1
|
Kumar A, Männistö MK, Pätsi M, Kerkhof LJ, Häggblom MM. Genome analysis reveals diverse novel psychrotolerant Mucilaginibacter species in Arctic tundra soils. ISME COMMUNICATIONS 2025; 5:ycaf071. [PMID: 40365603 PMCID: PMC12074574 DOI: 10.1093/ismeco/ycaf071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/17/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025]
Abstract
As Arctic soil ecosystems warm due to climate change, enhanced microbial activity is projected to increase the rate of soil organic matter degradation. Delineating the diversity and activity of Arctic tundra microbial communities active in decomposition is thus of keen interest. Here, we describe novel cold-adapted bacteria in the genus Mucilaginibacter (Bacteroidota) isolated from Artic tundra soils in Finland. These isolates are aerobic chemoorganotrophs and appear well adapted to the low-temperature environment, where they are also exposed to desiccation and a wide regime of annual temperature variation. Initial 16S ribosomal RNA (rRNA)-based phylogenetic analysis suggested that five isolated strains represent new species of the genus Mucilaginibacter, confirmed by whole genome-based phylogenomic and average nucleotide identity. Five novel species are described: Mucilaginibacter geliditolerans sp. nov., Mucilaginibacter tundrae sp. nov., Mucilaginibacter empetricola sp. nov., Mucilaginibacter saanensis sp. nov., and Mucilaginibacter cryoferens sp. nov. Genome and phenotype analysis showed their potential in complex carbon degradation, nitrogen assimilation, polyphenol degradation, and adaptation to their tundra heath habitat. A pangenome analysis of the newly identified species alongside known members of the Mucilaginibacter genus sourced from various environments revealed the distinctive characteristics of the tundra strains. These strains possess unique genes related to energy production, nitrogen uptake, adaptation, and the synthesis of secondary metabolites that aid in their growth, potentially accounting for their prevalence in tundra soil. By uncovering novel species and strains within the Mucilaginibacter, we enhance our understanding of this genus and elucidate how environmental fluctuations shape the microbial functionality and interactions in Arctic tundra ecosystems.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, United States
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, United States
| | - Minna K Männistö
- Natural Resources Institute Finland, FI-96200 Rovaniemi, Finland
| | - Marika Pätsi
- Natural Resources Institute Finland, FI-90570 Oulu, Finland
| | - Lee J Kerkhof
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, United States
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, United States
| |
Collapse
|
2
|
Hong H, Xiao C, Weng L, Wang Q, Lai D. The effect of norepinephrine on ovarian dysfunction by mediating ferroptosis in mice model. Acta Biochim Biophys Sin (Shanghai) 2024; 57:542-553. [PMID: 39439417 PMCID: PMC12040598 DOI: 10.3724/abbs.2024187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/09/2024] [Indexed: 10/25/2024] Open
Abstract
Studies have shown that stress is associated with ovarian dysfunction. Norepinephrine (NE), a classic stress hormone involved in the stress response, is less recognized for its role in ovarian function. In this study, an NE-treated mouse model is induced by intraperitoneal injection of NE for 4 weeks. Compared with normal control mice, NE-treated mice show disturbances in the estrous cycle, decreased levels of anti-Mullerian hormone (AMH) and estradiol (E2), and increased level of follicle-stimulating hormone (FSH). Additionally, the numbers of primordial follicles, primary follicles, secondary follicles, and antral follicles are decreased, whereas the number of atretic follicles is increased in NE-treated mice, indicating NE-induced ovarian dysfunction. RNA sequencing further reveals that genes associated with ferroptosis are significantly enriched in NE-treated ovarian tissues. Concurrently, the levels of reactive oxygen species (ROS), ferrous ions, and malondialdehyde (MDA) are increased, whereas the expression level of glutathione peroxidase 4 (GPX4) is decreased. To elucidate the mechanism of NE-induced ferroptosis in ovaries and the potential reversal by Coenzyme Q10 (CoQ10), an antioxidant, we conduct both in vitro and in vivo experiments. In vitro, the granulosa cell line KGN, when treated with NE, shows decreased cell viability, reduced expression of GPX4, elevated levels of ferrous ion and ROS, and increased MDA level. However, these NE-induced changes are reversed by the addition of CoQ10. Compared with the NE group, the NE-treated mice supplemented with CoQ10 present increased GPX4 level and decreased iron, ROS, and MDA levels. Moreover, the differential expression of genes associated with ferroptosis induced by NE is ameliorated by CoQ10 in NE-treated mice. Additionally, CoQ10 improves ovarian function, as evidenced by increased ovarian weight, more regular estrous cycles, and an increase in follicles at various stages of growth in NE-treated mice. In conclusion, NE induces ovarian dysfunction by triggering ferroptosis in ovarian tissues, and CoQ10 represents a promising approach for protecting reproductive function by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Hanqing Hong
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Chengqi Xiao
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Lichun Weng
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Qian Wang
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Dongmei Lai
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| |
Collapse
|
3
|
Li X, Cheng L, Liu X, Wang X, Li R, Fan S, Yan Q, Ma T, Ma Y, Kang J. Dopamine promotes Klebsiella quasivariicola proliferation and inflammatory response in the presence of macrophages. Front Cell Infect Microbiol 2024; 14:1322113. [PMID: 38585654 PMCID: PMC10995343 DOI: 10.3389/fcimb.2024.1322113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
Background Dopamine, a frequently used therapeutic agent for critically ill patients, has been shown to be implicated in clinical infections recently, however, the precise mechanisms underlying this association remain elusive. Klebsiella quasivariicola, a novel strain belonging to the Klebsiella species, exhibits potential pathogenic attributes. The impact of dopamine on K. quasivariicola infection has aroused our interest. Objective Considering the contribution of host immune factors during infection, this study aimed to investigate the intricate interactions between K. quasivariicola, dopamine, and macrophages were explored. Methods RAW264.7 cells and C57/BL6 mice were infected with K. quasivariicola, and the bacterial growth within macrophage, the production of inflammatory cytokines and the pathological changes in mice lungs were detected, in the absence or presence of dopamine. Results Dopamine inhibited the growth of K. quasivariicola in the medium, but promoted bacterial growth when co-cultured with macrophages. The expression of proinflammatory cytokines increased in RAW 264.7 cells infected with K. quasivariicola, and a significant rise was observed upon the addition of dopamine. The infection of K. quasivariicola in mice induced an inflammatory response and lung injury, which were exacerbated by the administration of dopamine. Conclusions Our findings suggest that dopamine may be one of the potential risk factors associated with K. quasivariicola infection. This empirical insight provides solid references for clinical precision medicine. Furthermore, an in vitro model of microbes-drugs-host immune cells for inhibitor screening was proposed to more accurately replicate the complex in vivo environment. This fundamental work had contributed to the present understanding of the crosstalk between pathogen, dopamine and host immune cells.
Collapse
Affiliation(s)
- Xiang Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Department of Pathology, Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Lin Cheng
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xueyang Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoli Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Rui Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shao Fan
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiulong Yan
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Tonghui Ma
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yufang Ma
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jian Kang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Chen X, Shao Z, Wu L, He B, Yang W, Chen J, Jin E, Huang Q, Lei L, Xu J, Li H, Zhang H, Wan Y, Liu W, Zhou R. Involvement of the Actinobacillus pleuropneumoniae ompW Gene in Confrontation of Environmental Pressure. Front Vet Sci 2022; 9:846322. [PMID: 35664844 PMCID: PMC9161549 DOI: 10.3389/fvets.2022.846322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Actinobacillus pleuropneumoniae causes porcine pleuropneumonia. The function of the outer membrane protein W gene (ompW) of A. pleuropneumoniae has not been evaluated. Thus a deletion mutant of ompW, ΔompW, was constructed to explore the effect of ompW gene deletion on bacterial growth, biofilm formation, bacterial morphology, oxidative tolerance, susceptibility to antibiotics, and the expression of ribosome synthesis and ABC transporter related genes. Results showed that the ompW gene deletion did not affect biofilm formation and the growth of A. pleuropneumoniae but did affect bacterial morphology during steady growth, oxidative tolerance, and bacterial susceptibility to polymyxin B, kanamycin, and penicillin. The ompW gene deletion also affected the expression of ribosome synthesis and ABC transporter related genes. These results suggested that ompW may regulate the biological phenotype of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Xiabing Chen
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Sciences, Wuhan, China
- *Correspondence: Xiabing Chen
| | - Zhiyong Shao
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Lijun Wu
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Bin He
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Wenhai Yang
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Jie Chen
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Erguang Jin
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liancheng Lei
- College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, China
| | - Jiajia Xu
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haotian Li
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hui Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yun Wan
- Wuhan Animal Disease Control Center, Wuhan, China
| | - Wu Liu
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Sciences, Wuhan, China
- Wu Liu
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Rui Zhou
| |
Collapse
|
5
|
Boukerb AM, Cambronel M, Rodrigues S, Mesguida O, Knowlton R, Feuilloley MGJ, Zommiti M, Connil N. Inter-Kingdom Signaling of Stress Hormones: Sensing, Transport and Modulation of Bacterial Physiology. Front Microbiol 2021; 12:690942. [PMID: 34690943 PMCID: PMC8526972 DOI: 10.3389/fmicb.2021.690942] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/06/2021] [Indexed: 12/29/2022] Open
Abstract
Prokaryotes and eukaryotes have coexisted for millions of years. The hormonal communication between microorganisms and their hosts, dubbed inter-kingdom signaling, is a recent field of research. Eukaryotic signals such as hormones, neurotransmitters or immune system molecules have been shown to modulate bacterial physiology. Among them, catecholamines hormones epinephrine/norepinephrine, released during stress and physical effort, or used therapeutically as inotropes have been described to affect bacterial behaviors (i.e., motility, biofilm formation, virulence) of various Gram-negative bacteria (e.g., Escherichia coli, Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa, Vibrio sp.). More recently, these molecules were also shown to influence the physiology of some Gram-positive bacteria like Enterococcus faecalis. In E. coli and S. enterica, the stress-associated mammalian hormones epinephrine and norepinephrine trigger a signaling cascade by interacting with the QseC histidine sensor kinase protein. No catecholamine sensors have been well described yet in other bacteria. This review aims to provide an up to date report on catecholamine sensors in eukaryotes and prokaryotes, their transport, and known effects on bacteria.
Collapse
Affiliation(s)
- Amine Mohamed Boukerb
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Melyssa Cambronel
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Sophie Rodrigues
- EA 3884, LBCM, IUEM, Université de Bretagne-Sud, Lorient, France
| | - Ouiza Mesguida
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Rikki Knowlton
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Marc G J Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Mohamed Zommiti
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Nathalie Connil
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| |
Collapse
|
6
|
Application of the MISTEACHING(S) disease susceptibility framework to Actinobacillus pleuropneumoniae to identify research gaps: an exemplar of a veterinary pathogen. Anim Health Res Rev 2021; 22:120-135. [PMID: 34275511 DOI: 10.1017/s1466252321000074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Historically, the MISTEACHING (microbiome, immunity, sex, temperature, environment, age, chance, history, inoculum, nutrition, genetics) framework to describe the outcome of host-pathogen interaction, has been applied to human pathogens. Here, we show, using Actinobacillus pleuropneumoniae as an exemplar, that the MISTEACHING framework can be applied to a strict veterinary pathogen, enabling the identification of major research gaps, the formulation of hypotheses whose study will lead to a greater understanding of pathogenic mechanisms, and/or improved prevention/therapeutic measures. We also suggest that the MISTEACHING framework should be extended with the inclusion of a 'strain' category, to become MISTEACHINGS. We conclude that the MISTEACHINGS framework can be applied to veterinary pathogens, whether they be bacteria, fungi, viruses, or parasites, and hope to stimulate others to use it to identify research gaps and to formulate hypotheses worthy of study with their own pathogens.
Collapse
|
7
|
Zeng F, Zhao C, Wu X, Dong R, Li G, Zhu Q, Zheng E, Liu D, Yang J, Moisyadi S, Urschitz J, Li Z, Wu Z. Bacteria-induced expression of the pig-derived protegrin-1 transgene specifically in the respiratory tract of mice enhances resistance to airway bacterial infection. Sci Rep 2020; 10:16020. [PMID: 32994542 PMCID: PMC7524760 DOI: 10.1038/s41598-020-73084-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
About 70% of all antibiotics produced in the world are used in the farm animal industry. The massive usage of antibiotics during farm animal production has caused rapid development of antibiotic resistance in bacteria, which poses a serious risk to human and livestock health when treating bacterial infections. Protegrin-1 (PG-1) is a potent antimicrobial peptide (AMP). It was initially identified in pig leukocytes with a broad-spectrum antibacterial and antiviral activity, and a low rate of inducing bacterial resistance. To develop a genetic approach for reducing the use of antibiotics in farm animal production, we produced transgenic mice carrying a bovine tracheal AMP gene promoter-controlled PG-1 transgene. The PG-1 transgene was specifically expressed in the respiratory tract of transgenic mice upon induction by bacterial infection. These PG-1 transgenic mice exhibited enhanced resistance to nasal bacterial infection as the transgenic mice showed a higher survival rate (79.17% VS. 34.78%), lower bacterial load and milder histological severity than their wild-type control littermates. The improved resistance to bacterial infection in the PG-1 transgenic mice could be resulted from the direct bacteria-killing activities of PG-1, and the immunomodulatory effects of PG-1 via stimulating interleukin 1 beta secretion. The present study provides a promising genetic strategy to prevent airway bacterial infections in farm animals by bacteria-inducible tissue-specific expression of PG-1 transgene. This approach may also be helpful for decreasing the possibility of inducing bacterial resistance during farm animal production.
Collapse
Affiliation(s)
- Fang Zeng
- College of Marine Science, South China Agricultural University, Guangzhou, 510642, China.,National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Chengcheng Zhao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Xiao Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Rui Dong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Guoling Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Qingchun Zhu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Dewu Liu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Stefan Moisyadi
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Johann Urschitz
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China. .,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China.
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China. .,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Cambronel M, Tortuel D, Biaggini K, Maillot O, Taupin L, Réhel K, Rincé I, Muller C, Hardouin J, Feuilloley M, Rodrigues S, Connil N. Epinephrine affects motility, and increases adhesion, biofilm and virulence of Pseudomonas aeruginosa H103. Sci Rep 2019; 9:20203. [PMID: 31882963 PMCID: PMC6934790 DOI: 10.1038/s41598-019-56666-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
Microbial endocrinology has demonstrated for more than two decades, that eukaryotic substances (hormones, neurotransmitters, molecules of the immune system) can modulate the physiological behavior of bacteria. Among them, the hormones/neurotransmitters, epinephrine (Epi) and norepinephrine (NE), released in case of stress, physical effort or used in medical treatment, were shown to be able to modify biofilm formation in various bacterial species. In the present study, we have evaluated the effect of Epi on motility, adhesion, biofilm formation and virulence of Pseudomonas aeruginosa, a bacterium linked to many hospital-acquired infections, and responsible for chronic infection in immunocompromised patients including persons suffering from cystic fibrosis. The results showed that Epi increased adhesion and biofilm formation of P. aeruginosa, as well as its virulence towards the Galleria mellonella larvae in vivo model. Deciphering the sensor of this molecule in P. aeruginosa and the molecular mechanisms involved may help to find new strategies of treatment to fight against this bacterium.
Collapse
Affiliation(s)
- Mélyssa Cambronel
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université - Université de Rouen, Évreux, 27000, Evreux, France
| | - Damien Tortuel
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université - Université de Rouen, Évreux, 27000, Evreux, France
| | - Kelly Biaggini
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université - Université de Rouen, Évreux, 27000, Evreux, France
| | - Olivier Maillot
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université - Université de Rouen, Évreux, 27000, Evreux, France
| | - Laure Taupin
- Laboratoire de Biotechnologie et Chimie Marines (LBCM) EA 3884, IUEM, Université de Bretagne-Sud, 56100, Lorient, France
| | - Karine Réhel
- Laboratoire de Biotechnologie et Chimie Marines (LBCM) EA 3884, IUEM, Université de Bretagne-Sud, 56100, Lorient, France
| | - Isabelle Rincé
- Unité de Recherche Risques Microbiens (U2RM), EA 4655, UFR des sciences, Normandie Université, Université de Caen, 14000, Caen, France
| | - Cécile Muller
- Unité de Recherche Risques Microbiens (U2RM), EA 4655, UFR des sciences, Normandie Université, Université de Caen, 14000, Caen, France
| | - Julie Hardouin
- Laboratoire Polymères, Biopolymères, Surfaces, UMR 6270 CNRS, Plateforme Protéomique, PISSARO, Normandie Université, Université de Rouen, 76130, Mont Saint Aignan, France
| | - Marc Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université - Université de Rouen, Évreux, 27000, Evreux, France
| | - Sophie Rodrigues
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université - Université de Rouen, Évreux, 27000, Evreux, France
| | - Nathalie Connil
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université - Université de Rouen, Évreux, 27000, Evreux, France.
| |
Collapse
|
9
|
Constitutive expression of antimicrobial peptide PR-39 in transgenic mice significantly enhances resistance to bacterial infection and promotes growth. Transgenic Res 2018; 27:409-422. [PMID: 30003470 DOI: 10.1007/s11248-018-0084-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
Abstract
Use of huge amounts of antibiotics in farm animal production has promoted the prevalence of antibiotic-resistant bacteria, which poses a serious threat to public health. Therefore, alternative approaches are needed to reduce or replace antibiotic usage in the food animal industry. PR-39 is a pig-derived proline-rich antimicrobial peptide that has a broad spectrum of antibacterial activity and a low propensity for development of resistance by microorganisms. To test whether ubiquitous expression of PR-39 in transgenic (TG) mice can increase resistance against bacterial infection, we generated TG mice that ubiquitously express a pig-derived antimicrobial peptide PR-39 and analyzed their growth and resistance to infection of the highly pathogenic Actinobacillus pleuropneumoniae (APP) isolated from swine. The growth performance was significantly increased in TG mice compared with their wild-type (WT) littermates. After the APP challenge, TG mice exhibited a significantly higher survival rate and significantly lower tissue bacterial load than WT littermates. Furthermore, the tissue lesion severity that resulted from APP infection was milder in TG mice than that in their WT littermates. This study provides a good foundation for the development of PR-39-expressing TG animals, which could reduce the use of antibiotics in the farm animal industry.
Collapse
|
10
|
Gao J, Xi B, Chen K, Song R, Qin T, Xie J, Pan L. The stress hormone norepinephrine increases the growth and virulence of Aeromonas hydrophila. Microbiologyopen 2018; 8:e00664. [PMID: 29897673 PMCID: PMC6460269 DOI: 10.1002/mbo3.664] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 01/06/2023] Open
Abstract
Stress is an important contributing factor in the outbreak of infectious fish diseases. To comprehensively understand the impact of catecholamine stress hormone norepinephrine (NE) on the pathogenicity of Aeromonas hydrophila, we assessed variations in bacterial growth, virulence‐related genes expression and virulence factors activity after NE addition in serum‐SAPI medium. Further, we assessed the effects of NE on A. hydrophila virulence in vivo by challenging fish with pathogenic strain AH196 and following with or without NE injection. The NE‐associated stimulation of A. hydrophila strain growth was not linear‐dose‐dependent, and only 100 μM, or higher concentrations, could stimulate growth. Real‐time PCR analyses revealed that NE notably changed 13 out of the 16 virulence‐associated genes (e.g. ompW, ahp, aha, ela, ahyR, ompA, and fur) expression, which were all significantly upregulated in A. hydrophila AH196 (p < 0.01). NE could enhance the protease activity, but not affect the lipase activity, hemolysis, and motility. Further, the mortality of crucian carp challenged with A. hydrophila AH196 was significantly higher in the group treated with NE (p < 0.01). Collectively, our results showed that NE enhanced the growth and virulence of pathogenic bacterium A. hydrophila.
Collapse
Affiliation(s)
- Jinwei Gao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Hunan Fisheries Science Institute, Changsha, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Bingwen Xi
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Kai Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha, China
| | - Ting Qin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jun Xie
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Liangkun Pan
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
11
|
Sassu EL, Bossé JT, Tobias TJ, Gottschalk M, Langford PR, Hennig-Pauka I. Update on Actinobacillus pleuropneumoniae-knowledge, gaps and challenges. Transbound Emerg Dis 2017; 65 Suppl 1:72-90. [PMID: 29083117 DOI: 10.1111/tbed.12739] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Indexed: 12/15/2022]
Abstract
Porcine pleuropneumonia, caused by the bacterial porcine respiratory tract pathogen Actinobacillus pleuropneumoniae, leads to high economic losses in affected swine herds in most countries of the world. Pigs affected by peracute and acute disease suffer from severe respiratory distress with high lethality. The agent was first described in 1957 and, since then, knowledge about the pathogen itself, and its interactions with the host, has increased continuously. This is, in part, due to the fact that experimental infections can be studied in the natural host. However, the fact that most commercial pigs are colonized by this pathogen has hampered the applicability of knowledge gained under experimental conditions. In addition, several factors are involved in development of disease, and these have often been studied individually. In a DISCONTOOLS initiative, members from science, industry and clinics exchanged their expertise and empirical observations and identified the major gaps in knowledge. This review sums up published results and expert opinions, within the fields of pathogenesis, epidemiology, transmission, immune response to infection, as well as the main means of prevention, detection and control. The gaps that still remain to be filled are highlighted, and present as well as future challenges in the control of this disease are addressed.
Collapse
Affiliation(s)
- E L Sassu
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| | - J T Bossé
- Section of Paediatrics, Department of Medicine, Imperial College London, London, UK
| | - T J Tobias
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - M Gottschalk
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - P R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, London, UK
| | - I Hennig-Pauka
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Bakum, Germany
| |
Collapse
|
12
|
Pogoutse AK, Moraes TF. Iron acquisition through the bacterial transferrin receptor. Crit Rev Biochem Mol Biol 2017; 52:314-326. [PMID: 28276700 DOI: 10.1080/10409238.2017.1293606] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transferrin is one of the sources of iron that is most readily available to colonizing and invading pathogens. In this review, we look at iron uptake by the bacterial transferrin receptor that is found in the families Neisseriaceae, Pasteurellaceae and Moraxellaceae. This bipartite receptor consists of the TonB-dependent transporter, TbpA, and the surface lipoprotein, TbpB. In the past three decades, major advancements have been made in our understanding of the mechanism through which the Tbps take up iron. We summarize these findings and discuss how they relate to the diversity and specificity of the transferrin receptor. We also outline several of the remaining unanswered questions about iron uptake via the bacterial transferrin receptor and suggest directions for future research.
Collapse
Affiliation(s)
| | - Trevor F Moraes
- a Department of Biochemistry , University of Toronto , Toronto , Canada
| |
Collapse
|
13
|
Feraco D, Blaha M, Khan S, Green JM, Plotkin BJ. Host environmental signals and effects on biofilm formation. Microb Pathog 2016; 99:253-263. [DOI: 10.1016/j.micpath.2016.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/18/2016] [Indexed: 01/04/2023]
|
14
|
Weigel WA, Demuth DR. QseBC, a two-component bacterial adrenergic receptor and global regulator of virulence in Enterobacteriaceae and Pasteurellaceae. Mol Oral Microbiol 2015; 31:379-97. [PMID: 26426681 PMCID: PMC5053249 DOI: 10.1111/omi.12138] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2015] [Indexed: 12/11/2022]
Abstract
The QseBC two-component system (TCS) is associated with quorum sensing and functions as a global regulator of virulence. Based on sequence similarity within the sensor domain and conservation of an acidic motif essential for signal recognition, QseBC is primarily distributed in the Enterobacteriaceae and Pasteurellaceae. In Escherichia coli, QseC responds to autoinducer-3 and/or epinephrine/norepinephrine. Binding of epinephrine/norepinephrine is inhibited by adrenergic antagonists; hence QseC functions as a bacterial adrenergic receptor. Aggregatibacter actinomycetemcomitans QseC is activated by a combination of epinephrine/norepinephrine and iron, whereas only iron activates the Haemophilus influenzae sensor. QseC phosphorylates QseB but there is growing evidence that QseB is activated by non-cognate sensors and regulated by dephosphorylation via QseC. Interestingly, the QseBC signaling cascades and regulons differ significantly. In enterohemorrhagic E. coli, QseC induces expression of a second adrenergic TCS and phosphorylates two non-cognate response regulators, each of which induces specific sets of virulence genes. This signaling pathway integrates with other regulatory mechanisms mediated by transcriptional regulators QseA and QseD and a fucose-sensing TCS and likely controls the level and timing of virulence gene expression. In contrast, A. actinomycetemcomitans QseC signals through QseB to regulate genes involved in anaerobic metabolism and energy production, which may prime cellular metabolism for growth in an anaerobic host niche. QseC represents a novel target for therapeutic intervention and small molecule inhibitors already show promise as broad-spectrum antimicrobials. Further characterization of QseBC signaling may identify additional differences in QseBC function and inform further development of new therapeutics to control microbial infections.
Collapse
Affiliation(s)
- W A Weigel
- Department of Oral Immunology and Infectious Diseases, University of Louisville, School of Dentistry, Louisville, KY, USA.,Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - D R Demuth
- Department of Oral Immunology and Infectious Diseases, University of Louisville, School of Dentistry, Louisville, KY, USA
| |
Collapse
|
15
|
Overexpression of Porcine Beta-Defensin 2 Enhances Resistance to Actinobacillus pleuropneumoniae Infection in Pigs. Infect Immun 2015; 83:2836-43. [PMID: 25916992 DOI: 10.1128/iai.03101-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/24/2015] [Indexed: 01/01/2023] Open
Abstract
To reduce the need for antibiotics in animal production, alternative approaches are needed to control infection. We hypothesized that overexpression of native defensin genes will provide food animals with enhanced resistance to bacterial infections. In this study, recombinant porcine beta-defensin 2 (PBD-2) was overexpressed in stably transfected PK-15 porcine kidney cells. PBD-2 antibacterial activities against Actinobacillus pleuropneumoniae, an important respiratory pathogen causing porcine contagious pleuropneumonia, were evaluated on agar plates. Transgenic pigs constitutively overexpressing PBD-2 were produced by a somatic cell cloning method, and their resistance to bacterial infection was evaluated by direct or cohabitation infection with A. pleuropneumoniae. Recombinant PBD-2 peptide that was overexpressed in the PK-15 cells showed antibacterial activity against A. pleuropneumoniae. PBD-2 was overexpressed in the heart, liver, spleen, lungs, kidneys, and jejunum of the transgenic pigs, which showed significantly lower bacterial loads in the lungs and reduced lung lesions after direct or cohabitation infection with A. pleuropneumoniae. The results demonstrate that transgenic overexpression of PBD-2 in pigs confers enhanced resistance against A. pleuropneumoniae infection.
Collapse
|