1
|
Torikai H, Chen MH, Jin L, He J, Angle JF, Shi W. Atherogenesis in Apoe-/- and Ldlr-/- Mice with a Genetically Resistant Background. Cells 2023; 12:1255. [PMID: 37174655 PMCID: PMC10177018 DOI: 10.3390/cells12091255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Apoe-deficient (Apoe-/-) and Ldlr-deficient (Ldlr-/-) mice are two common animal models of hypercholesterolemia and atherosclerosis. The two models differ in lipid and glucose metabolism and other mechanisms involved in atherogenesis. Here we examined atherosclerotic lesion formation in the two models with an atherosclerosis-resistant C3H/HeJ (C3H) background. 3-month-old C3H-Ldlr-/- and C3H-Apoe-/- mice developed minimal atherosclerotic lesions in the aortic root when fed a chow diet. After 12 weeks on a Western diet, C3H-Ldlr-/- mice developed 3-fold larger lesions than C3H-Apoe-/- mice in the aortic root (127,386 ± 13,439 vs. 41,542 ± 5075 μm2/section; p = 0.00028), but neither knockout formed any lesion in the carotid artery. After being ligated near its bifurcation, the common carotid artery developed intimal lesions in both knockouts 4 weeks after ligation, significantly larger in C3H-Ldlr-/- than C3H-Apoe-/- mice (68,721 ± 2706 vs. 47,472 ± 8146 μm2/section; p = 0.028). Compared to C3H-Apoe-/- mice, C3H-Ldlr-/- mice showed a 50% reduction in plasma MCP-1 levels, similar levels of malondialdehyde, an oxidative stress biomarker, on both chow and Western diets, but higher small dense LDL levels on the Western diet. These results suggest a more significant role for small dense LDL than inflammation and oxidative stress in the different susceptibility of the mouse models to atherosclerosis.
Collapse
Affiliation(s)
- Hideyuki Torikai
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | - Mei-Hua Chen
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | - Li Jin
- Orthopedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Jiang He
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | - John F. Angle
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
2
|
Somi Sankaran P. High-fat-diet induced obesity and diabetes mellitus in Th1 and Th2 biased mice strains: A brief overview and hypothesis. Chronic Dis Transl Med 2023; 9:14-19. [PMID: 36926255 PMCID: PMC10011668 DOI: 10.1002/cdt3.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/02/2022] [Accepted: 12/28/2022] [Indexed: 02/11/2023] Open
Abstract
Obesity and diabetes mellitus are common metabolic diseases prevalent worldwide. Mice are commonly used to study the pathogenesis of these two conditions. Obesity and diabetes mellitus are induced by administering a high-fat diet in many studies although other diet-induced models are also used. Several factors may influence the outcome of the studies done to study diet-induced obesity in mice. The immune system plays a crucial role in the susceptibility of mice to develop obesity and metabolic disease. In this article, the reasons for differences in susceptibility to develop obesity and diabetes mellitus in mice in response to high-fat-diet feeding and the influence of immunological bias of the mice strain used in studies are evaluated. Mice strains that induce proinflammatory and Th1-type immune responses are found to be susceptible to high-fat-diet-induced obesity. A few studies which directly compared the effect of a high-fat diet on obesity and diabetic phenotype in Th1- and Th2-biased mice strains were briefly analyzed. Based on the observations, it is proposed that the liver and adipose tissue may respond differently to high-fat-diet feeding regimens in Th1- and Th2-biased mice strains. For instance, in Th1-biased mice, adipose tissue fat content was high both in the baseline as well as in response to a high-fat diet whereas in the liver, it was found to be less. It can be inferred that the immune responses to diet-induced models may provide insights into the pathogenesis of obesity and diabetes mellitus.
Collapse
|
3
|
Phenotypic and Genetic Evidence for a More Prominent Role of Blood Glucose than Cholesterol in Atherosclerosis of Hyperlipidemic Mice. Cells 2022; 11:cells11172669. [PMID: 36078077 PMCID: PMC9455034 DOI: 10.3390/cells11172669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Hyperlipidemia and type 2 diabetes (T2D) are major risk factors for atherosclerosis. Apoe-deficient (Apoe−/−) mice on certain genetic backgrounds develop hyperlipidemia, atherosclerosis, and T2D when fed a Western diet. Here, we sought to dissect phenotypic and genetic relationships of blood lipids and glucose with atherosclerotic plaque formation when the vasculature is exposed to high levels of cholesterol and glucose. Male F2 mice were generated from LP/J and BALB/cJ Apoe−/− mice and fed a Western diet for 12 weeks. Three significant QTL Ath51, Ath52 and Ath53 on chromosomes (Chr) 3 and 15 were mapped for atherosclerotic lesions. Ath52 on proximal Chr15 overlapped with QTL for plasma glucose, non-HDL cholesterol, and triglyceride. Atherosclerotic lesion sizes showed significant correlations with fasting, non-fasting glucose, non-fasting triglyceride, and body weight but no correlation with HDL, non-HDL cholesterol, and fasting triglyceride levels. Ath52 for atherosclerosis was down-graded from significant to suggestive level after adjustment for fasting, non-fasting glucose, and non-fasting triglyceride but minimally affected by HDL, non-HDL cholesterol, and fasting triglyceride. Adjustment for body weight suppressed Ath52 but elevated Ath53 on distal Chr15. These results demonstrate phenotypic and genetic connections of blood glucose and triglyceride with atherosclerosis, and suggest a more prominent role for blood glucose than cholesterol in atherosclerotic plaque formation of hyperlipidemic mice.
Collapse
|
4
|
Ldlr-Deficient Mice with an Atherosclerosis-Resistant Background Develop Severe Hyperglycemia and Type 2 Diabetes on a Western-Type Diet. Biomedicines 2022; 10:biomedicines10061429. [PMID: 35740449 PMCID: PMC9220196 DOI: 10.3390/biomedicines10061429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 01/10/2023] Open
Abstract
Apoe-/- and Ldlr-/- mice are two animal models extensively used for atherosclerosis research. We previously reported that Apoe-/- mice on certain genetic backgrounds, including C3H/HeJ (C3H), develop type 2 diabetes when fed a Western diet. We sought to characterize diabetes-related traits in C3H-Ldlr-/- mice through comparing with C3H-Apoe-/- mice. On a chow diet, Ldlr-/- mice had lower plasma total and non-HDL cholesterol levels but higher HDL levels than Apoe-/- mice. Fasting plasma glucose was much lower in Ldlr-/- than Apoe-/- mice (male: 122.5 ± 5.9 vs. 229.4 ± 17.5 mg/dL; female: 144.1 ± 12.4 vs. 232.7 ± 6.4 mg/dL). When fed a Western diet, Ldlr-/- and Apoe-/- mice developed severe hypercholesterolemia and also hyperglycemia with fasting plasma glucose levels exceeding 250 mg/dL. Both knockouts had similar non-HDL cholesterol and triglyceride levels, and their fasting glucose levels were also similar. Male Ldlr-/- mice exhibited greater glucose tolerance and insulin sensitivity compared to their Apoe-/- counterpart. Female mice showed similar glucose tolerance and insulin sensitivity though Ldlr-/- mice had higher non-fasting glucose levels. Male Ldlr-/- and Apoe-/- mice developed moderate obesity on the Western diet, but female mice did not. These results indicate that the Western diet and ensuing hyperlipidemia lead to the development of type 2 diabetes, irrespective of underlying genetic causes.
Collapse
|
5
|
Shi LJ, Tang X, He J, Shi W. Genetic Evidence for a Causal Relationship between Hyperlipidemia and Type 2 Diabetes in Mice. Int J Mol Sci 2022; 23:ijms23116184. [PMID: 35682864 PMCID: PMC9181284 DOI: 10.3390/ijms23116184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 02/01/2023] Open
Abstract
Dyslipidemia is considered a risk factor for type 2 diabetes (T2D), yet studies with statins and candidate genes suggest that circulating lipids may protect against T2D development. Apoe-null (Apoe-/-) mouse strains develop spontaneous dyslipidemia and exhibit a wide variation in susceptibility to diet-induced T2D. We thus used Apoe-/- mice to elucidate phenotypic and genetic relationships of circulating lipids with T2D. A male F2 cohort was generated from an intercross between LP/J and BALB/cJ Apoe-/- mice and fed 12 weeks of a Western diet. Fasting, non-fasting plasma glucose, and lipid levels were measured and genotyping was performed using miniMUGA arrays. We uncovered a major QTL near 60 Mb on chromosome 15, Nhdlq18, which affected non-HDL cholesterol and triglyceride levels under both fasting and non-fasting states. This QTL was coincident with Bglu20, a QTL that modulates fasting and non-fasting glucose levels. The plasma levels of non-HDL cholesterol and triglycerides were closely correlated with the plasma glucose levels in F2 mice. Bglu20 disappeared after adjustment for non-HDL cholesterol or triglycerides. These results demonstrate a causative role for dyslipidemia in T2D development in mice.
Collapse
Affiliation(s)
- Lisa J. Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA; (L.J.S.); (J.H.)
| | - Xiwei Tang
- Department of Statistics, University of Virginia, Charlottesville, VA 22908, USA;
| | - Jiang He
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA; (L.J.S.); (J.H.)
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA; (L.J.S.); (J.H.)
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
- Correspondence: ; Tel.: +434-243-9420; Fax: +434-982-5680
| |
Collapse
|
6
|
Chagari B, Shi LJ, Dao E, An A, Chen MH, Bao Y, Shi W. Genetic connection of carotid atherosclerosis with coat color and body weight in an intercross between hyperlipidemic mouse strains. Physiol Genomics 2022; 54:166-176. [PMID: 35384748 PMCID: PMC9109791 DOI: 10.1152/physiolgenomics.00006.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
Atherosclerosis in the carotid artery is a major cause of ischemic stroke and has a strong genetic component. The aim of this study was to identify genetic factors contributing to carotid atherosclerosis. One hundred fifty-four female F2 mice were generated from an intercross between LP/J and BALB/cJ Apoe-null (Apoe-/-) mice and fed 12 wk of Western diet. Atherosclerotic lesions, body weight, and coat color were measured and genotyping was performed using miniMUGA genotyping arrays. A significant quantitative trait locus (QTL) on chromosome (Chr) 7, named Cath20, and five suggestive QTL on Chr 6, 12, 13, 15, and X were identified for carotid lesions. Three significant QTL, Bwfq2, Bw1n, Bwtq6, on Chr 2, 7, and 15 were identified for body weight. Two significant QTL, Chop2 and Albc2, on Chr 4 and 7 were identified for coat color, with Tyr, encoding tyrosinase, being the causal gene of Albc2. Cath20 overlapped with or was close to QTL Bw1n and Albc2 on Chr7. Carotid lesion sizes were significantly correlated with body weight and graded coat color in F2 mice. Cath20 on Chr7 disappeared after adjustment for coat color but remained after adjustment for body weight. Tyr was abundantly expressed in atherosclerotic lesions. These results demonstrate genetic connections of carotid atherosclerosis with body weight and coat color in hyperlipidemic mice and suggest a potential role for Tyr in carotid atherosclerosis.
Collapse
Affiliation(s)
- Bilhan Chagari
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - Lisa J Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - Evelyn Dao
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - Alexander An
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - Mei-Hua Chen
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - Yongde Bao
- Department of Microbiology, University of Virginia, Charlottesville, Virginia
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
7
|
Shi LJ, Chagari B, An A, Chen MH, Bao Y, Shi W. Genetic Connection between Hyperglycemia and Carotid Atherosclerosis in Hyperlipidemic Mice. Genes (Basel) 2022; 13:genes13030510. [PMID: 35328064 PMCID: PMC8950324 DOI: 10.3390/genes13030510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 01/09/2023] Open
Abstract
Type 2 diabetes (T2D) is a major risk for atherosclerosis and its complications. Apoe-null (Apoe−/−) mouse strains exhibit a wide range of variations in susceptibility to T2D and carotid atherosclerosis, with the latter being a major cause of ischemic stroke. To identify genetic connections between T2D and carotid atherosclerosis, 145 male F2 mice were generated from LP/J and BALB/cJ Apoe−/− mice and fed 12 weeks of a Western diet. Atherosclerotic lesions in the carotid arteries, fasting, and non-fasting plasma glucose levels were measured, and genotyping was performed using miniMUGA arrays. Two significant QTL (quantitative trait loci) on chromosomes (Chr) 6 and 15 were identified for carotid lesions. The Chr15 QTL coincided precisely with QTL Bglu20 for fasting and non-fasting glucose levels. Carotid lesion sizes showed a trend toward correlation with fasting and non-fasting glucose levels in F2 mice. The Chr15 QTL for carotid lesions was suppressed after excluding the influence from fasting or non-fasting glucose. Likely candidate genes for the causal association were Tnfrsf11b, Deptor, and Gsdmc2. These results demonstrate a causative role for hyperglycemia in the development of carotid atherosclerosis in hyperlipidemic mice.
Collapse
Affiliation(s)
- Lisa J. Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA; (L.J.S.); (B.C.); (A.A.); (M.-H.C.)
| | - Bilhan Chagari
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA; (L.J.S.); (B.C.); (A.A.); (M.-H.C.)
| | - Alexander An
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA; (L.J.S.); (B.C.); (A.A.); (M.-H.C.)
| | - Mei-Hua Chen
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA; (L.J.S.); (B.C.); (A.A.); (M.-H.C.)
| | - Yongde Bao
- Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA;
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA; (L.J.S.); (B.C.); (A.A.); (M.-H.C.)
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
- Correspondence:
| |
Collapse
|
8
|
Zhao J, Huangfu C, Chang Z, Zhou W, Grainger AT, Liu Z, Shi W. Inflammation and enhanced atherogenesis in the carotid artery with altered blood flow in an atherosclerosis-resistant mouse strain. Physiol Rep 2021; 9:e14829. [PMID: 34110700 PMCID: PMC8191400 DOI: 10.14814/phy2.14829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/27/2022] Open
Abstract
Ligation of the common carotid artery near its bifurcation in apolipoprotein E-deficient (Apoe-/- ) mice leads to rapid atherosclerosis development, which is affected by genetic backgrounds. BALB/cJ (BALB) mice are resistant to atherosclerosis, developing much smaller aortic lesions than C57BL/6 (B6) mice. In this study, we examined cellular events leading to lesion formation in carotid arteries with or without blood flow restriction of B6 and BALB Apoe-/- mice. Blood flow was obstructed by ligating the left common carotid artery near its bifurcation in one group of mice, and other group received no surgical intervention. Without blood flow interruption, BALB-Apoe-/- mice formed much smaller atherosclerotic lesions than B6-Apoe-/- mice after 12 weeks of Western diet (3,325 ± 1,086 vs. 81,549 ± 9,983 µm2 /section; p = 2.1E-7). Lesions occurred at arterial bifurcations in both strains. When blood flow was obstructed, ligated carotid artery of both strains showed notable lipid deposition, inflammatory cell infiltration, and rapid plaque formation. Neutrophils and macrophages were observed in the arterial wall of BALB mice 3 days after ligation and 1 week after ligation in B6 mice. CD4 T cells were observed in intimal lesions of BALB but not B6 mice. By 4 weeks, both strains developed similar sizes of advanced lesions containing foam cells, smooth muscle cells, and neovessels. Atherosclerosis also occurred in straight regions of the contralateral common carotid artery where MCP-1 was abundantly expressed in the intima of BALB mice. These findings indicate that the disturbed blood flow is more prominent than high fat diet in promoting inflammation and atherosclerosis in hyperlipidemic BALB mice.
Collapse
Affiliation(s)
- Jian Zhao
- Departments of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, USA.,Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chaoji Huangfu
- Departments of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, USA.,Center for Disease Control and Prevention, Western Theater Command, Lanzhou, China
| | - Zhihui Chang
- Departments of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, USA.,Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Zhou
- Departments of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, USA.,Department of Nephrology, The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Andrew T Grainger
- Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weibin Shi
- Departments of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, USA.,Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
9
|
Regional Variation in Genetic Control of Atherosclerosis in Hyperlipidemic Mice. G3-GENES GENOMES GENETICS 2020; 10:4679-4689. [PMID: 33109727 PMCID: PMC7718748 DOI: 10.1534/g3.120.401856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Atherosclerosis is a polygenic disorder that often affects multiple arteries. Carotid arteries are common sites for evaluating subclinical atherosclerosis, and aortic root is the standard site for quantifying atherosclerosis in mice. We compared genetic control of atherosclerosis between the two sites in the same cohort derived from two phenotypically divergent Apoe-null (Apoe -/-) mouse strains. Female F2 mice were generated from C57BL/6 (B6) and C3H/He (C3H) Apoe -/- mice and fed 12 weeks of Western diet. Atherosclerotic lesions in carotid bifurcation and aortic root and plasma levels of fasting lipids and glucose were measured. 153 genetic markers across the genome were typed. All F2 mice developed aortic atherosclerosis, while 1/5 formed no or little carotid lesions. Genome-wide scans revealed 3 significant loci on chromosome (Chr) 1, Chr15, 6 suggestive loci for aortic atherosclerosis, 2 significant loci on Chr6, Chr12, and 6 suggestive loci for carotid atherosclerosis. Only 2 loci for aortic lesions showed colocalization with loci for carotid lesions. Carotid lesion sizes were moderately correlated with aortic lesion sizes (r = 0.303; P = 4.6E-6), but they showed slight or no association with plasma HDL, non-HDL cholesterol, triglyceride, or glucose levels among F2 mice. Bioinformatics analyses prioritized Cryge as a likely causal gene for Ath30, Cdh6 and Dnah5 as causal genes for Ath22 Our data demonstrate vascular site-specific effects of genetic factors on atherosclerosis in the same animals and highlight the need to extend studies of atherosclerosis to sites beyond aortas of mice.
Collapse
|
10
|
Fuller DT, Grainger AT, Manichaikul A, Shi W. Genetic linkage of oxidative stress with cardiometabolic traits in an intercross derived from hyperlipidemic mouse strains. Atherosclerosis 2019; 293:1-10. [PMID: 31821957 DOI: 10.1016/j.atherosclerosis.2019.11.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/07/2019] [Accepted: 11/28/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND AIMS Oxidative stress is associated with cardiometabolic traits in observational studies, yet the underlying causal relationship remains unclear. Apolipoprotein E-deficient (Apoe-/-) mice develop significant hyperlipidemia and hyperglycemia on a Western diet. Here we conducted linkage analysis to investigate genetic connections between cardiometabolic traits and oxidative stress. METHODS 266 female F2 mice were generated from an intercross between C57BL/6 (B6) and BALB/c (BALB) Apoe-/- mice and fed 12 weeks of Western diet. Plasma levels of HDL, LDL cholesterol, triglycerides, glucose and malondialdehyde (MDA) and atherosclerosis in aortic root and left carotid artery were measured. 127 microsatellite markers across the genome were genotyped. RESULTS One significant locus at 78.3 cM on chromosome (Chr) 1 (LOD score: 3.85), named Mda1, and two suggestive loci near 60.3 cM on Chr1 (LOD score: 2.32, named Mda2 due to replication in a separate cross) and 19.6 cM on Chr4 (LOD score: 2.34) were identified for MDA levels. Mda1 coincided precisely with loci for LDL, triglyceride, glucose, and body weight and overlapped with a locus for atherosclerosis in the aortic root. Plasma LDL, triglyceride, and glucose explained 25.5, 19.2, and 24.2% of the variation in MDA levels of F2 mice, respectively. After correction for triglyceride or LDL, QTLs for MDA on Chr1 and Chr4 disappeared. QTLs on Chr1 disappeared, remained on Chr4, and additional QTLs on Chr12 and Chr13 were detected after correction for glucose. The QTL on Chr12, named Mda3, had a significant LOD score of 8.034 and peaked 62.22 at cM. CONCLUSIONS We demonstrated a causative role for cardiometabolic traits in oxidative stress and identified hyperlipidemia and hyperglycemia as a major driver of oxidative stress.
Collapse
Affiliation(s)
- Daniela T Fuller
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Andrew T Grainger
- Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Ani Manichaikul
- Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Weibin Shi
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, USA; Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
11
|
Zhao J, Huangfu C, Chang Z, Grainger AT, Liu Z, Shi W. Atherogenesis in the Carotid Artery with and without Interrupted Blood Flow of Two Hyperlipidemic Mouse Strains. J Vasc Res 2019; 56:241-254. [PMID: 31536996 DOI: 10.1159/000502691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/13/2019] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Atherosclerosis in the carotid arteries is a common cause of ischemic stroke. We examined atherogenesis in the left carotid artery with and without interrupted blood flow of C57BL/6 (B6) and C3H-Apoe-deficient (Apoe-/-) mouse strains. METHODS Blood flow was interrupted by ligating the common carotid artery near its bifurcation in one group of mice and another group was not interrupted. RESULTS Without interference with blood flow, C3H-Apoe-/- mice developed no atherosclerosis in the carotid artery, while B6-Apoe-/- mice formed advanced atherosclerotic lesions (98,019 ± 10,594 μm2/section) after 12 weeks of a Western diet. When blood flow was interrupted by ligating the common carotid artery near its bifurcation, C3H-Apoe-/- mice showed fatty streak lesions 2 weeks after ligation, and by 4 weeks fibrous lesions had formed, although they were smaller than in B6-Apoe-/- mice. Neutrophil adhesion to endothelium and infiltration in lesions was observed in ligated arteries of both strains. Treatment of B6-Apoe-/- mice with antibody against neutrophils had little effect on lesion size. CONCLUSIONS These findings demonstrate the dramatic influences of genetic backgrounds and blood flow on atherogenesis in the carotid artery of hyperlipidemic mice.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA.,Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chaoji Huangfu
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA.,Center for Disease Control and Prevention, Western Theater Command, Lanzhou, China
| | - Zhihui Chang
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA.,Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Andrew T Grainger
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA, .,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA,
| |
Collapse
|
12
|
Chang Z, Huangfu C, Grainger AT, Zhang J, Guo Q, Shi W. Accelerated atherogenesis in completely ligated common carotid artery of apolipoprotein E-deficient mice. Oncotarget 2017; 8:110289-110299. [PMID: 29299147 PMCID: PMC5746382 DOI: 10.18632/oncotarget.22685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/05/2017] [Indexed: 12/22/2022] Open
Abstract
Complete ligation of the common carotid artery near its bifurcation induces neointimal formation due to smooth muscle cell proliferation in normolipidemic wild-type mice, but it was unknown what would happen to hyperlipidemic apolipoprotein E-deficient (Apoe-/-) mice. Examination of these mice revealed rapid development of atherosclerotic lesions in completely ligated carotid arteries within 4 weeks. Mice were fed a Western diet, starting 1 week before ligation, or a chow diet. Foam cell lesions formed as early as 1 week after ligation in mice fed the Western diet and 2 weeks in mice fed the chow diet. Fibrous lesions comprised of foam cells and smooth muscle cells and more advance lesions containing neovessels occurred at 2 and 4 weeks after ligation, respectively, in the Western diet group. Lesions were larger and more advanced in the Western diet group than the chow group. Neutrophil infiltration was observed in growing intimal lesions in both diet groups, while CD8+ T cells were found in lesions of chow-fed mice. This study demonstrates that Apoe-/- mice develop the entire spectrum of atherosclerosis in ligated carotid arteries in an accelerated manner and this model could be a valuable tool for investigating the development and therapy of atherosclerosis.
Collapse
Affiliation(s)
- Zhihui Chang
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chaoji Huangfu
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Andrew T. Grainger
- Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Jingang Zhang
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Qiyong Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weibin Shi
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
- Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
13
|
Polygenic Control of Carotid Atherosclerosis in a BALB/cJ × SM/J Intercross and a Combined Cross Involving Multiple Mouse Strains. G3-GENES GENOMES GENETICS 2017; 7:731-739. [PMID: 28040783 PMCID: PMC5295616 DOI: 10.1534/g3.116.037879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Atherosclerosis in the carotid arteries is a major cause of ischemic stroke, which accounts for 85% of all stroke cases. Genetic factors contributing to carotid atherosclerosis remain poorly understood. The aim of this study was to identify chromosomal regions harboring genes contributing to carotid atherosclerosis in mice. From an intercross between BALB/cJ (BALB) and SM/J (SM) apolipoprotein E-deficient (Apoe-/-) mice, 228 female F2 mice were generated and fed a "Western" diet for 12 wk. Atherosclerotic lesion sizes in the left carotid artery were quantified. Across the entire genome, 149 genetic markers were genotyped. Quantitative trait locus (QTL) analysis revealed eight loci for carotid lesion sizes, located on chromosomes 1, 5, 12, 13, 15, 16, and 18. Combined cross-linkage analysis using data from this cross, and two previous F2 crosses derived from BALB, C57BL/6J and C3H/HeJ strains, identified five significant QTL on chromosomes 5, 9, 12, and 13, and nine suggestive QTL for carotid atherosclerosis. Of them, the QTL on chromosome 12 had a high LOD score of 9.95. Bioinformatic analysis prioritized Arhgap5, Akap6, Mipol1, Clec14a, Fancm, Nin, Dact1, Rtn1, and Slc38a6 as probable candidate genes for this QTL. Atherosclerotic lesion sizes were significantly correlated with non-HDL cholesterol levels (r = 0.254; p = 0.00016) but inversely correlated with HDL cholesterol levels (r = -0.134; p = 0.049) in the current cross. Thus, we demonstrated the polygenic control of carotid atherosclerosis in mice. The correlations of carotid lesion sizes with non-HDL and HDL suggest that genetic factors exert effects on carotid atherosclerosis partially through modulation of lipoprotein homeostasis.
Collapse
|
14
|
Garrett NE, Grainger AT, Li J, Chen MH, Shi W. Genetic analysis of a mouse cross implicates an anti-inflammatory gene in control of atherosclerosis susceptibility. Mamm Genome 2017; 28:90-99. [PMID: 28116503 DOI: 10.1007/s00335-016-9677-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/29/2016] [Indexed: 12/24/2022]
Abstract
Nearly all genetic crosses generated from Apoe-/- or Lldlr-/- mice for genetic analysis of atherosclerosis have used C57BL/6 J (B6) mice as one parental strain, thus limiting their mapping power and coverage of allelic diversity. SM/J-Apoe -/- and BALB/cJ-Apoe -/- mice differ significantly in atherosclerosis susceptibility. 224 male F2 mice were generated from the two Apoe -/- strains to perform quantitative trait locus (QTL) analysis of atherosclerosis. F2 mice were fed 5 weeks of Western diet and analyzed for atherosclerotic lesions in the aortic root. Genome-wide scans with 144 informative SNP markers identified a significant locus near 20.2 Mb on chromosome 10 (LOD score: 6.03), named Ath48, and a suggestive locus near 49.5 Mb on chromosome 9 (LOD: 2.29; Ath29) affecting atherosclerotic lesion sizes. Using bioinformatics tools, we prioritized 12 candidate genes for Ath48. Of them, Tnfaip3, an anti-inflammatory gene, is located precisely underneath the linkage peak and contains two non-synonymous SNPs leading to conservative amino acid substitutions. Thus, this study demonstrates the power of forward genetics involving the use of a different susceptible strain and bioinformatics tools in finding atherosclerosis susceptibility genes.
Collapse
Affiliation(s)
- Norman E Garrett
- Departments of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Andrew T Grainger
- Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Jing Li
- Departments of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Mei-Hua Chen
- Departments of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Weibin Shi
- Departments of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. .,Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA. .,University of Virginia, Snyder Bldg Rm 266, 480 Ray C. Hunt Dr, P.O. Box 801339, Fontaine Research Park, Charlottesville, VA, 22908, USA.
| |
Collapse
|
15
|
Grainger AT, Jones MB, Li J, Chen MH, Manichaikul A, Shi W. Data on genetic analysis of atherosclerosis identifies a major susceptibility locus in the major histocompatibility complex of mice. Data Brief 2016; 9:1067-1069. [PMID: 27921078 PMCID: PMC5126130 DOI: 10.1016/j.dib.2016.11.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/09/2016] [Accepted: 11/15/2016] [Indexed: 11/06/2022] Open
Abstract
The data presented here are related to the research article, entitled Genetic analysis of atherosclerosis identifies a major susceptibility locus in the major histocompatibility complex of mice, published in Atherosclerosis 2016;254:124 (A.T. Grainger, M.B. Jones, J. Li, M.H. Chen, A. Manichaikul, W. Shi, 2016) [1]. The supporting materials include original genotypic and phenotypic data obtained from 206 female F2 mice derived from an intercross between BALB and SMJ inbred mice. The F2 mice were fed 12 weeks of Western diet, starting at 6 weeks of age. Atherosclerotic lesion size in the aortic root of each mouse is the sum of the top 8 lesion areas. The data is provided in the format required for determining QTLs using two independent programs, J/QTL and PLINK.
Collapse
Affiliation(s)
- Andrew T Grainger
- Departments of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Michael B Jones
- Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Jing Li
- Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Mei-Hua Chen
- Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Ani Manichaikul
- Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Weibin Shi
- Departments of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA; Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
16
|
Grainger AT, Jones MB, Li J, Chen MH, Manichaikul A, Shi W. Genetic analysis of atherosclerosis identifies a major susceptibility locus in the major histocompatibility complex of mice. Atherosclerosis 2016; 254:124-132. [PMID: 27736672 DOI: 10.1016/j.atherosclerosis.2016.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/26/2016] [Accepted: 10/05/2016] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIMS Recent genome-wide association studies (GWAS) have identified over 50 significant loci containing common variants associated with coronary artery disease. However, these variants explain only 26% of the genetic heritability of the disease, suggesting that many more variants remain to be discovered. Here, we examined the genetic basis underlying the marked difference between SM/J-Apoe-/- and BALB/cJ-Apoe-/- mice in atherosclerotic lesion formation. METHODS 206 female F2 mice generated from an intercross between the two Apoe-/- strains were fed 12 weeks of western diet. Atherosclerotic lesion sizes in the aortic root were measured and 149 genetic markers genotyped across the entire genome. RESULTS A significant locus, named Ath49 (LOD score: 4.18), for atherosclerosis was mapped to the H2 complex [mouse major histocompatibility complex (MHC)] on chromosome 17. Bioinformatic analysis identified 12 probable candidate genes, including Tnfrsf21, Adgrf1, Adgrf5, Mep1a, and Pla2g7. Corresponding human genomic regions of Ath49 showed significant association with coronary heart disease. Five suggestive loci on chromosomes 1, 4, 5, and 8 for atherosclerosis were also identified. Atherosclerotic lesion sizes were significantly correlated with HDL but not with non-HDL cholesterol, triglyceride or glucose levels in the F2 cohort. CONCLUSIONS We have identified the MHC as a major genetic determinant of atherosclerosis, highlighting the importance of inflammation in atherogenesis.
Collapse
Affiliation(s)
- Andrew T Grainger
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Michael B Jones
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Jing Li
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Mei-Hua Chen
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Ani Manichaikul
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Weibin Shi
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA; Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
17
|
Shi W, Wang Q, Choi W, Li J. Mapping and Congenic Dissection of Genetic Loci Contributing to Hyperglycemia and Dyslipidemia in Mice. PLoS One 2016; 11:e0148462. [PMID: 26859786 PMCID: PMC4747551 DOI: 10.1371/journal.pone.0148462] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/18/2016] [Indexed: 01/01/2023] Open
Abstract
Background Patients with dyslipidemia have an increased risk of developing type 2 diabetes, and diabetic patients often have dyslipidemia. Potential genetic connections of fasting plasma glucose with plasma lipid profile were evaluated using hyperlipidemic mice. Methods 225 male F2 mice were generated from BALB/cJ (BALB) and SM/J(SM) Apoe-deficient (Apoe−/−) mice and fed a Western diet for 5 weeks. Fasting plasma glucose and lipid levels of F2 mice were measured before and after 5 weeks of Western diet and quantitative trait locus (QTL) analysis was performed using data collected from these two time points. 144 SNP(single nucleotide polymorphism) markers across the entire genome were typed. Results One major QTL (logarithm of odds ratio (LOD): 6.46) peaked at 12.7 cM on chromosome 9,Bglu16, and 3 suggestive QTLs on chromosomes 15, 18 and X were identified for fasting glucose, and over 10 loci identified for lipid traits. Bglu16 was adjacent to a major QTL, Hdlq17, for high-density lipoprotein (HDL) cholesterol (LOD: 6.31, peak: 19.1 cM). A congenic strain with a donor chromosomal region harboring Bglu16 and Hdlq17 on the Apoe−/− background showed elevations in plasma glucose and HDL levels. Fasting glucose levels were significantly correlated with non-HDL cholesterol and triglyceride levels, especially on the Western diet, but only marginally correlated with HDL levels in F2 mice. Conclusions We have demonstrated a correlative relationship between fasting glucose and plasma lipids in a segregating F2 population under hyperlipidemic conditions, and this correlation is partially due to genetic linkage between the two disorders.
Collapse
Affiliation(s)
- Weibin Shi
- Departments of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America.,Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Qian Wang
- Departments of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America
| | - Wonseok Choi
- Departments of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jing Li
- Departments of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
18
|
Wang Q, Grainger AT, Manichaikul A, Farber E, Onengut-Gumuscu S, Shi W. Genetic linkage of hyperglycemia and dyslipidemia in an intercross between BALB/cJ and SM/J Apoe-deficient mouse strains. BMC Genet 2015; 16:133. [PMID: 26555648 PMCID: PMC4641414 DOI: 10.1186/s12863-015-0292-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Individuals with dyslipidemia often develop type 2 diabetes, and diabetic patients often have dyslipidemia. It remains to be determined whether there are genetic connections between the 2 disorders. METHODS A female F2 cohort, generated from BALB/cJ (BALB) and SM/J (SM) Apoe-deficient (Apoe(-/-)) strains, was started on a Western diet at 6 weeks of age and maintained on the diet for 12 weeks. Fasting plasma glucose and lipid levels were measured before and after 12 weeks of Western diet. 144 genetic markers across the entire genome were used for quantitative trait locus (QTL) analysis. RESULTS One significant QTL on chromosome 9, named Bglu17 [26.4 cM, logarithm of odds ratio (LOD): 5.4], and 3 suggestive QTLs were identified for fasting glucose levels. The suggestive QTL near the proximal end of chromosome 9 (2.4 cM, LOD: 3.12) was replicated at both time points and named Bglu16. Bglu17 coincided with a significant QTL for HDL (high-density lipoprotein) and a suggestive QTL for non-HDL cholesterol levels. Plasma glucose levels were inversely correlated with HDL but positively correlated with non-HDL cholesterol levels in F2 mice on either chow or Western diet. A significant correlation between fasting glucose and triglyceride levels was also observed on the Western diet. Haplotype analysis revealed that "lipid genes" Sik3, Apoa1, and Apoc3 were probable candidates for Bglu17. CONCLUSIONS We have identified multiple QTLs for fasting glucose and lipid levels. The colocalization of QTLs for both phenotypes and the sharing of potential candidate genes demonstrate genetic connections between dyslipidemia and type 2 diabetes.
Collapse
Affiliation(s)
- Qian Wang
- Department of Radiology & Medical Imaging, University of Virginia, Snyder Bldg Rm 266, 480 Ray C. Hunt Dr., P.O. Box 801339, Fontaine Research Park, Charlottesville, VA, 22908, USA. .,University of Virginia, Snyder Bldg Rm 266, 480 Ray C. Hunt Dr., P.O. Box 801339, Fontaine Research Park, Charlottesville, VA, 22908, USA.
| | - Andrew T Grainger
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA. .,University of Virginia, Charlottesville, VA, USA.
| | - Ani Manichaikul
- Center for Public Health and Genomics, University of Virginia, Charlottesville, VA, USA.
| | - Emily Farber
- Center for Public Health and Genomics, University of Virginia, Charlottesville, VA, USA.
| | - Suna Onengut-Gumuscu
- Center for Public Health and Genomics, University of Virginia, Charlottesville, VA, USA.
| | - Weibin Shi
- Department of Radiology & Medical Imaging, University of Virginia, Snyder Bldg Rm 266, 480 Ray C. Hunt Dr., P.O. Box 801339, Fontaine Research Park, Charlottesville, VA, 22908, USA. .,University of Virginia, Snyder Bldg Rm 266, 480 Ray C. Hunt Dr., P.O. Box 801339, Fontaine Research Park, Charlottesville, VA, 22908, USA.
| |
Collapse
|