4° was translated to a tubular graft and was shown to mirror the mechanical behaviour of small diameter vessels within physiological strain. Taken together, this study demonstrates the capacity to use MEW to fabricate bioinspired scaffolds to mimic the tunica media of vessels and recapitulate vascular mechanics which could act as a framework for small diameter graft development to guide tissue regeneration and orientation.
Collapse
Affiliation(s)
- Angelica S Federici
- Dept. of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; AMBER, The SFI Research Centre for Advanced Materials and BioEngineering Research, Ireland
| | - Brooke Tornifoglio
- Dept. of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Caitríona Lally
- Dept. of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; AMBER, The SFI Research Centre for Advanced Materials and BioEngineering Research, Ireland
| | - Orquidea Garcia
- Johnson & Johnson 3D Printing Innovation & Customer Solutions, Johnson & Johnson Services, Inc., Irvine, CA, USA
| | - Daniel J Kelly
- Dept. of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; AMBER, The SFI Research Centre for Advanced Materials and BioEngineering Research, Ireland
| | - David A Hoey
- Dept. of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; AMBER, The SFI Research Centre for Advanced Materials and BioEngineering Research, Ireland.
| |
Collapse
|
5
|
Volova LT, Kotelnikov GP, Shishkovsky I, Volov DB, Ossina N, Ryabov NA, Komyagin AV, Kim YH, Alekseev DG. 3D Bioprinting of Hyaline Articular Cartilage: Biopolymers, Hydrogels, and Bioinks. Polymers (Basel) 2023; 15:2695. [PMID: 37376340 DOI: 10.3390/polym15122695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The musculoskeletal system, consisting of bones and cartilage of various types, muscles, ligaments, and tendons, is the basis of the human body. However, many pathological conditions caused by aging, lifestyle, disease, or trauma can damage its elements and lead to severe disfunction and significant worsening in the quality of life. Due to its structure and function, articular (hyaline) cartilage is the most susceptible to damage. Articular cartilage is a non-vascular tissue with constrained self-regeneration capabilities. Additionally, treatment methods, which have proven efficacy in stopping its degradation and promoting regeneration, still do not exist. Conservative treatment and physical therapy only relieve the symptoms associated with cartilage destruction, and traditional surgical interventions to repair defects or endoprosthetics are not without serious drawbacks. Thus, articular cartilage damage remains an urgent and actual problem requiring the development of new treatment approaches. The emergence of biofabrication technologies, including three-dimensional (3D) bioprinting, at the end of the 20th century, allowed reconstructive interventions to get a second wind. Three-dimensional bioprinting creates volume constraints that mimic the structure and function of natural tissue due to the combinations of biomaterials, living cells, and signal molecules to create. In our case-hyaline cartilage. Several approaches to articular cartilage biofabrication have been developed to date, including the promising technology of 3D bioprinting. This review represents the main achievements of such research direction and describes the technological processes and the necessary biomaterials, cell cultures, and signal molecules. Special attention is given to the basic materials for 3D bioprinting-hydrogels and bioinks, as well as the biopolymers underlying the indicated products.
Collapse
Affiliation(s)
- Larisa T Volova
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Gennadiy P Kotelnikov
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Igor Shishkovsky
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Dmitriy B Volov
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Natalya Ossina
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Nikolay A Ryabov
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Aleksey V Komyagin
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Yeon Ho Kim
- RokitHealth Care Ltd., 9, Digital-ro 10-gil, Geumcheon-gu, Seoul 08514, Republic of Korea
| | - Denis G Alekseev
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| |
Collapse
|
6
|
Besseling PJ, Krebber MM, Fledderus JO, Teraa M, den Ouden K, van de Kaa M, de Bree PM, Serrero A, Bouten CVC, Dankers PYW, Cox MAJ, Verhaar MC. The effect of chronic kidney disease on tissue formation of in situ tissue-engineered vascular grafts. APL Bioeng 2023; 7:026107. [PMID: 37234843 PMCID: PMC10208679 DOI: 10.1063/5.0138808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Vascular in situ tissue engineering encompasses a single-step approach with a wide adaptive potential and true off-the-shelf availability for vascular grafts. However, a synchronized balance between breakdown of the scaffold material and neo-tissue formation is essential. Chronic kidney disease (CKD) may influence this balance, lowering the usability of these grafts for vascular access in end-stage CKD patients on dialysis. We aimed to investigate the effects of CKD on in vivo scaffold breakdown and tissue formation in grafts made of electrospun, modular, supramolecular polycarbonate with ureido-pyrimidinone moieties (PC-UPy). We implanted PC-UPy aortic interposition grafts (n = 40) in a rat 5/6th nephrectomy model that mimics systemic conditions in human CKD patients. We studied patency, mechanical stability, extracellular matrix (ECM) components, total cellularity, vascular tissue formation, and vascular calcification in CKD and healthy rats at 2, 4, 8, and 12 weeks post-implantation. Our study shows successful in vivo application of a slow-degrading small-diameter vascular graft that supports adequate in situ vascular tissue formation. Despite systemic inflammation associated with CKD, no influence of CKD on patency (Sham: 95% vs CKD: 100%), mechanical stability, ECM formation (Sirius red+, Sham 16.5% vs CKD 25.0%-p:0.83), tissue composition, and immune cell infiltration was found. We did find a limited increase in vascular calcification at 12 weeks (Sham 0.08% vs CKD 0.80%-p:0.02) in grafts implanted in CKD animals. However, this was not associated with increased stiffness in the explants. Our findings suggest that disease-specific graft design may not be necessary for use in CKD patients on dialysis.
Collapse
Affiliation(s)
| | - Merle M. Krebber
- Department of Nephrology and Hypertension, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joost O. Fledderus
- Department of Nephrology and Hypertension, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Krista den Ouden
- Department of Nephrology and Hypertension, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Melanie van de Kaa
- Department of Nephrology and Hypertension, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Petra M. de Bree
- Department of Nephrology and Hypertension, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Carlijn V. C. Bouten
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, TU/e, Eindhoven, The Netherlands
| | - Patricia Y. W. Dankers
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, TU/e, Eindhoven, The Netherlands
| | | | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
7
|
Song JY, Lee HS, Kim DY, Yun HJ, Yi CC, Park SM. Fabrication Procedure for a 3D Hollow Nanofibrous Bifurcated-Tubular Scaffold by Conformal Electrospinning. ACS Macro Lett 2023; 12:659-666. [PMID: 37155320 DOI: 10.1021/acsmacrolett.3c00109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Electrospinning has shown great potential for the fabrication of 3D nanofibrous tubular scaffolds for bifurcated vascular grafts. However, fabrication of complex 3D nanofibrous tubular scaffolds with bifurcated or patient-specific shapes remains limited. In this study, a 3D hollow nanofibrous bifurcated-tubular scaffold was fabricated by the uniform and conformal deposition of electrospun nanofibers via conformal electrospinning. By conformal electrospinning, electrospun nanofibers are conformally deposited onto a complex shape, such as the bifurcated region, without large pores or defects. Owing to conformal electrospinning, a corner profile fidelity (FC), a measure of conformal deposition of electrospun nanofibers at the bifurcated region, was increased 4 times at the bifurcation angle (θB) of 60°, and all FC values of the scaffolds reached 100%, regardless of the θB. Furthermore, the thickness of the scaffolds could be controlled by varying the electrospinning time. Leakage-free liquid transfer was successfully achieved owing to the uniform and conformal deposition of electrospun nanofibers. Finally, the cytocompatibility and 3D mesh-based modeling of the scaffolds were demonstrated. Thus, conformal electrospinning can be used to fabricate leakage-free and complex 3D nanofibrous scaffolds for bifurcated vascular grafts.
Collapse
Affiliation(s)
- Jin Yeong Song
- School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, South Korea
| | - Hyang Seob Lee
- School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, South Korea
| | - Do Young Kim
- School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, South Korea
| | - Hye Jin Yun
- Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan 49241, South Korea
| | - Changryul Claud Yi
- Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan 49241, South Korea
- Department of Plastic and Reconstructive Surgery, Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan 49241, South Korea
| | - Sang Min Park
- School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, South Korea
| |
Collapse
|
8
|
Obiweluozor FO, Kayumov M, Kwak Y, Cho HJ, Park CH, Park JK, Jeong YJ, Lee DW, Kim DW, Jeong IS. Rapid remodeling observed at mid-term in-vivo study of a smart reinforced acellular vascular graft implanted on a rat model. J Biol Eng 2023; 17:1. [PMID: 36597162 PMCID: PMC9810246 DOI: 10.1186/s13036-022-00313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The poor performance of conventional techniques used in cardiovascular disease patients requiring hemodialysis or arterial bypass grafting has prompted tissue engineers to search for clinically appropriate off-the-shelf vascular grafts. Most patients with cardiovascular disease lack suitable autologous tissue because of age or previous surgery. Commercially available vascular grafts with diameters of < 5 mm often fail because of thrombosis and intimal hyperplasia. RESULT Here, we tested tubular biodegradable poly-e-caprolactone/polydioxanone (PCL/PDO) electrospun vascular grafts in a rat model of aortic interposition for up to 12 weeks. The grafts demonstrated excellent patency (100%) confirmed by Doppler Ultrasound, resisted aneurysmal dilation and intimal hyperplasia, and yielded neoarteries largely free of foreign materials. At 12 weeks, the grafts resembled native arteries with confluent endothelium, synchronous pulsation, a contractile smooth muscle layer, and co-expression of various extracellular matrix components (elastin, collagen, and glycosaminoglycan). CONCLUSIONS The structural and functional properties comparable to native vessels observed in the neoartery indicate their potential application as an alternative for the replacement of damaged small-diameter grafts. This synthetic off-the-shelf device may be suitable for patients without autologous vessels. However, for clinical application of these grafts, long-term studies (> 1.5 years) in large animals with a vasculature similar to humans are needed.
Collapse
Affiliation(s)
- Francis O. Obiweluozor
- grid.14005.300000 0001 0356 9399Research and Business Development foundation, Chonnam National University, 77 Yongbong-ro, Yongbong-dong, Buk-gu, Gwangju, 61186 Republic of Korea
| | - Mukhammad Kayumov
- grid.411597.f0000 0004 0647 2471Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, 160 Baekseo-ro, Dong-gu, Gwangju, 61469 Republic of Korea
| | - Yujin Kwak
- grid.411597.f0000 0004 0647 2471Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, 160 Baekseo-ro, Dong-gu, Gwangju, 61469 Republic of Korea
| | - Hwa-Jin Cho
- grid.14005.300000 0001 0356 9399Department of Pediatrics, Chonnam National University Children’s Hospital and Medical School, Gwangju, 61469 Republic of Korea
| | - Chan-Hee Park
- grid.411545.00000 0004 0470 4320Department of Mechanical Engineering Graduate School, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896 Republic of Korea
| | - Jun-kyu Park
- grid.454173.00000 0004 0647 1903CGBio Co. Ltd., 244 Galmachi-ro, Jungwon-u, Seongnam, 13211 Republic of Korea
| | - Yun-Jin Jeong
- grid.14005.300000 0001 0356 9399School of Mechanical Engineering Chonnam National University, Repubic of, Gwangju, 61469 South Korea
| | - Dong-Weon Lee
- grid.14005.300000 0001 0356 9399School of Mechanical Engineering Chonnam National University, Repubic of, Gwangju, 61469 South Korea
| | - Do-Wan Kim
- grid.411597.f0000 0004 0647 2471Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, 160 Baekseo-ro, Dong-gu, Gwangju, 61469 Republic of Korea
| | - In-Seok Jeong
- grid.411597.f0000 0004 0647 2471Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, 160 Baekseo-ro, Dong-gu, Gwangju, 61469 Republic of Korea
| |
Collapse
|
9
|
Miao C, Wang L, Shang Y, Du M, Yang J, Yuan J. Tannic Acid-Assisted Immobilization of Copper(II), Carboxybetaine, and Argatroban on Poly(ethylene terephthalate) Mats for Synergistic Improvement of Blood Compatibility and Endothelialization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15683-15693. [PMID: 36480797 DOI: 10.1021/acs.langmuir.2c02508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to thrombosis and intimal hyperplasia, small-diameter vascular grafts have poor long-term patency. A combination strategy based on nitric oxide (NO) and anticoagulants has the potential to address those issues. In this study, poly(ethylene terephthalate) (PET) mats were prepared by electrospinning and coated with tannic acid (TA)/copper ion complexes. The chelated copper ions endowed the mats with sustained NO generation by catalytic decomposition of endogenous S-nitrosothiol. Subsequently, zwitterionic carboxybetaine acrylate (CBA) and argatroban (AG) were immobilized on the mats. The introduced AG and CBA had synergistic effects on the improvement of blood compatibility, resulting in reduced platelet adhesion and prolonged blood clotting time. The biocomposite mats selectively promoted the proliferation and migration of human umbilical vein endothelial cells while inhibiting the proliferation and migration of human umbilical arterial smooth muscle cells under physiological conditions. In addition, the prepared mats exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus. Collectively, the prepared mats hold great promise as artificial small-diameter vascular grafts.
Collapse
Affiliation(s)
- Cuie Miao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yushuang Shang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Mingyu Du
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jinyu Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
10
|
Antonova L, Kutikhin A, Sevostianova V, Lobov A, Repkin E, Krivkina E, Velikanova E, Mironov A, Mukhamadiyarov R, Senokosova E, Khanova M, Shishkova D, Markova V, Barbarash L. Controlled and Synchronised Vascular Regeneration upon the Implantation of Iloprost- and Cationic Amphiphilic Drugs-Conjugated Tissue-Engineered Vascular Grafts into the Ovine Carotid Artery: A Proteomics-Empowered Study. Polymers (Basel) 2022; 14:polym14235149. [PMID: 36501545 PMCID: PMC9736446 DOI: 10.3390/polym14235149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Implementation of small-diameter tissue-engineered vascular grafts (TEVGs) into clinical practice is still delayed due to the frequent complications, including thrombosis, aneurysms, neointimal hyperplasia, calcification, atherosclerosis, and infection. Here, we conjugated a vasodilator/platelet inhibitor, iloprost, and an antimicrobial cationic amphiphilic drug, 1,5-bis-(4-tetradecyl-1,4-diazoniabicyclo [2.2.2]octan-1-yl) pentane tetrabromide, to the luminal surface of electrospun poly(ε-caprolactone) (PCL) TEVGs for preventing thrombosis and infection, additionally enveloped such TEVGs into the PCL sheath to preclude aneurysms, and implanted PCLIlo/CAD TEVGs into the ovine carotid artery (n = 12) for 6 months. The primary patency was 50% (6/12 animals). TEVGs were completely replaced with the vascular tissue, free from aneurysms, calcification, atherosclerosis and infection, completely endothelialised, and had clearly distinguishable medial and adventitial layers. Comparative proteomic profiling of TEVGs and contralateral carotid arteries found that TEVGs lacked contractile vascular smooth muscle cell markers, basement membrane components, and proteins mediating antioxidant defense, concurrently showing the protein signatures of upregulated protein synthesis, folding and assembly, enhanced energy metabolism, and macrophage-driven inflammation. Collectively, these results suggested a synchronised replacement of PCL with a newly formed vascular tissue but insufficient compliance of PCLIlo/CAD TEVGs, demanding their testing in the muscular artery position or stimulation of vascular smooth muscle cell specification after the implantation.
Collapse
Affiliation(s)
- Larisa Antonova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Anton Kutikhin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
- Correspondence: ; Tel.: +7-9609077067
| | - Viktoriia Sevostianova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Arseniy Lobov
- Department of Regenerative Biomedicine, Research Institute of Cytology, 4 Tikhoretskiy Prospekt, Saint Petersburg 194064, Russia
| | - Egor Repkin
- Centre for Molecular and Cell Technologies, Saint Petersburg State University, Universitetskaya Embankment, 7/9, Saint Petersburg 199034, Russia
| | - Evgenia Krivkina
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Elena Velikanova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Andrey Mironov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Rinat Mukhamadiyarov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Evgenia Senokosova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Mariam Khanova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Daria Shishkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Victoria Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Leonid Barbarash
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| |
Collapse
|
11
|
Poly(lactic acid)-Based Electrospun Fibrous Structures for Biomedical Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063192] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Poly(lactic acid)(PLA) is an aliphatic polyester that can be derived from natural and renewable resources. Owing to favorable features, such as biocompatibility, biodegradability, good thermal and mechanical performance, and processability, PLA has been considered as one of the most promising biopolymers for biomedical applications. Particularly, electrospun PLA nanofibers with distinguishing characteristics, such as similarity to the extracellular matrix, large specific surface area and high porosity with small pore size and tunable mechanical properties for diverse applications, have recently given rise to advanced spillovers in the medical area. A variety of PLA-based nanofibrous structures have been explored for biomedical purposes, such as wound dressing, drug delivery systems, and tissue engineering scaffolds. This review highlights the recent advances in electrospinning of PLA-based structures for biomedical applications. It also gives a comprehensive discussion about the promising approaches suggested for optimizing the electrospun PLA nanofibrous structures towards the design of specific medical devices with appropriate physical, mechanical and biological functions.
Collapse
|
12
|
Zhang X, Meng Y, Gong B, Wang T, Lu Y, Zhang L, Xue J. Electrospun Nanofibers for Manipulating the Soft Tissue Regeneration. J Mater Chem B 2022; 10:7281-7308. [DOI: 10.1039/d2tb00609j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Soft tissue damage is a common clinical problem that affects the lives of a large number of patients all over the world. It is of great importance to develop functional...
Collapse
|
13
|
Koyanagi E, Tara S, Sakata C, Shimada K, Kato K, Miyachi H, Tanaka R, Nakazawa Y. A novel gradient and multilayered sheet with a silk fibroin/polyvinyl alcohol core-shell structure for bioabsorbable arterial grafts. J Biomed Mater Res A 2021; 110:576-584. [PMID: 34541815 DOI: 10.1002/jbm.a.37309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 11/11/2022]
Abstract
Bioabsorbable arterial grafts can potentially improve patency and neovessel formation; however, their application in clinical settings has not been realized. In this study, we developed bioabsorbable gradient sheets based on silk fibroin (SF) and polyvinyl alcohol (PVA) with a core-shell nanofibrous structure. This gradient sheet was expected to promote vascular remodeling while we maintained its physical properties and a gradual degrading process from the luminal surface. ESP was conducted at various flow rates for SF and PVA to achieve the multilayer gradient structure. Furthermore, the elasticity of the gradient sheet could be increased by increasing the PVA flow rate; however, this reduced the tensile strength of the core-shell fibers. Notably, the physical properties of the gradient sheet did not degrade even after 7 days of immersion in a phosphate buffer saline solution, which indicates that the structure could maintain its structural integrity while resisting arterial pressure. In vitro experiments revealed that the number of endothelial cells attached to the SF/PVA sheet was notably higher than that on the cell-culture dish. The gradient sheets were implanted in rat abdominal aortas and explanted after 14 days to confirm acute-phase patency and vascular remodeling. The gradient sheets constructed with SF composed of polyurethane and PVA improved the ease of handling of the material, and these sheets resulted in a favorable vascular remodeling outcome. Our results strongly suggest that the SF/PVA-based gradient sheets described in this study can serve as a novel design for bioabsorbable arterial grafts upon further modifications.
Collapse
Affiliation(s)
- Eri Koyanagi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shuhei Tara
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Chiemi Sakata
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazumi Shimada
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Konosuke Kato
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hideki Miyachi
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Ryou Tanaka
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yasumoto Nakazawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
14
|
Matsuzaki Y, Miyamoto S, Miyachi H, Iwaki R, Shoji T, Blum K, Chang YC, Kelly J, Reinhardt JW, Nakayama H, Breuer CK, Shinoka T. Improvement of a Novel Small-diameter Tissue-engineered Arterial Graft With Heparin Conjugation. Ann Thorac Surg 2021; 111:1234-1241. [DOI: 10.1016/j.athoracsur.2020.06.112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/15/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
|
15
|
Antonova L, Kutikhin A, Sevostianova V, Velikanova E, Matveeva V, Glushkova T, Mironov A, Krivkina E, Shabaev A, Senokosova E, Barbarash L. bFGF and SDF-1α Improve In Vivo Performance of VEGF-Incorporating Small-Diameter Vascular Grafts. Pharmaceuticals (Basel) 2021; 14:ph14040302. [PMID: 33800631 PMCID: PMC8065794 DOI: 10.3390/ph14040302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 12/01/2022] Open
Abstract
Tissue-engineered vascular grafts are widely tested as a promising substitute for both arterial bypass and replacement surgery. We previously demonstrated that incorporation of VEGF into electrospun tubular scaffolds from poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(ε-caprolactone) enhances formation of an endothelial cell monolayer. However, an overdose of VEGF can induce tumor-like vasculature; thereby, other bioactive factors are needed to support VEGF-driven endothelialization and successful recruitment of smooth muscle cells. Utilizing emulsion electrospinning, we fabricated one-layer vascular grafts with either VEGF, bFGF, or SDF-1α, and two-layer vascular grafts with VEGF incorporated into the inner layer and bFGF and SDF-1α incorporated into the outer layer with the following structural evaluation, tensile testing, and in vivo testing using a rat abdominal aorta replacement model. The latter graft prototype showed higher primary patency rate. We found that the two-layer structure improved surface topography and mechanical properties of the grafts. Further, the combination of bFGF, SDF-1α, and VEGF improved endothelialization compared with VEGF alone, while bFGF induced a rapid formation of a smooth muscle cell layer. Taken together, these findings show that the two-layer structure and incorporation of bFGF and SDF-1α into the vascular grafts in combination with VEGF provide a higher primary patency and therefore improved in vivo performance.
Collapse
|
16
|
Cai Q, Liao W, Xue F, Wang X, Zhou W, Li Y, Zeng W. Selection of different endothelialization modes and different seed cells for tissue-engineered vascular graft. Bioact Mater 2021; 6:2557-2568. [PMID: 33665496 PMCID: PMC7887299 DOI: 10.1016/j.bioactmat.2020.12.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Tissue-engineered vascular grafts (TEVGs) have enormous potential for vascular replacement therapy. However, thrombosis and intimal hyperplasia are important problems associated with TEVGs especially small diameter TEVGs (<6 mm) after transplantation. Endothelialization of TEVGs is a key point to prevent thrombosis. Here, we discuss different types of endothelialization and different seed cells of tissue-engineered vascular grafts. Meanwhile, endothelial heterogeneity is also discussed. Based on it, we provide a new perspective for selecting suitable types of endothelialization and suitable seed cells to improve the long-term patency rate of tissue-engineered vascular grafts with different diameters and lengths. The material, diameter and length of tissue-engineered vascular graft are all key factors affecting its long-term patency. Endothelialization strategies should consider the different diameters and lengths of tissue-engineered vascular grafts. Cell heterogeneity and tissue heterogeneity should be considered in the application of seed cells.
Collapse
Affiliation(s)
- Qingjin Cai
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Wanshan Liao
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Fangchao Xue
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Xiaochen Wang
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Weiming Zhou
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Yanzhao Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China
| | - Wen Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China.,Departments of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
17
|
Udelsman BV, Govea N, Cooper Z, Chang DC, Bader A, Meyer MJ. Variation in Patient-Reported Advance Care Preferences in the Preoperative Setting. Anesth Analg 2021; 132:210-216. [PMID: 31923000 DOI: 10.1213/ane.0000000000004617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND High-quality shared decision-making for patients undergoing elective surgical procedures includes eliciting patient goals and treatment preferences. This is particularly important, should complications occur and life-sustaining therapies be considered. Our objective was to determine the preoperative care preferences of older higher-risk patients undergoing elective procedures and to determine any factors associated with a preference for limitations to life-sustaining treatments. METHODS Cross-sectional survey conducted between May and December 2018. Patients ≥55 years of age presenting for a preprocedural evaluation in a high-risk anesthesia clinic were queried on their desire for life-sustaining treatments (cardiopulmonary resuscitation, mechanical ventilation, dialysis, and artificial nutrition) as well as tolerance for declines in health states (physical disability, cognitive disability, and daily severe pain). RESULTS One hundred patients completed the survey. The median patient age was 68. Most patients were Caucasian (87%) and had an American Society of Anesthesiologists (ASA) score of III (88%). The majority of patients (89%) desired cardiopulmonary resuscitation. However, most patients would not accept mechanical ventilation, dialysis, or artificial nutrition for an indefinite period of time. Similarly, most patients (67%-81%) indicated they would not desire treatments to sustain life in the event of permanent physical disability, cognitive disability, or daily severe pain. CONCLUSIONS Among older, higher-risk patients presenting for elective procedures, most patients chose limitations to life-sustaining treatments. This work highlights the need for an in-depth goals of care discussion and establishment of advance care preferences before a procedure or operative intervention.
Collapse
Affiliation(s)
- Brooks V Udelsman
- From the Department of Surgery, Massachusetts General Hospital, Codman Center for Clinical Effectiveness in Surgery, Boston, Massachusetts
| | - Nicolas Govea
- Department of Anesthesiology, NewYork-Presbyterian-Weill Cornell Medical Center, New York, New York
| | - Zara Cooper
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Surgery, Center for Surgery and Public Health, Boston, Massachusetts
| | - David C Chang
- From the Department of Surgery, Massachusetts General Hospital, Codman Center for Clinical Effectiveness in Surgery, Boston, Massachusetts
| | - Angela Bader
- Department of Anesthesiology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Matthew J Meyer
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
18
|
Sulaiman NS, Bond AR, Bruno VD, Joseph J, Johnson JL, Suleiman MS, George SJ, Ascione R. Effective decellularisation of human saphenous veins for biocompatible arterial tissue engineering applications: Bench optimisation and feasibility in vivo testing. J Tissue Eng 2021; 12:2041731420987529. [PMID: 33854749 PMCID: PMC8010838 DOI: 10.1177/2041731420987529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Human saphenous vein (hSV) and synthetic grafts are commonly used conduits in vascular grafting, despite high failure rates. Decellularising hSVs (D-hSVs) to produce vascular scaffolds might be an effective alternative. We assessed the effectiveness of a detergent-based method using 0% to 1% sodium dodecyl sulphate (SDS) to decellularise hSV. Decellularisation effectiveness was measured in vitro by nuclear counting, DNA content, residual cell viability, extracellular matrix integrity and mechanical strength. Cytotoxicity was assessed on human and porcine cells. The most effective SDS concentration was used to prepare D-hSV grafts that underwent preliminary in vivo testing using a porcine carotid artery replacement model. Effective decellularisation was achieved with 0.01% SDS, and D-hSVs were biocompatible after seeding. In vivo xeno-transplantation confirmed excellent mechanical strength and biocompatibility with recruitment of host cells without mechanical failure, and a 50% patency rate at 4-weeks. We have developed a simple biocompatible methodology to effectively decellularise hSVs. This could enhance vascular tissue engineering toward future clinical applications.
Collapse
Affiliation(s)
- Nadiah S Sulaiman
- Bristol Heart Insitute and Translational Biomedical Research Centre, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Bristol, UK
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - Andrew R Bond
- Bristol Heart Insitute and Translational Biomedical Research Centre, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Bristol, UK
| | - Vito D Bruno
- Bristol Heart Insitute and Translational Biomedical Research Centre, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Bristol, UK
| | - John Joseph
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Jason L Johnson
- Bristol Heart Insitute and Translational Biomedical Research Centre, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Bristol, UK
| | - M-Saadeh Suleiman
- Bristol Heart Insitute and Translational Biomedical Research Centre, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Bristol, UK
| | - Sarah J George
- Bristol Heart Insitute and Translational Biomedical Research Centre, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Bristol, UK
| | - Raimondo Ascione
- Bristol Heart Insitute and Translational Biomedical Research Centre, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Bristol, UK
- Raimondo Ascione, Bristol Heart Institute, Department of Translational Science, Bristol Royal Infirmary, level 7, University of Bristol, Marlborough Street, Bristol, BS2 8HW, UK.
| |
Collapse
|
19
|
Zbinden JC, Blum KM, Berman AG, Ramachandra AB, Szafron JM, Kerr KE, Anderson JL, Sangha GS, Earl CC, Nigh NR, Mirhaidari GJM, Reinhardt JW, Chang Y, Yi T, Smalley R, Gabriele PD, Harris JJ, Humphrey JD, Goergen CJ, Breuer CK. Effects of Braiding Parameters on Tissue Engineered Vascular Graft Development. Adv Healthc Mater 2020; 9:e2001093. [PMID: 33063452 DOI: 10.1002/adhm.202001093] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/17/2020] [Indexed: 01/06/2023]
Abstract
Tissue engineered vascular grafts (TEVGs) using scaffolds fabricated from braided poly(glycolic acid) (PGA) fibers coated with poly(glycerol sebacate) (PGS) are developed. The approach relies on in vivo tissue engineering by which neotissue forms solely within the body after a scaffold has been implanted. Herein, the impact of altering scaffold braid design and scaffold coating on neotissue formation is investigated. Several combinations of braiding parameters are manufactured and evaluated in a Beige mouse model in the infrarenal abdominal aorta. Animals are followed with 4D ultrasound analysis, and 12 week explanted vessels are evaluated for biaxial mechanical properties as well as histological composition. Results show that scaffold parameters (i.e., braiding angle, braiding density, and presence of a PGS coating) have interdependent effects on the resulting graft performance, namely, alteration of these parameters influences levels of inflammation, extracellular matrix production, graft dilation, neovessel distensibility, and overall survival. Coupling carefully designed in vivo experimentation with regression analysis, critical relationships between the scaffold design and the resulting neotissue that enable induction of favorable cellular and extracellular composition in a controlled manner are uncovered. Such an approach provides a potential for fabricating scaffolds with a broad range of features and the potential to manufacture optimized TEVGs.
Collapse
Affiliation(s)
- Jacob C. Zbinden
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| | - Kevin M. Blum
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| | - Alycia G. Berman
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Abhay B. Ramachandra
- Department of Biomedical Engineering, Yale University 55 Prospect Street New Haven CT 06520 USA
| | - Jason M. Szafron
- Department of Biomedical Engineering, Yale University 55 Prospect Street New Haven CT 06520 USA
| | - Katherine E. Kerr
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Jennifer L. Anderson
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Gurneet S. Sangha
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Conner C. Earl
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Noah R. Nigh
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Gabriel J. M. Mirhaidari
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| | - James W. Reinhardt
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| | - Yu‐Chun Chang
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| | - Tai Yi
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| | - Ryan Smalley
- Secant Group, LLC 551 East Church Ave Telford PA 18969 USA
| | | | | | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University 55 Prospect Street New Haven CT 06520 USA
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Christopher K. Breuer
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| |
Collapse
|
20
|
Reid JA, McDonald A, Callanan A. Modulating electrospun polycaprolactone scaffold morphology and composition to alter endothelial cell proliferation and angiogenic gene response. PLoS One 2020; 15:e0240332. [PMID: 33031435 PMCID: PMC7544109 DOI: 10.1371/journal.pone.0240332] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to look at how the composition and morphology of polymer scaffolds could be altered to create an optimized environment for endothelial cells. Four polycaprolactone (PCL) scaffolds were electrospun with increasing fibre diameters ranging from 1.64 μm to 4.83 μm. The scaffolds were seeded with human umbilical vein endothelial cells (HUVEC) and cultured for 12 days. PCL scaffolds were then electrospun incorporating decellularized bovine aorta ECM and cultured in a hypoxic environment. We noted deeper cell infiltration on the largest fibre diameter compared to the other three scaffolds which resulted in an increase in the gene expression of CD31; a key angiogenic marker. Increased cell viability and cell proliferation were also noted on the largest fibre. Furthermore, we noted that the incorporation of extracellular matrix (ECM) had minimal effect on cell viability, both in normoxic and hypoxic culture conditions. Our results showed that these environments had limited influences on hypoxic gene expression. Interestingly, the major findings from this study was the production of excretory ECM components as shown in the scanning electron microscopy (SEM) images. The results from this study suggest that fibre diameter had a bigger impact on the seeded HUVECs than the incorporation of ECM or the culture conditions. The largest fibre dimeter (4.83 μm) is more suitable for seeding of HUVECs.
Collapse
Affiliation(s)
- James Alexander Reid
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
| | - Alison McDonald
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
| | - Anthony Callanan
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Thottappillil N, Nair PD. Dual source co-electrospun tubular scaffold generated from gelatin-vinyl acetate and poly-ɛ-caprolactone for smooth muscle cell mediated blood vessel engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111030. [PMID: 32994010 DOI: 10.1016/j.msec.2020.111030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/09/2020] [Accepted: 04/27/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Neelima Thottappillil
- Division of Tissue Engineering and Regeneration Technologies, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, India
| | - Prabha D Nair
- Division of Tissue Engineering and Regeneration Technologies, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, India.
| |
Collapse
|
22
|
Bielajew BJ, Hu JC, Athanasiou KA. Collagen: quantification, biomechanics, and role of minor subtypes in cartilage. NATURE REVIEWS. MATERIALS 2020; 5:730-747. [PMID: 33996147 PMCID: PMC8114887 DOI: 10.1038/s41578-020-0213-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/28/2020] [Indexed: 05/02/2023]
Abstract
Collagen is a ubiquitous biomaterial in vertebrate animals. Although each of its 28 subtypes contributes to the functions of many different tissues in the body, most studies on collagen or collagenous tissues have focussed on only one or two subtypes. With recent developments in analytical chemistry, especially mass spectrometry, significant advances have been made toward quantifying the different collagen subtypes in various tissues; however, high-throughput and low-cost methods for collagen subtype quantification do not yet exist. In this Review, we introduce the roles of collagen subtypes and crosslinks, and describe modern assays that enable a deep understanding of tissue physiology and disease states. Using cartilage as a model tissue, we describe the roles of major and minor collagen subtypes in detail; discuss known and unknown structure-function relationships; and show how tissue engineers may harness the functional characteristics of collagen to engineer robust neotissues.
Collapse
Affiliation(s)
- Benjamin J. Bielajew
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92617, USA
| | - Jerry C. Hu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92617, USA
| | - Kyriacos A. Athanasiou
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92617, USA
| |
Collapse
|
23
|
Udelsman BV, Moseley ET, Sudore RL, Keating NL, Lindvall C. Deep Natural Language Processing Identifies Variation in Care Preference Documentation. J Pain Symptom Manage 2020; 59:1186-1194.e3. [PMID: 31926970 DOI: 10.1016/j.jpainsymman.2019.12.374] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 12/18/2022]
Abstract
CONTEXT Documentation of care preferences within 48 hours of admission to an intensive care unit (ICU) is a National Quality Forum-endorsed quality metric for older adults. Care preferences are poorly captured by administrative data. OBJECTIVES Using deep natural language processing, our aim was to determine the rate of care preference documentation in free-text notes and to assess associated patient factors. METHODS Retrospective review of notes by clinicians using a deep natural language processing to identify care preference documentation, including goals-of-care and treatment limitations, within 48 hours of ICU admission within five ICUs (medical, cardiac, surgery, trauma surgery, and cardiac surgery) for adults 75 years and older. Covariates included demographics, ICU type, sequential organ failure assessment score, and need for mechanical ventilation. RESULTS Deep natural language processing reviewed 11,575 clinician notes for 1350 ICU admissions. Median patient age was 84.0 years (interquartile range 78.0-88.4). Overall, 64.7% had documentation of care preferences. Patients with documentation were older (85 vs. 83 years; P < 0.001) and more often female (53.8% vs. 43.4%; P < 0.001). In adjusted analysis, rates of care preference documentation were higher for older patients, females, nonelective admissions, and admissions to the medical vs. the cardiac or surgical ICUs (all P ≤ 0.01). CONCLUSION Care preference documentation within 48 hours was absent in more than one-third of ICU admissions among patients aged 75 years and older and was more likely to occur in medical vs. cardiac or surgical ICUs.
Collapse
Affiliation(s)
| | - Edward T Moseley
- Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Boston, USA
| | - Rebecca L Sudore
- Division of Geriatrics, Department of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco Veterans Affairs Health Care System, San Francisco, California, USA
| | - Nancy L Keating
- Department of Health Care Policy, Harvard Medical School, Boston, USA; Division of General Internal Medicine, Brigham and Women's Hospital, Boston, USA
| | - Charlotta Lindvall
- Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Boston, USA; Division of Palliative Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, USA
| |
Collapse
|
24
|
Dikici S, Aldemir Dikici B, Bhaloo SI, Balcells M, Edelman ER, MacNeil S, Reilly GC, Sherborne C, Claeyssens F. Assessment of the Angiogenic Potential of 2-Deoxy-D-Ribose Using a Novel in vitro 3D Dynamic Model in Comparison With Established in vitro Assays. Front Bioeng Biotechnol 2020; 7:451. [PMID: 32010677 PMCID: PMC6978624 DOI: 10.3389/fbioe.2019.00451] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/18/2019] [Indexed: 11/13/2022] Open
Abstract
Angiogenesis is a highly ordered physiological process regulated by the interaction of endothelial cells with an extensive variety of growth factors, extracellular matrix components and mechanical stimuli. One of the most important challenges in tissue engineering is the rapid neovascularization of constructs to ensure their survival after transplantation. To achieve this, the use of pro-angiogenic agents is a widely accepted approach. The study of angiogenesis has gained momentum over the last two decades. Although there are various in vitro, ex vivo, and in vivo angiogenesis models that enable testing of newly discovered pro-angiogenic agents, the problem with researching angiogenesis is the choice of the most appropriate assay. In vivo assays are the most representative and reliable models, but they are expensive, time-consuming and can cause ethical concerns whereas in vitro assays are relatively inexpensive, practical, and reproducible, but they are usually lack of enabling the study of more than one aspect of angiogenesis, and they do not fully represent the complexity of physiological angiogenesis. Therefore, there is a need for the development of an angiogenesis model that allows the study of angiogenesis under physiologically more relevant, dynamic conditions without causing ethical concerns. Accordingly, in this study, we developed 3D in vitro dynamic angiogenesis model, and we tested the angiogenic potential of 2-deoxy-D-ribose (2dDR) in comparison with vascular endothelial growth factor (VEGF) using newly developed in vitro 3D dynamic model and well-established in vitro models. Our results obtained using conventional in vitro assays demonstrated that 2dDR promoted proliferation, migration and tube formation of human aortic endothelial cells (HAECs) in a dose-dependent manner. Then, the angiogenic activity of 2dDR was further assessed using the newly developed 3D in vitro model, which enabled the monitoring of cell proliferation and infiltration simultaneously under dynamic conditions. Our results showed that the administration of 2dDR and VEGF significantly enhanced the outgrowth of HAECs and the cellular density under either static or dynamic conditions.
Collapse
Affiliation(s)
- Serkan Dikici
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Betül Aldemir Dikici
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Shirin Issa Bhaloo
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Mercedes Balcells
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Bioengineering Department, Institut Quimic de Sarria, Ramon Llull University, Barcelona, Spain
| | - Elazer R. Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Sheila MacNeil
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Colin Sherborne
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
25
|
Eilenberg M, Enayati M, Ehebruster D, Grasl C, Walter I, Messner B, Baudis S, Potzmann P, Kaun C, Podesser BK, Wojta J, Bergmeister H. Long Term Evaluation of Nanofibrous, Bioabsorbable Polycarbonate Urethane Grafts for Small Diameter Vessel Replacement in Rodents. Eur J Vasc Endovasc Surg 2019; 59:643-652. [PMID: 31874809 DOI: 10.1016/j.ejvs.2019.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/14/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Biodegradable materials for in situ vascular tissue engineering could meet the increasing clinical demand for sufficient synthetic small diameter vascular substitutes in aortocoronary bypass and peripheral vascular surgery. The aim of this study was to design a new degradable thermoplastic polycarbonate urethane (dPCU) with improved biocompatibility and optimal biomechanical properties. Electrospun conduits made from dPCU were evaluated in short and long term follow up and compared with expanded polytetrafluoroethylene (ePTFE) controls. METHODS Both conduits were investigated prior to implantation to assess their biocompatibility and inflammatory potential via real time polymerase chain reaction using a macrophage culture. dPCU grafts (n = 28) and ePTFE controls (n = 28) were then implanted into the infrarenal abdominal aorta of Sprague-Dawley rats. After seven days, one, six, and 12 months, grafts were analysed by histology and immunohistochemistry (IHC) and assessed biomechanically. RESULTS Anti-inflammatory signalling was upregulated in dPCU conduits and increased significantly over time in vitro. dPCU and ePTFE grafts offered excellent long and short term patency rates (92.9% in both groups at 12 months) in the rat model without dilatation or aneurysm formation. In comparison to ePTFE, dPCU grafts showed transmural ingrowth of vascular specific cells resulting in a structured neovessel formation around the graft. The graft material was slowly reduced, while the compliance of the neovessel increased over time. CONCLUSION The newly designed dPCU grafts have the potential to be safely applied for in situ vascular tissue engineering applications. The degradable substitutes showed good in vivo performance and revealed desirable characteristics such as biomechanical stability, non-thrombogenicity, and minimal inflammatory response after long term implantation.
Collapse
Affiliation(s)
- Magdalena Eilenberg
- Department of Surgery, Medical University of Vienna, Vienna, Austria; Centre for Biomedical Research, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster for Cardiovascular Research, Medical University of Vienna, Vienna, Austria
| | - Marjan Enayati
- Centre for Biomedical Research, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster for Cardiovascular Research, Medical University of Vienna, Vienna, Austria
| | - Daniel Ehebruster
- Centre for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Christian Grasl
- Ludwig Boltzmann Cluster for Cardiovascular Research, Medical University of Vienna, Vienna, Austria; Centre of Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Ingrid Walter
- Department of Pathobiology, Veterinary University, Vienna, Austria
| | - Barbara Messner
- Surgical Research Laboratories-Cardiac Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Stefan Baudis
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Paul Potzmann
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christoph Kaun
- Ludwig Boltzmann Cluster for Cardiovascular Research, Medical University of Vienna, Vienna, Austria; Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Centre for Biomedical Research, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster for Cardiovascular Research, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Johann Wojta
- Ludwig Boltzmann Cluster for Cardiovascular Research, Medical University of Vienna, Vienna, Austria; Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Helga Bergmeister
- Centre for Biomedical Research, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster for Cardiovascular Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
26
|
Yuan H, Chen C, Liu Y, Lu T, Wu Z. Strategies in cell‐free tissue‐engineered vascular grafts. J Biomed Mater Res A 2019; 108:426-445. [PMID: 31657523 DOI: 10.1002/jbm.a.36825] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Haoyong Yuan
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Chunyang Chen
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Yuhong Liu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Ting Lu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Zhongshi Wu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| |
Collapse
|
27
|
Scott KE, Rychel K, Ranamukhaarachchi S, Rangamani P, Fraley SI. Emerging themes and unifying concepts underlying cell behavior regulation by the pericellular space. Acta Biomater 2019; 96:81-98. [PMID: 31176842 DOI: 10.1016/j.actbio.2019.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 12/29/2022]
Abstract
Cells reside in a complex three-dimensional (3D) microenvironment where physical, chemical, and architectural features of the pericellular space regulate important cellular functions like migration, differentiation, and morphogenesis. A major goal of tissue engineering is to identify which properties of the pericellular space orchestrate these emergent cell behaviors and how. In this review, we highlight recent studies at the interface of biomaterials and single cell biophysics that are lending deeper insight towards this goal. Advanced methods have enabled the decoupling of architectural and mechanical features of the microenvironment, revealing multiple mechanisms of adhesion and mechanosensing modulation by biomaterials. Such studies are revealing important roles for pericellular space degradability, hydration, and adhesion competition in cell shape, volume, and differentiation regulation. STATEMENT OF SIGNIFICANCE: Cell fate and function are closely regulated by the local extracellular microenvironment. Advanced methods at the interface of single cell biophysics and biomaterials have shed new light on regulators of cell-pericellular space interactions by decoupling more features of the complex pericellular milieu than ever before. These findings lend deeper mechanistic insight into how biomaterials can be designed to fine-tune outcomes like differentiation, migration, and collective morphogenesis.
Collapse
Affiliation(s)
- Kiersten E Scott
- Bioengineering, University of California San Diego Jacobs School of Engineering, 9500 Gilman Drive #0435, La Jolla, CA 92093, USA.
| | - Kevin Rychel
- Bioengineering, University of California San Diego Jacobs School of Engineering, 9500 Gilman Drive #0435, La Jolla, CA 92093, USA.
| | - Sural Ranamukhaarachchi
- Bioengineering, University of California San Diego Jacobs School of Engineering, 9500 Gilman Drive #0435, La Jolla, CA 92093, USA.
| | - Padmini Rangamani
- Mechanical and Aerospace Engineering, University of California San Diego Jacobs School of Engineering, 9500 Gilman Drive #0411, La Jolla, CA 92093, USA.
| | - Stephanie I Fraley
- Bioengineering, University of California San Diego Jacobs School of Engineering, 9500 Gilman Drive #0435, La Jolla, CA 92093, USA.
| |
Collapse
|
28
|
Regenerative and durable small-diameter graft as an arterial conduit. Proc Natl Acad Sci U S A 2019; 116:12710-12719. [PMID: 31182572 DOI: 10.1073/pnas.1905966116] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Despite significant research efforts, clinical practice for arterial bypass surgery has been stagnant, and engineered grafts continue to face postimplantation challenges. Here, we describe the development and application of a durable small-diameter vascular graft with tailored regenerative capacity. We fabricated small-diameter vascular grafts by electrospinning fibrin tubes and poly(ε-caprolactone) fibrous sheaths, which improved suture retention strength and enabled long-term survival. Using surface topography in a hollow fibrin microfiber tube, we enable immediate, controlled perfusion and formation of a confluent endothelium within 3-4 days in vitro with human endothelial colony-forming cells, but a stable endothelium is noticeable at 4 weeks in vivo. Implantation of acellular or endothelialized fibrin grafts with an external ultrathin poly(ε-caprolactone) sheath as an interposition graft in the abdominal aorta of a severe combined immunodeficient Beige mouse model supports normal blood flow and vessel patency for 24 weeks. Mechanical properties of the implanted grafts closely approximate the native abdominal aorta properties after just 1 week in vivo. Fibrin mediated cellular remodeling, stable tunica intima and media formation, and abundant matrix deposition with organized collagen layers and wavy elastin lamellae. Endothelialized grafts evidenced controlled healthy remodeling with delayed and reduced macrophage infiltration alongside neo vasa vasorum-like structure formation, reduced calcification, and accelerated tunica media formation. Our studies establish a small-diameter graft that is fabricated in less than 1 week, mediates neotissue formation and incorporation into the native tissue, and matches the native vessel size and mechanical properties, overcoming main challenges in arterial bypass surgery.
Collapse
|
29
|
ŞİRVAN SS, AKGÜN DEMİR I, IRMAK F, DAĞDELEN D, SEVİM KZ, ÖZAĞARI A, KARASOY YEŞİLADA A. Comparison of venous repair results using either arterial or vein grafts in a crush-avulsion injury model. Turk J Med Sci 2019; 49:435-441. [PMID: 30761834 PMCID: PMC7350846 DOI: 10.3906/sag-1808-38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Background/aim Venous insufficiency after replantation or revascularization is one of the most common causes of limb loss in either the short or the long term. The aim of this study was to evaluate the results of a new technique to overcome venous insufficiency. Materials and Methods A crush-avulsion type of injury was formed in the femoral veins of rats of 3 separate groups. In the control group, primary repair was applied to the damaged veins and the remaining 2 groups were repaired with either an arterial graft or a vein graft. The success rates of anastomosis were then compared. Results In the control group the patency rate was 25% in the 2nd hour, 12.5% on the 2nd day, and 12.5% on the 10th day. The patency rate in the vein group was 87.5% in the 2nd hour, 50% on the 2nd day, and 37.5% on the 10th day, whereas the patency rates in the artery group were 100% in the 2nd hour, 87.5% on the 2nd day, and 75% on the 10th day. Conclusion Microsurgery requires experience and patience. It can be considered that the use of arterial grafts for venous repair in replantation after crush-avulsion type amputations can increase the success rate of replantation.
Collapse
Affiliation(s)
- Selami Serhat ŞİRVAN
- Department of Plastic, Reconstructive, and Aesthetic Surgery, University of Health Sciences Şişli Hamidiye Etfal Research and Training Hospital, İstanbulTurkey
| | - Işıl AKGÜN DEMİR
- Department of Plastic, Reconstructive, and Aesthetic Surgery, University of Health Sciences Şişli Hamidiye Etfal Research and Training Hospital, İstanbulTurkey
| | - Fatih IRMAK
- Department of Plastic, Reconstructive, and Aesthetic Surgery, University of Health Sciences Şişli Hamidiye Etfal Research and Training Hospital, İstanbulTurkey
| | - Dağhan DAĞDELEN
- Department of Plastic Surgery, Balıkesir State Hospital, BalıkesirTurkey
| | - Kamuran Zeynep SEVİM
- Department of Plastic, Reconstructive, and Aesthetic Surgery, University of Health Sciences Şişli Hamidiye Etfal Research and Training Hospital, İstanbulTurkey
| | - Ayşim ÖZAĞARI
- Department of Pathology, University of Health Sciences Şişli Hamidiye Etfal Research and Training Hospital, İstanbulTurkey
| | - Ayşin KARASOY YEŞİLADA
- Department of Plastic, Reconstructive, and Aesthetic Surgery, University of Health Sciences Şişli Hamidiye Etfal Research and Training Hospital, İstanbulTurkey
| |
Collapse
|
30
|
Xu C, Kuriakose AE, Truong D, Punnakitikashem P, Nguyen KT, Hong Y. Enhancing anti-thrombogenicity of biodegradable polyurethanes through drug molecule incorporation. J Mater Chem B 2018; 6:7288-7297. [PMID: 30906556 PMCID: PMC6424506 DOI: 10.1039/c8tb01582a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sufficient and sustained anti-thrombogenicity is essential for blood-contacting materials, because blood coagulation and thrombosis caused by platelet adhesion and activation on material surfaces may lead to functional failure and even fatal outcomes. Covalently conjugating antithrombogenic moieties into polymer, instead of surface modifying or blending, can maintain the anti-thrombogenicity of polymer at a high level over a time range. In this study, series of randomly crosslinked, elastic, biodegradable polyurethanes (PU-DPA) were synthesized through a one-pot and one-step method from polycaprolactone (PCL) diol, hexamethylene diisocyanate (HDI) and anti-thrombogenic drug, dipyridamole (DPA). The mechanical properties, hydrophilicity, in vitro degradation, and anti-thrombogenicity of the resultant PU-DPA polymers can be tuned by altering the incorporated DPA amount. The surface and bulk hydrophilicity of the polyurethanes decreased with increasing hydrophobic DPA amount. All PU-DPA polymers exhibited strong mechanical properties and good elasticity. The degradation rates of the PU-DPAs decreased with increasing DPA content in both PBS and lipase/PBS solutions. Covalently incorporating DPA into the polyurethane significantly reduced the platelet adhesion and activation compared to the polyurethane without DPA, and also can achieve sustained anti-thrombogenicity. The PU-DPA films also supported the growth of human umbilical vein endothelial cells. The attractive mechanical properties, blood compatibility, and cell compatibility of this anti-thrombogenic biodegradable polyurethane indicate that it has a great potential to be utilized for blood-contacting devices, and cardiovascular tissue repair and regeneration.
Collapse
Affiliation(s)
- Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aneetta E. Kuriakose
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Danh Truong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Primana Punnakitikashem
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
31
|
Stowell CET, Wang Y. Quickening: Translational design of resorbable synthetic vascular grafts. Biomaterials 2018; 173:71-86. [PMID: 29772461 PMCID: PMC6492619 DOI: 10.1016/j.biomaterials.2018.05.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/19/2018] [Accepted: 05/03/2018] [Indexed: 12/17/2022]
Abstract
Traditional tissue-engineered vascular grafts have yet to gain wide clinical use. The difficulty of scaling production of these cell- or biologic-based products has hindered commercialization. In situ tissue engineering bypasses such logistical challenges by using acellular resorbable scaffolds. Upon implant, the scaffolds become remodeled by host cells. This review describes the scientific and translational advantages of acellular, synthetic vascular grafts. It surveys in vivo results obtained with acellular synthetics over their fifty years of technological development. Finally, it discusses emerging principles, highlights strategic considerations for designers, and identifies questions needing additional research.
Collapse
Affiliation(s)
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, USA.
| |
Collapse
|
32
|
Colunga T, Dalton S. Building Blood Vessels with Vascular Progenitor Cells. Trends Mol Med 2018; 24:630-641. [PMID: 29802036 PMCID: PMC6050017 DOI: 10.1016/j.molmed.2018.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022]
Abstract
Vascular progenitor cells have been identified from perivascular cell fractions and peripheral blood and bone marrow mononuclear fractions. These vascular progenitors share the ability to generate some of the vascular lineages, including endothelial cells, smooth muscle cells, and pericytes. The potential therapeutic uses for vascular progenitor cells are broad and relate to stroke, ischemic disease, and to the engineering of whole organs and tissues that require a vascular component. This review summarizes the best-characterized sources of vascular progenitor cells and discusses advances in 3D printing and electrospinning using blended polymers for the creation of biomimetic vascular grafts. These advances are pushing the field of regenerative medicine closer to the creation of small-diameter vascular grafts with long-term clinical utility.
Collapse
Affiliation(s)
- Thomas Colunga
- Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA; Department of Biochemistry and Molecular Biology, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA
| | - Stephen Dalton
- Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA; Department of Biochemistry and Molecular Biology, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA.
| |
Collapse
|
33
|
Antonova LV, Sevostyanova VV, Kutikhin AG, Velikanova ЕA, Matveeva VG, Glushkova TV, Mironov AV, Krivkina EO, Barbarash OL, Barbarash LS. INFLUENCE OF bFGF, SDF-1α, OR VEGF INCORPORATED INTO TUBULAR POLYMER SCAFFOLDS ON THE FORMATION OF SMALL-DIAMETER TISSUE-ENGINEERED BLOOD VESSEL IN VIVO. RUSSIAN JOURNAL OF TRANSPLANTOLOGY AND ARTIFICIAL ORGANS 2018. [DOI: 10.15825/1995-1191-2018-1-96-109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aim. To evaluate the potential synergistic effects of basic fi broblast growth factor (bFGF) and stromal cell-derived factor-1α (SDF-1α) complemented with VEGF compared to VEGF alone when being added into poly(3-hydroxybutyrateco-3-hydroxyvalerate) / poly(ε-caprolactone) vascular grafts implanted into rat abdominal aorta for 3, 6, or 12 months.Materials and methods. Utilizing emulsion electrospinning, we fabricated one-layer vascular grafts with either VEGF, bFGF, or SDF-1α, and two-layer vascular grafts with VEGF incorporated into the inner layer and bFGF and SDF-1α incorporated into the outer layer following structural evaluation, tensile testing, andin vivotesting using a rat abdominal aorta replacement model.Results. Grafts containing all three growth factors had a 100% primary patency rate. The combination of bFGF, SDF-1α and VEGF improved morphology and mechanical properties of the grafts. Furthermore, such combination of the bioactive factors promoted endothelialization compared to VEGF alone. In addition, bFGF induced a rapid formation of a SMC layer.Conclusion. Taking together, these fi ndings show that the incorporation of bFGF and SDF-1α into the vascular grafts in combination with VEGF enhances vascular tissue regeneration and provides a higher primary patency rate.
Collapse
Affiliation(s)
- L. V. Antonova
- Research Institute for Complex Issues of Cardiovascular Diseases
| | | | - A. G. Kutikhin
- Research Institute for Complex Issues of Cardiovascular Diseases
| | - Е. A. Velikanova
- Research Institute for Complex Issues of Cardiovascular Diseases
| | - V. G. Matveeva
- Research Institute for Complex Issues of Cardiovascular Diseases
| | - T. V. Glushkova
- Research Institute for Complex Issues of Cardiovascular Diseases
| | - A. V. Mironov
- Research Institute for Complex Issues of Cardiovascular Diseases
| | - E. O. Krivkina
- Research Institute for Complex Issues of Cardiovascular Diseases
| | - O. L. Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases
| | - L. S. Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases
| |
Collapse
|
34
|
Shi J, Zhang J, Yin M, Wang Q, Du J. Accurate and continuous ultrasonography evaluation of small diameter vascular prostheses in vivo. Exp Ther Med 2018; 15:3899-3907. [PMID: 29563986 PMCID: PMC5858090 DOI: 10.3892/etm.2018.5895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/05/2018] [Indexed: 11/24/2022] Open
Abstract
There is a large clinical requirement for novel vascular grafts; however, the development of novel vascular grafts has not been extremely successful to date. The most successful method for the continuous evaluation of vascular grafts in vivo remains unclear. Therefore, an optimal successive, non-invasive imaging modality is necessary for the study of vascular transplantation. In the present study, a common rabbit model of carotid artery defect was utilized. The patency and hemodynamic characteristics of implanted grafts was examined following surgery by color Doppler ultrasound in three modes, including B-mode, color flow map and pulse-Doppler examination. The results revealed that ultrasound had sufficient spatial resolution to generate clear images of the carotid artery of rabbits with or without the implanted grafts. Color Doppler ultrasound may be applied to evaluate and differentiate the patent, stenosis and occlusion of carotid arteries in rabbits with different vascular grafts implanted. Furthermore, color Doppler ultrasound is an optimal imaging modality for continuous evaluation in vivo. It is also possible for some quantitative analyses to be performed, including measuring the diameter of vascular lumens and the flow velocity of the region of interest. The present study suggests vascular ultrasound as the optimum choice for continuous surveillance of vascular prostheses in vivo, which may provide valuable information about the grafts in order to greatly shorten the experimental period.
Collapse
Affiliation(s)
- Jing Shi
- Imaging Diagnosis Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Jialing Zhang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Qian Wang
- Imaging Diagnosis Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Jun Du
- Imaging Diagnosis Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| |
Collapse
|
35
|
Tu F, Liu Y, Li H, Shi P, Hao Y, Wu Y, Yi H, Yin Y, Wang J. Vascular Cell Co-Culture on Silk Fibroin Matrix. Polymers (Basel) 2018; 10:E39. [PMID: 30966074 PMCID: PMC6414862 DOI: 10.3390/polym10010039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 01/21/2023] Open
Abstract
Silk fibroin (SF), a natural polymer material possessing excellent biocompatibility and biodegradability, and has been widely used in biomedical applications. In order to explore the behavior of vascular cells by co-culturing on regenerated SF matrix for use as artificial blood vessels, human aorta vascular smooth muscle cells (HAVSMCs) were co-cultured with human arterial fibroblasts (HAFs) or human umbilical vein endothelial cells (HUVECs) on SF films and SF tubular scaffolds (SFTSs). Analysis of cell morphology and deoxyribonucleic acid (DNA) content showed that HUVECs, HAVSMCs and HAFs adhered and spread well, and exhibited high proliferative activity whether cultured alone or in co-culture. Immunofluorescence and scanning electron microscopy (SEM) analysis showed that HUVECs and HAFs co-existed well with HAVSMCs on SF films or SFTSs. Cytokine expression determined by reverse transcription-polymerase chain reaction (RT-PCR) indicated that the expression levels of α-smooth muscle actin (α-SMA) and smooth muscle myosin heavy chain (SM-MHC) in HAVSMCs were inhibited on SF films or SFTSs, but expression could be obviously promoted by co-culture with HUVECs or HAFs, especially that of SM-MHC. On SF films, the expression of vascular endothelial growth factor (VEGF) and platelet endothelial cell adhesion molecule-1 (CD31) in HUVECs was promoted, and the expression levels of both increased obviously when co-cultured with HAVSMCs, with the expression levels of VEGF increasing with increasing incubation time. The expression levels of VEGF and CD31 in cells co-cultured on SFTSs improved significantly from day 3 compared with the mono-culture group. These results were beneficial to the mechanism analysis on vascular cell colonization and vascular tissue repair after in vivo transplantation of SFTSs.
Collapse
Affiliation(s)
- Fangfang Tu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Yunfei Liu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Helei Li
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Pange Shi
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Yunxia Hao
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Yue Wu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Honggen Yi
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Yin Yin
- Laboratory Animal Research Center, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Jiannan Wang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
36
|
Maxfield MW, Stacy MR, Kurobe H, Tara S, Yi T, Cleary MA, Zhuang ZW, Rodriguez-Davalos MI, Emre SH, Iwakiri Y, Shinoka T, Breuer CK. Novel application and serial evaluation of tissue-engineered portal vein grafts in a murine model. Regen Med 2017; 12:929-938. [PMID: 29215317 PMCID: PMC5827823 DOI: 10.2217/rme-2017-0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/10/2017] [Indexed: 01/22/2023] Open
Abstract
AIM Surgical management of pediatric extrahepatic portal vein obstruction requires meso-Rex bypass using autologous or synthetic grafts. Tissue-engineered vascular grafts (TEVGs) provide an alternative, but no validated animal models using portal TEVGs exist. Herein, we preclinically assess TEVGs as portal vein bypass grafts. MATERIALS & METHODS TEVGs were implanted as portal vein interposition conduits in SCID-beige mice, monitored by ultrasound and micro-computed tomography, and histologically assessed postmortem at 12 months. RESULTS TEVGs remained patent for 12 months. Histologic analysis demonstrated formation of neovessels that resembled native portal veins, with similar content of smooth muscle cells, collagen type III and elastin. CONCLUSION TEVGs are feasible portal vein conduits in a murine model. Further preclinical evaluation of TEVGs may facilitate pediatric clinical translation.
Collapse
Affiliation(s)
- Mark W Maxfield
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Mitchel R Stacy
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Hirotsugu Kurobe
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Shuhei Tara
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Tai Yi
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Muriel A Cleary
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Zhen W Zhuang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Manuel I Rodriguez-Davalos
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Sukru H Emre
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Yasuko Iwakiri
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Toshiharu Shinoka
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher K Breuer
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
37
|
La nanotecnología ofrece un enfoque terapéutico prometedor para el tratamiento de la hipertensión. HIPERTENSION Y RIESGO VASCULAR 2017; 34:120-127. [DOI: 10.1016/j.hipert.2016.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 02/06/2023]
|
38
|
Ong CS, Zhou X, Huang CY, Fukunishi T, Zhang H, Hibino N. Tissue engineered vascular grafts: current state of the field. Expert Rev Med Devices 2017; 14:383-392. [PMID: 28447487 DOI: 10.1080/17434440.2017.1324293] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Conventional synthetic vascular grafts are limited by the inability to remodel, as well as issues of patency at smaller diameters. Tissue-engineered vascular grafts (TEVGs), constructed from biologically active cells and biodegradable scaffolds have the potential to overcome these limitations, and provide growth capacity and self-repair. Areas covered: This article outlines the TEVG design, biodegradable scaffolds, TEVG fabrication methods, cell seeding, drug delivery, strategies to reduce wait times, clinical trials, as well as a 5-year view with expert commentary. Expert commentary: TEVG technology has progressed significantly with advances in scaffold material and design, graft design, cell seeding and drug delivery. Strategies have been put in place to reduce wait times and improve 'off-the-shelf' capability of TEVGs. More recently, clinical trials have been conducted to investigate the clinical applications of TEVGs.
Collapse
Affiliation(s)
- Chin Siang Ong
- a Division of Cardiac Surgery , Johns Hopkins Hospital , Baltimore , MD , USA
| | - Xun Zhou
- a Division of Cardiac Surgery , Johns Hopkins Hospital , Baltimore , MD , USA
| | - Chen Yu Huang
- b Department of Physics & Astronomy , Johns Hopkins University , Baltimore , MD , USA
| | - Takuma Fukunishi
- a Division of Cardiac Surgery , Johns Hopkins Hospital , Baltimore , MD , USA
| | - Huaitao Zhang
- a Division of Cardiac Surgery , Johns Hopkins Hospital , Baltimore , MD , USA
| | - Narutoshi Hibino
- a Division of Cardiac Surgery , Johns Hopkins Hospital , Baltimore , MD , USA
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide a broad overview of current trends in stem cell research and its applications in cardiovascular medicine. Researches on different stem cell sources, their inherent characteristics, and the limitations they have in medical applications are discussed. Additionally, uses of stem cells for both modeling and treating cardiovascular disease are discussed, taking note of the obstacles these engineered interventions must overcome to be clinically viable. RECENT FINDINGS Tissue engineering aims to replace dysfunctional tissues with engineered constructs. Stem cell technologies have been a great enabling factor in working toward this goal. Many tissue-engineered products are in development that utilize stem cell technology. Although promising, some refinement must be made to these constructs with respect to safety and functionality. A deeper understanding of basic differentiation and tissue developmental mechanisms is required to allow these engineered tissues to be translated into the clinic.
Collapse
Affiliation(s)
- Christopher W Anderson
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, 06510, USA
- Molecular Cell Genetics and Developmental Biology Program, Yale University, New Haven, CT, 06510, USA
| | - Nicole Boardman
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, 06510, USA
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, 300 George Street, Ste 773A, New Haven, CT, 06511, USA
| | - Jiesi Luo
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, 06510, USA
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, 300 George Street, Ste 773A, New Haven, CT, 06511, USA
| | - Jinkyu Park
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, 06510, USA
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, 300 George Street, Ste 773A, New Haven, CT, 06511, USA
| | - Yibing Qyang
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, 06510, USA.
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, 300 George Street, Ste 773A, New Haven, CT, 06511, USA.
- Yale Stem Cell Center, Yale University, New Haven, CT, 06510, USA.
- Department of Pathology, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
40
|
Braghirolli DI, Helfer VE, Chagastelles PC, Dalberto TP, Gamba D, Pranke P. Electrospun scaffolds functionalized with heparin and vascular endothelial growth factor increase the proliferation of endothelial progenitor cells. Biomed Mater 2017; 12:025003. [DOI: 10.1088/1748-605x/aa5bbc] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Lavery KS, Rhodes C, Mcgraw A, Eppihimer MJ. Anti-thrombotic technologies for medical devices. Adv Drug Deliv Rev 2017; 112:2-11. [PMID: 27496703 DOI: 10.1016/j.addr.2016.07.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/03/2016] [Accepted: 07/26/2016] [Indexed: 01/08/2023]
Abstract
Thrombosis associated with medical devices may lead to dramatic increases in morbidity, mortality and increased health care costs. Innovative strategies are being developed to reduce this complication and provide a safe biocompatible interface between device and blood. This article aims to describe the biological phenomena underlying device-associated thrombosis, and surveys the literature describing current and developing technologies designed to overcome this challenge. To reduce thrombosis, biomaterials with varying topographical properties and incorporating anti-thrombogenic substances on their surface have demonstrated potential. Overall, there is extensive literature describing technical solutions to reduce thrombosis associated with medical devices, but clinical results are required to demonstrate significant long-term benefits.
Collapse
Affiliation(s)
- Karen S Lavery
- Preclinical Sciences, Boston Scientific Corporation, 100 Boston Scientific Way, Marlborough, MA 01752-1234, United States
| | - Candace Rhodes
- Preclinical Sciences, Boston Scientific Corporation, 100 Boston Scientific Way, Marlborough, MA 01752-1234, United States
| | - Adam Mcgraw
- Preclinical Sciences, Boston Scientific Corporation, 100 Boston Scientific Way, Marlborough, MA 01752-1234, United States
| | - Michael J Eppihimer
- Preclinical Sciences, Boston Scientific Corporation, 100 Boston Scientific Way, Marlborough, MA 01752-1234, United States
| |
Collapse
|
42
|
Best C, Onwuka E, Pepper V, Sams M, Breuer J, Breuer C. Cardiovascular Tissue Engineering: Preclinical Validation to Bedside Application. Physiology (Bethesda) 2017; 31:7-15. [PMID: 26661524 DOI: 10.1152/physiol.00018.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Advancements in biomaterial science and available cell sources have spurred the translation of tissue-engineering technology to the bedside, addressing the pressing clinical demands for replacement cardiovascular tissues. Here, the in vivo status of tissue-engineered blood vessels, heart valves, and myocardium is briefly reviewed, illustrating progress toward a tissue-engineered heart for clinical use.
Collapse
Affiliation(s)
- Cameron Best
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Ekene Onwuka
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio; and
| | - Victoria Pepper
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio
| | - Malik Sams
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Jake Breuer
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Christopher Breuer
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio; and Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
43
|
Colombo F, Sampogna G, Cocozza G, Guraya SY, Forgione A. Regenerative medicine: Clinical applications and future perspectives. J Microsc Ultrastruct 2017; 5:1-8. [PMID: 30023231 PMCID: PMC6014261 DOI: 10.1016/j.jmau.2016.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/13/2016] [Accepted: 05/15/2016] [Indexed: 12/13/2022] Open
Abstract
After many years of basic research, regenerative medicine (RM) is now beginning to represent a valuable tool to cure several clinical conditions in both acute injuries and chronic diseases. The aim of this study is to update readers on current clinical applications of some selected organs and pathologies which may benefit from RM. An extensive literature research was performed using PubMed, Google and specialized journals. RM has achieved great successes, but there are still several challenges to tackle before it could be used on a daily basis in clinical practice. The crucial point of this revolution is represented by the appropriate and valid translation from bench to bedside.
Collapse
Affiliation(s)
- Federica Colombo
- Advanced International Mini-invasive Surgery – AIMS Academy, Milan, Italy
| | - Gianluca Sampogna
- Advanced International Mini-invasive Surgery – AIMS Academy, Milan, Italy
| | - Giovanni Cocozza
- Advanced International Mini-invasive Surgery – AIMS Academy, Milan, Italy
| | - Salman Yousuf Guraya
- Department of Surgery and Consultant Colorectal Surgeon, College of Medicine, Taibah University, Almadinah Almunawwarah, KSA
| | - Antonello Forgione
- Advanced International Mini-invasive Surgery – AIMS Academy, Milan, Italy
| |
Collapse
|
44
|
Santoro M, Shah SR, Walker JL, Mikos AG. Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Adv Drug Deliv Rev 2016; 107:206-212. [PMID: 27125190 PMCID: PMC5081275 DOI: 10.1016/j.addr.2016.04.019] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/29/2016] [Accepted: 04/18/2016] [Indexed: 12/23/2022]
Abstract
Poly(lactic acid) (PLA) is a synthetic polyester that has shown extensive utility in tissue engineering. Synthesized either by ring opening polymerization or polycondensation, PLA hydrolytically degrades into lactic acid, a metabolic byproduct, making it suitable for medical applications. Specifically, PLA nanofibers have widened the possible uses of PLA scaffolds for regenerative medicine and drug delivery applications. The use of nanofibrous scaffolds imparts a host of desirable properties, including high surface area, biomimicry of native extracellular matrix architecture, and tuning of mechanical properties, all of which are important facets of designing scaffolds for a particular organ system. Additionally, nanofibrous PLA scaffolds hold great promise as drug delivery carriers, where fabrication parameters and drug-PLA compatibility greatly affect the drug release kinetics. In this review, we present the latest advances in the use of PLA nanofibrous scaffolds for musculoskeletal, nervous, cardiovascular, and cutaneous tissue engineering and offer perspectives on their future use.
Collapse
Affiliation(s)
- Marco Santoro
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, United States
| | - Sarita R Shah
- Department of Bioengineering, Rice University, Houston, TX 77030, United States
| | - Jennifer L Walker
- Department of Bioengineering, Rice University, Houston, TX 77030, United States
| | - Antonios G Mikos
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, United States; Department of Bioengineering, Rice University, Houston, TX 77030, United States.
| |
Collapse
|
45
|
Namdari M, Eatemadi A. Nanofibrous bioengineered heart valve—Application in paediatric medicine. Biomed Pharmacother 2016; 84:1179-1188. [DOI: 10.1016/j.biopha.2016.10.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 12/22/2022] Open
|
46
|
Affiliation(s)
- Esmaeil Biazar
- Department of Biomaterials Engineering, Tonekabon Branch; Islamic Azad University; Tonekabon Iran
| |
Collapse
|
47
|
Fukunishi T, Best CA, Sugiura T, Shoji T, Yi T, Udelsman B, Ohst D, Ong CS, Zhang H, Shinoka T, Breuer CK, Johnson J, Hibino N. Tissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber PCL/Chitosan Scaffolds in a Sheep Model. PLoS One 2016; 11:e0158555. [PMID: 27467821 PMCID: PMC4965077 DOI: 10.1371/journal.pone.0158555] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 06/19/2016] [Indexed: 01/22/2023] Open
Abstract
Tissue engineered vascular grafts (TEVGs) have the potential to overcome the issues faced by existing small diameter prosthetic grafts by providing a biodegradable scaffold where the patient’s own cells can engraft and form functional neotissue. However, applying classical approaches to create arterial TEVGs using slow degrading materials with supraphysiological mechanical properties, typically results in limited host cell infiltration, poor remodeling, stenosis, and calcification. The purpose of this study is to evaluate the feasibility of novel small diameter arterial TEVGs created using fast degrading material. A 1.0mm and 5.0mm diameter TEVGs were fabricated with electrospun polycaprolactone (PCL) and chitosan (CS) blend nanofibers. The 1.0mm TEVGs were implanted in mice (n = 3) as an unseeded infrarenal abdominal aorta interposition conduit., The 5.0mm TEVGs were implanted in sheep (n = 6) as an unseeded carotid artery (CA) interposition conduit. Mice were followed with ultrasound and sacrificed at 6 months. All 1.0mm TEVGs remained patent without evidence of thrombosis or aneurysm formation. Based on small animal outcomes, sheep were followed with ultrasound and sacrificed at 6 months for histological and mechanical analysis. There was no aneurysm formation or calcification in the TEVGs. 4 out of 6 grafts (67%) were patent. After 6 months in vivo, 9.1 ± 5.4% remained of the original scaffold. Histological analysis of patent grafts demonstrated deposition of extracellular matrix constituents including elastin and collagen production, as well as endothelialization and organized contractile smooth muscle cells, similar to that of native CA. The mechanical properties of TEVGs were comparable to native CA. There was a significant positive correlation between TEVG wall thickness and CD68+ macrophage infiltration into the scaffold (R2 = 0.95, p = 0.001). The fast degradation of CS in our novel TEVG promoted excellent cellular infiltration and neotissue formation without calcification or aneurysm. Modulating host macrophage infiltration into the scaffold is a key to reducing excessive neotissue formation and stenosis.
Collapse
Affiliation(s)
- Takuma Fukunishi
- Department of Cardiac Surgery, Johns Hopkins University, Baltimore, MD, United States of America
| | - Cameron A. Best
- Tissue Engineering and Center for Cardiovascular and Pulmonary Research, Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Tadahisa Sugiura
- Tissue Engineering and Center for Cardiovascular and Pulmonary Research, Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Toshihiro Shoji
- Tissue Engineering and Center for Cardiovascular and Pulmonary Research, Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Tai Yi
- Tissue Engineering and Center for Cardiovascular and Pulmonary Research, Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Brooks Udelsman
- Yale University School of Medicine, New Haven, CT, United States of America
| | - Devan Ohst
- Nanofiber Solutions Inc, Columbus, OH, United States of America
| | - Chin Siang Ong
- Department of Cardiac Surgery, Johns Hopkins University, Baltimore, MD, United States of America
| | - Huaitao Zhang
- Department of Cardiac Surgery, Johns Hopkins University, Baltimore, MD, United States of America
| | - Toshiharu Shinoka
- Tissue Engineering and Center for Cardiovascular and Pulmonary Research, Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Christopher K. Breuer
- Tissue Engineering and Center for Cardiovascular and Pulmonary Research, Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Jed Johnson
- Nanofiber Solutions Inc, Columbus, OH, United States of America
| | - Narutoshi Hibino
- Department of Cardiac Surgery, Johns Hopkins University, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
48
|
Biazar E. Application of polymeric nanofibers in medical designs, part II: Neural and cardiovascular tissues. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1180619] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Wang L, Hu J, Sorek CE, Chen EY, Ma PX, Yang B. Fabrication of tissue-engineered vascular grafts with stem cells and stem cell-derived vascular cells. Expert Opin Biol Ther 2015; 16:317-30. [PMID: 26560995 PMCID: PMC4928489 DOI: 10.1517/14712598.2016.1118460] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cardiovascular disease is the leading cause of mortality worldwide. Current surgical treatments for cardiovascular disease include vascular bypass grafting and replacement with autologous blood vessels or synthetic vascular grafts. However, there is a call for better alternative biological grafts. AREAS COVERED Tissue-engineered vascular grafts (TEVGs) are promising novel alternatives to replace diseased vessels. However, obtaining enough functional and clinically usable vascular cells for fabrication of TEVGs remains a major challenge. New findings in adult stem cells and recent advances in pluripotent stem cells have opened a new avenue for stem cell-based vascular engineering. In this review, recent advances on stem cell sourcing for TEVGs including the use of adult stem cells and pluripotent stem cells and advantages, disadvantages, and possible future implementations of different types of stem cells will be discussed. In addition, current strategies used during the fabrication of TEVGs will be highlighted. EXPERT OPINION The application of patient-specific TEVGs constructed with vascular cells derived from immune-compatible stem cells possesses huge clinical potential. Advances in lineage-specific differentiation approaches and innovative vascular engineering strategies will promote the vascular regeneration field from bench to bedside.
Collapse
Affiliation(s)
- Lunchang Wang
- a Cardiac Surgery, University of Michigan , Ann Arbor , MI , USA
- b Vascular Surgery, The Second Xiangya Hospital , Xiangya School of Medicine, Central South University , Hunan , China
| | - Jiang Hu
- c Biologic and Materials Sciences, University of Michigan , Ann Arbor , MI , USA
| | - Claire E Sorek
- a Cardiac Surgery, University of Michigan , Ann Arbor , MI , USA
| | - Eugene Y Chen
- a Cardiac Surgery, University of Michigan , Ann Arbor , MI , USA
| | - Peter X Ma
- c Biologic and Materials Sciences, University of Michigan , Ann Arbor , MI , USA
- d Biomedical Engineering, University of Michigan , Ann Arbor , MI , USA
- e Macromolecular Science and Engineering Center, University of Michigan , Ann Arbor , MI , USA
- f Materials Science and Engineering, University of Michigan , Ann Arbor , MI , USA
| | - Bo Yang
- a Cardiac Surgery, University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|