1
|
Gardner RS, Kyle M, Hughes K, Zhao LR. Single-Cell RNA Sequencing Reveals Immunomodulatory Effects of Stem Cell Factor and Granulocyte Colony-Stimulating Factor Treatment in the Brains of Aged APP/PS1 Mice. Biomolecules 2024; 14:827. [PMID: 39062541 PMCID: PMC11275138 DOI: 10.3390/biom14070827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) leads to progressive neurodegeneration and dementia. AD primarily affects older adults with neuropathological changes including amyloid-beta (Aβ) deposition, neuroinflammation, and neurodegeneration. We have previously demonstrated that systemic treatment with combined stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) (SCF+G-CSF) reduces the Aβ load, increases Aβ uptake by activated microglia and macrophages, reduces neuroinflammation, and restores dendrites and synapses in the brains of aged APPswe/PS1dE9 (APP/PS1) mice. However, the mechanisms underlying SCF+G-CSF-enhanced brain repair in aged APP/PS1 mice remain unclear. This study used a transcriptomic approach to identify the potential mechanisms by which SCF+G-CSF treatment modulates microglia and peripheral myeloid cells to mitigate AD pathology in the aged brain. After injections of SCF+G-CSF for 5 consecutive days, single-cell RNA sequencing was performed on CD11b+ cells isolated from the brains of 28-month-old APP/PS1 mice. The vast majority of cell clusters aligned with transcriptional profiles of microglia in various activation states. However, SCF+G-CSF treatment dramatically increased a cell population showing upregulation of marker genes related to peripheral myeloid cells. Flow cytometry data also revealed an SCF+G-CSF-induced increase of cerebral CD45high/CD11b+ active phagocytes. SCF+G-CSF treatment robustly increased the transcription of genes implicated in immune cell activation, including gene sets that regulate inflammatory processes and cell migration. The expression of S100a8 and S100a9 was robustly enhanced following SCF+G-CSF treatment in all CD11b+ cell clusters. Moreover, the topmost genes differentially expressed with SCF+G-CSF treatment were largely upregulated in S100a8/9-positive cells, suggesting a well-conserved transcriptional profile related to SCF+G-CSF treatment in resident and peripherally derived CD11b+ immune cells. This S100a8/9-associated transcriptional profile contained notable genes related to pro-inflammatory and anti-inflammatory responses, neuroprotection, and Aβ plaque inhibition or clearance. Altogether, this study reveals the immunomodulatory effects of SCF+G-CSF treatment in the aged brain with AD pathology, which will guide future studies to further uncover the therapeutic mechanisms.
Collapse
Affiliation(s)
| | | | | | - Li-Ru Zhao
- Department of Neurosurgery, State University of New York Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
2
|
Humpel C. Intranasal neprilysin rapidly eliminates amyloid-beta plaques, but causes plaque compensations: the explanation why the amyloid-beta cascade may fail? Neural Regen Res 2022; 17:1881-1884. [PMID: 35142662 PMCID: PMC8848595 DOI: 10.4103/1673-5374.335138] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/03/2021] [Accepted: 08/17/2021] [Indexed: 11/04/2022] Open
Abstract
Neurodegenerative brain disorders are a major burden in our society, such as Alzheimer´s disease. In order to repair or prevent such diseases, drugs are designed which enter the brain, but the blood-brain barrier limits their entry and the search for alternative pathways is important. Recently, we reported that intranasal delivery of the amyloid-beta degrading enzyme neprilysin eliminated amyloid-beta plaques in transgenic Alzheimer´s disease mice. This review describes the anatomical structure of the intranasal pathway, explains the intranasal delivery of pure neprilysin, cell-loaded neprilysin (platelets) and collagen-embedded neprilysin to destruct amyloid-beta plaques in Alzheimer´s disease in transgenic APP_SweDI mice and hypothesizes why this may cause compensation and why the amyloid-beta cascade hypothesis may fail.
Collapse
Affiliation(s)
- Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Abstract
In this issue of JEM, Reed-Geaghan et al. (https://doi.org/10.1084/jem.20191374) address the long-standing question about the primary source of myeloid cells located at β-amyloid deposits. Using genetic labeling experiments, the authors identify resident microglia as the only myeloid cells present at β-amyloid deposits.
Collapse
Affiliation(s)
| | - Michael T. Heneka
- German Center for Neurodegenerative Disease, Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
4
|
Costa-Marques L, Arnold K, Pardon MC, Leovsky C, Swarbrick S, Fabian C, Stolzing A. Transplantation of bone marrow derived macrophages reduces markers of neuropathology in an APP/PS1 mouse model. Transl Neurodegener 2019; 8:33. [PMID: 31636901 PMCID: PMC6790992 DOI: 10.1186/s40035-019-0173-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/10/2019] [Indexed: 12/29/2022] Open
Abstract
Background We investigated early hallmarks of putative therapeutic effects following systemic transplantation of bone marrow derived macrophages (BM-M) in APP/PS1 transgenic mice. Method BM-M were transplanted into the tail vein and the animals analysed 1 month later. Results BM-M transplantation promoted the reduction of the amyloid beta [37-42] plaque number and size in the cortex and hippocampus of the treated mice, but no change in the more heavily modified pyroglutamate amyloid beta E3 plaques. The number of phenotypically 'small' microglia increased in the hippocampus. Astrocyte size decreased overall, indicating a reduction of activated astrocytes. Gene expression of interleukin 6 and 10, interferon-gamma, and prostaglandin E receptor 2 was significantly lower in the hippocampus, while interleukin 10 expression was elevated in the cortex of the treated mice. Conclusions BM-M systemically transplanted, promote a decrease in neuroinflammation and a limited reversion of amyloid pathology. This exploratory study may support the potential of BM-M or microglia-like cell therapy and further illuminates the mechanisms of action associated with such transplants.
Collapse
Affiliation(s)
- Luís Costa-Marques
- 1Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, UK
| | - Katrin Arnold
- 2Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Marie-Christine Pardon
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | | | - Samantha Swarbrick
- 1Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, UK
| | - Claire Fabian
- 2Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Alexandra Stolzing
- 1Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, UK.,4Leipzig University, Leipzig, Germany
| |
Collapse
|
5
|
Abstract
Inflammation of the blood vessels that serve the central nervous system has been increasingly identified as an early and possibly initiating event among neurodegenerative conditions such as Alzheimer's disease and related dementias. However, the causal relevance of vascular inflammation to major retinal degenerative diseases is unresolved. Here, we describe how genetics, aging-associated changes, and environmental factors contribute to vascular inflammation in age-related macular degeneration, diabetic retinopathy, and glaucoma. We highlight the importance of mouse models in studying the underlying mechanisms and possible treatments for these diseases. We conclude that data support vascular inflammation playing a central if not primary role in retinal degenerative diseases, and this association should be a focus of future research.
Collapse
Affiliation(s)
- Ileana Soto
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, New Jersey 08028, USA;
| | - Mark P Krebs
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA;
| | | | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA; .,Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, USA
| |
Collapse
|
6
|
Kuo YC, Rajesh R. Challenges in the treatment of Alzheimer’s disease: recent progress and treatment strategies of pharmaceuticals targeting notable pathological factors. Expert Rev Neurother 2019; 19:623-652. [DOI: 10.1080/14737175.2019.1621750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| |
Collapse
|
7
|
Kiyota T, Machhi J, Lu Y, Dyavarshetty B, Nemati M, Yokoyama I, Mosley RL, Gendelman HE. Granulocyte-macrophage colony-stimulating factor neuroprotective activities in Alzheimer's disease mice. J Neuroimmunol 2018; 319:80-92. [PMID: 29573847 PMCID: PMC5916331 DOI: 10.1016/j.jneuroim.2018.03.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/27/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022]
Abstract
We investigated the effects of granulocyte-macrophage colony stimulating factor (GM-CSF) on behavioral and pathological outcomes in Alzheimer's disease (AD) and non-transgenic mice. GM-CSF treatment in AD mice reduced brain amyloidosis, increased plasma Aβ, and rescued cognitive impairment with increased hippocampal expression of calbindin and synaptophysin and increased levels of doublecortin-positive cells in the dentate gyrus. These data extend GM-CSF pleiotropic neuroprotection mechanisms in AD and include regulatory T cell-mediated immunomodulation of microglial function, Aβ clearance, maintenance of synaptic integrity, and induction of neurogenesis. Together these data support further development of GM-CSF as a neuroprotective agent for AD.
Collapse
Affiliation(s)
- Tomomi Kiyota
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bhagyalaxmi Dyavarshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maryam Nemati
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Izumi Yokoyama
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - R L Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
8
|
Differential contribution of microglia and monocytes in neurodegenerative diseases. J Neural Transm (Vienna) 2017; 125:809-826. [PMID: 29063348 DOI: 10.1007/s00702-017-1795-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/03/2017] [Indexed: 12/12/2022]
Abstract
Neuroinflammation is a hallmark of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Microglia, the innate immune cells of the CNS, are the first to react to pathological insults. However, multiple studies have also demonstrated an involvement of peripheral monocytes in several neurodegenerative diseases. Due to the different origins of these two cell types, it is important to distinguish their role and function in the development and progression of these diseases. In this review, we will summarize and discuss the current knowledge of the differential contributions of microglia and monocytes in the common neurodegenerative diseases AD, PD, and ALS, as well as multiple sclerosis, which is now regarded as a combination of inflammatory processes and neurodegeneration. Until recently, it has been challenging to differentiate microglia from monocytes, as there were no specific markers. Therefore, the recent identification of specific molecular signatures of both cell types will help to advance our understanding of their differential contribution in neurodegenerative diseases.
Collapse
|
9
|
Higueras MÁ, Jiménez-García L, Herranz S, Hortelano S, Luque A. Screening Assays to Characterize Novel Endothelial Regulators Involved in the Inflammatory Response. J Vis Exp 2017. [PMID: 28994756 DOI: 10.3791/55824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The endothelial layer is essential for maintaining homeostasis in the body by controlling many different functions. Regulation of the inflammatory response by the endothelial layer is crucial to efficiently fight against harmful inputs and aid in the recovery of damaged areas. When the endothelial cells are exposed to an inflammatory environment, such as the outer component of gram-negative bacteria membrane, lipopolysaccharide (LPS), they express soluble pro-inflammatory cytokines, such as Ccl5, Cxcl1 and Cxcl10, and trigger the activation of circulating leukocytes. In addition, the expression of adhesion molecules E-selectin, VCAM-1 and ICAM-1 on the endothelial surface enables the interaction and adhesion of the activated leukocytes to the endothelial layer, and eventually the extravasation towards the inflamed tissue. In this scenario, the endothelial function must be tightly regulated because excessive or defective activation in the leukocyte recruitment could lead to inflammatory-related disorders. Since many of these disorders do not have an effective treatment, novel strategies with a focus on the vascular layer must be investigated. We propose comprehensive assays that are useful to the search of novel endothelial regulators that modify leukocyte function. We analyze endothelial activation by using specific expression targets involved in leukocyte recruitment (such as, cytokines, chemokines, and adhesion molecules) with several techniques, including: real-time quantitative polymerase chain reaction (RT-qPCR), western-blot, flow cytometry and adhesion assays. These approaches determine endothelial function in the inflammatory context and are very useful to perform screening assays to characterize novel endothelial inflammatory regulators that are potentially valuable for designing new therapeutic strategies.
Collapse
Affiliation(s)
- María Ángeles Higueras
- Pharmacological Therapies Unit, Research Institute for Rare Diseases, Institute of Health Carlos III
| | - Lidia Jiménez-García
- Pharmacological Therapies Unit, Research Institute for Rare Diseases, Institute of Health Carlos III
| | - Sandra Herranz
- Pharmacological Therapies Unit, Research Institute for Rare Diseases, Institute of Health Carlos III
| | - Sonsoles Hortelano
- Pharmacological Therapies Unit, Research Institute for Rare Diseases, Institute of Health Carlos III;
| | - Alfonso Luque
- Pharmacological Therapies Unit, Research Institute for Rare Diseases, Institute of Health Carlos III;
| |
Collapse
|
10
|
Lee R, Reese C, Carmen-Lopez G, Perry B, Bonner M, Zemskova M, Wilson CL, Helke KL, Silver RM, Hoffman S, Tourkina E. Deficient Adipogenesis of Scleroderma Patient and Healthy African American Monocytes. Front Pharmacol 2017; 8:174. [PMID: 28420992 PMCID: PMC5376579 DOI: 10.3389/fphar.2017.00174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/15/2017] [Indexed: 12/01/2022] Open
Abstract
Monocytes from systemic sclerosis (SSc, scleroderma) patients and healthy African Americans (AA) are deficient in the regulatory protein caveolin-1 leading to enhanced migration toward chemokines and fibrogenic differentiation. While dermal fibrosis is the hallmark of SSc, loss of subcutaneous adipose tissue is a lesser-known feature. To better understand the etiology of SSc and the predisposition of AA to SSc, we studied the adipogenic potential of SSc and healthy AA monocytes. The ability of SSc and healthy AA monocytes to differentiate into adipocyte-like cells (ALC) is inhibited compared to healthy Caucasian (C) monocytes. We validated that monocyte-derived ALCs are distinct from macrophages by flow cytometry and immunocytochemistry. Like their enhanced fibrogenic differentiation, their inhibited adipogenic differentiation is reversed by the caveolin-1 scaffolding domain peptide (CSD, a surrogate for caveolin-1). The altered differentiation of SSc and healthy AA monocytes is additionally regulated by peroxisome proliferator-activated receptor γ (PPARγ) which is also present at reduced levels in these cells. In vivo studies further support the importance of caveolin-1 and PPARγ in fibrogenesis and adipogenesis. In SSc patients, healthy AA, and mice treated systemically with bleomycin, adipocytes lose caveolin-1 and PPARγ and the subcutaneous adipose layer is diminished. CSD treatment of these mice leads to a reappearance of the caveolin-1+/PPARγ+/FABP4+ subcutaneous adipose layer. Moreover, many of these adipocytes are CD45+, suggesting they are monocyte derived. Tracing experiments with injected EGFP+ monocytes confirm that monocytes contribute to the repair of the adipose layer when it is damaged by bleomycin treatment. Our observations strongly suggest that caveolin-1 and PPARγ work together to maintain a balance between the fibrogenic and adipogenic differentiation of monocytes, that this balance is altered in SSc and in healthy AA, and that monocytes make a major contribution to the repair of the adipose layer.
Collapse
Affiliation(s)
- Rebecca Lee
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South CarolinaCharleston, SC, USA
| | - Charles Reese
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South CarolinaCharleston, SC, USA
| | - Gustavo Carmen-Lopez
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South CarolinaCharleston, SC, USA
| | - Beth Perry
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South CarolinaCharleston, SC, USA
| | - Michael Bonner
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South CarolinaCharleston, SC, USA
| | - Marina Zemskova
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South CarolinaCharleston, SC, USA
| | - Carole L Wilson
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South CarolinaCharleston, SC, USA
| | - Kristi L Helke
- Department of Comparative Medicine, Medical University of South CarolinaCharleston, SC, USA
| | - Richard M Silver
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South CarolinaCharleston, SC, USA
| | - Stanley Hoffman
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South CarolinaCharleston, SC, USA.,Department of Regenerative Medicine and Cell Biology, Medical University of South CarolinaCharleston, SC, USA
| | - Elena Tourkina
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South CarolinaCharleston, SC, USA.,Department of Regenerative Medicine and Cell Biology, Medical University of South CarolinaCharleston, SC, USA
| |
Collapse
|
11
|
Thiamine Deficiency and Neurodegeneration: the Interplay Among Oxidative Stress, Endoplasmic Reticulum Stress, and Autophagy. Mol Neurobiol 2016; 54:5440-5448. [PMID: 27596507 DOI: 10.1007/s12035-016-0079-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/23/2016] [Indexed: 12/12/2022]
Abstract
Thiamine (vitamin B1) is an essential nutrient and indispensable for normal growth and development of the organism due to its multilateral participation in key biochemical and physiological processes. Humans must obtain thiamine from their diet since it is synthesized only in bacteria, fungi, and plants. Thiamine deficiency (TD) can result from inadequate intake, increased requirement, excessive deletion, and chronic alcohol consumption. TD affects multiple organ systems, including the cardiovascular, muscular, gastrointestinal, and central and peripheral nervous systems. In the brain, TD causes a cascade of events including mild impairment of oxidative metabolism, neuroinflammation, and neurodegeneration, which are commonly observed in neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Thiamine metabolites may serve as promising biomarkers for neurodegenerative diseases, and thiamine supplementations exhibit therapeutic potential for patients of some neurodegenerative diseases. Experimental TD has been used to model aging-related neurodegenerative diseases. However, to date, the cellular and molecular mechanisms underlying TD-induced neurodegeneration are not clear. Recent research evidence indicates that TD causes oxidative stress, endoplasmic reticulum (ER) stress, and autophagy in the brain, which are known to contribute to the pathogenesis of various neurodegenerative diseases. In this review, we discuss the role of oxidative stress, ER stress, and autophagy in TD-mediated neurodegeneration. We propose that it is the interplay of oxidative stress, ER stress, and autophagy that contributes to TD-mediated neurodegeneration.
Collapse
|
12
|
Plagg B, Ehrlich D, Kniewallner KM, Marksteiner J, Humpel C. Increased Acetylation of Histone H4 at Lysine 12 (H4K12) in Monocytes of Transgenic Alzheimer's Mice and in Human Patients. Curr Alzheimer Res 2016; 12:752-60. [PMID: 26159193 DOI: 10.2174/1567205012666150710114256] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/30/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder characterized by amyloid-β (Aβ) plaque formation, tau pathology, neurodegeneration and inflammatory processes. Monocytes are involved in inflammation in AD and are recruited to the diseased brain. Recently it has been shown that aberrant epigenetic processes including acetylation are associated with the development of AD. The aim of the present study was to examine acetylation of histone H4 at lysine 12 (H4K12) in monocytes in two transgenic AD mouse models (the triple transgenic 3xTg and a model overexpressing amyloid-precursor protein APP with the Swedish-Dutch-Iowa mutations), and to compare with monocytes isolated from human patients with mild cognitive impairment (MCI) and AD. METHODS Mouse and human monocytes were selectively isolated with a positive (PluriSelect) respectively with a negative selection method (Miltenyi). Histones were extracted and acetylation of H4K12 was analyzed by a quantification fluorometric kit. Moreover, monocyte cytokine release was measured and cell death analyzed by FACS using incorporation of 7-AAD. RESULTS Our data show a significant increase of monocytic H4K12 acetylation in both transgenic AD mouse models early during development of the plaque deposition in the brain. In line with these data we found significantly elevated acetylation of H4K12 in human patients with MCI but not in patients with AD. Further we observed that the monocytes of AD mice and of AD patients were significantly more vulnerable to cell damage (as seen by 7-AAD incorporation in FACS analysis) and displayed an enhanced release of pro-inflammatory cytokines (MIP2 and TNFα). CONCLUSION Our findings indicate that epigenetic changes in peripheral monocytes are an early event in AD-pathology. Thus H4K12 acetylation may be considered as a novel biomarker for early changes in AD development.
Collapse
Affiliation(s)
| | | | | | | | - Christian Humpel
- Department of Psychiatry and Psychotherapy, Anichstr. 35, A-6020 Innsbruck, Austria.
| |
Collapse
|
13
|
Wang F, Shen X, Li S, Chen L, Wang Y, Qin J, Zhou G, Peng Y, Feng X, Li R, Liang C. Splenocytes derived from young WT mice prevent AD progression in APPswe/PSENldE9 transgenic mice. Oncotarget 2016; 6:20851-62. [PMID: 26317549 PMCID: PMC4673234 DOI: 10.18632/oncotarget.4930] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/24/2015] [Indexed: 12/28/2022] Open
Abstract
Immunosenescence contributes to pathogenesis of Alzheimer's disease (AD) in the elderly. In this study, we explored the effects of young wild type (WT) splenocytes (ySCs) on Alzheimer's disease by transplanting ySCs into APPswe/PSENldE9 transgenic mice. Young WT splenocytes not only prevented AD, but also improved the spatial learning and memory of APPswe/PSENldE9 transgenic mice. Young WT splenocytes enhanced Aβ clearance, decreased astrogliosis and increased systemic growth differentiation factor 11 (GDF11) levels. Splenocytes derived from old AD mouse promoted AD. There was an increased number of regulatory T cells (Tregs) among old AD splenocytes. We suggest that alterations of GDF11 and Tregs are involved in AD progression and that rejuvenation of the immune system is a potential therapeutic strategy in AD.
Collapse
Affiliation(s)
- Fei Wang
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| | - Xueyan Shen
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| | - Shuping Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, P. R. China.,Department of Radiology, PLA No. 455 Hospital, Shanghai, P. R. China
| | - Long Chen
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| | - Yanru Wang
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| | - Jie Qin
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| | - Guomin Zhou
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| | - Yuwen Peng
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| | - Xiaoyuan Feng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Ruixi Li
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| | - Chunmin Liang
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| |
Collapse
|
14
|
Möhle L, Israel N, Paarmann K, Krohn M, Pietkiewicz S, Müller A, Lavrik IN, Buguliskis JS, Schott BH, Schlüter D, Gundelfinger ED, Montag D, Seifert U, Pahnke J, Dunay IR. Chronic Toxoplasma gondii infection enhances β-amyloid phagocytosis and clearance by recruited monocytes. Acta Neuropathol Commun 2016; 4:25. [PMID: 26984535 PMCID: PMC4793516 DOI: 10.1186/s40478-016-0293-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is associated with the accumulation of β-amyloid (Aβ) as senile plaques in the brain, thus leading to neurodegeneration and cognitive impairment. Plaque formation depends not merely on the amount of generated Aβ peptides, but more importantly on their effective removal. Chronic infections with neurotropic pathogens, most prominently the parasite Toxoplasma (T.) gondii, are frequent in the elderly, and it has been suggested that the resulting neuroinflammation may influence the course of AD. In the present study, we investigated how chronic T. gondii infection and resulting neuroinflammation affect plaque deposition and removal in a mouse model of AD. RESULTS Chronic infection with T. gondii was associated with reduced Aβ and plaque load in 5xFAD mice. Upon infection, myeloid-derived CCR2(hi) Ly6C(hi) monocytes, CCR2(+) Ly6C(int), and CCR2(+) Ly6C(low) mononuclear cells were recruited to the brain of mice. Compared to microglia, these recruited mononuclear cells showed highly increased phagocytic capacity of Aβ ex vivo. The F4/80(+) Ly6C(low) macrophages expressed high levels of Triggering Receptor Expressed on Myeloid cells 2 (TREM2), CD36, and Scavenger Receptor A1 (SCARA1), indicating phagocytic activity. Importantly, selective ablation of CCR2(+) Ly6C(hi) monocytes resulted in an increased amount of Aβ in infected mice. Elevated insulin-degrading enzyme (IDE), matrix metalloproteinase 9 (MMP9), as well as immunoproteasome subunits β1i/LMP2, β2i/MECL-1, and β5i/LMP7 mRNA levels in the infected brains indicated increased proteolytic Aβ degradation. Particularly, LMP7 was highly expressed by the recruited mononuclear cells in the brain, suggesting a novel mechanism of Aβ clearance. CONCLUSIONS Our results indicate that chronic Toxoplasma infection ameliorates β-amyloidosis in a murine model of AD by activation of the immune system, specifically by recruitment of Ly6C(hi) monocytes and by enhancement of phagocytosis and degradation of soluble Aβ. Our findings provide evidence for a modulatory role of inflammation-induced Aβ phagocytosis and degradation by newly recruited peripheral immune cells in the pathophysiology of AD.
Collapse
Affiliation(s)
- Luisa Möhle
- Institute for Medical Microbiology and Hospital Hygiene, University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Nicole Israel
- Institute for Molecular and Clinical Immunology, University of Magdeburg, Magdeburg, Germany
| | - Kristin Paarmann
- Department of Pathology (PAT), Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Neurogenetics, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Markus Krohn
- Department of Pathology (PAT), Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
| | - Sabine Pietkiewicz
- Department of Translational Inflammation Research, Institute of Experimental Internal Medicine, University of Magdeburg, Magdeburg, Germany
| | - Andreas Müller
- Institute for Molecular and Clinical Immunology, University of Magdeburg, Magdeburg, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Inna N Lavrik
- Department of Translational Inflammation Research, Institute of Experimental Internal Medicine, University of Magdeburg, Magdeburg, Germany
| | | | - Björn H Schott
- Center for Behavioral Brain Sciences (CBBS), University of Magdeburg, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, Campus Mitte, Charité Universitätsmedizin, Berlin, Germany
| | - Dirk Schlüter
- Institute for Medical Microbiology and Hospital Hygiene, University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), University of Magdeburg, Magdeburg, Germany
| | - Eckart D Gundelfinger
- Center for Behavioral Brain Sciences (CBBS), University of Magdeburg, Magdeburg, Germany
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Medical Faculty, University of Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Dirk Montag
- Neurogenetics, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Ulrike Seifert
- Institute for Molecular and Clinical Immunology, University of Magdeburg, Magdeburg, Germany
| | - Jens Pahnke
- Department of Pathology (PAT), Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
- University of Lübeck (UzL), LIED, Lübeck, Germany
- Leibniz Institute of Plant Biochemistry (IPB), Halle, Germany
| | - Ildiko Rita Dunay
- Institute for Medical Microbiology and Hospital Hygiene, University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), University of Magdeburg, Magdeburg, Germany.
| |
Collapse
|