1
|
Kudo M, Gao M, Hayashi M, Kobayashi Y, Yang J, Liu T. Ilex paraguariensis A.St.-Hil. improves lipid metabolism in high-fat diet-fed obese rats and suppresses intracellular lipid accumulation in 3T3-L1 adipocytes via the AMPK-dependent and insulin signaling pathways. Food Nutr Res 2024; 68:10307. [PMID: 38327997 PMCID: PMC10845893 DOI: 10.29219/fnr.v68.10307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 02/09/2024] Open
Abstract
Background Obesity is closely associated with several chronic diseases, and adipose tissue plays a major role in modulating energy metabolism. Objective This study aimed to determine whether Mate, derived from I. paraguariensis A.St.-Hil., ameliorates lipid metabolism in 3T3-L1 adipocytes and high-fat diet (HFD)-fed obese Sprague-Dawley (SD) rats. Design 3T3-L1 adipocytes were cultured for 7 days, following which intracellular lipid accumulation and expression levels of lipid metabolism-related factors were examined. Dorsomorphin was used to investigate the potential pathways involved, particularly the adenosine monophosphate-activated protein kinase (AMPK)- dependent pathway. Mate was administered to rat HFD-fed obese SD models for 8 consecutive weeks. The expression of lipid metabolism-related factors in the organs and tissues collected from dissected SD rats was evaluated. Results Mate suppressed intracellular lipid accumulation in 3T3-L1 adipocytes, increased the protein and gene expression levels of AMPK, hormone sensitive lipase (HSL), calmodulin kinase kinase (CaMKK), liver kinase B1 (LKB1), protein kinase A (PKA), CCAAT/enhancer binding protein β (C/EBPβ), insulin receptor b (IRβ), and insulin receptor substrate 1 (IRS1) (Tyr465), and decreased those of sterol regulatory element binding protein 1C (Srebp1c), fatty acid synthase (FAS), peroxisome-activated receptor γ (PPARγ), and IRS1 (Ser1101). Furthermore, an AMPK inhibitor abolished the effects exerted by Mate on intracellular lipid accumulation and HSL and FAS expression levels. Mate treatment suppressed body weight gain and improved serum cholesterol levels in HFD-fed obese SD rats. Treatment with Mate increased the protein and gene expression levels of AMPK, PKA, Erk1/Erk2 (p44/p42), and uncoupling protein 1 and reduced those of mammalian target of rapamycin, S6 kinase, Srebp1c, ap2, FAS, Il6, Adiponectin, Leptin, and Fabp4 in rat HFD-fed obese SD models. Discussion and conclusions Mate suppressed intracellular lipid accumulation in 3T3-L1 adipocytes and improved lipid metabolism in the epididymal adipose tissue of HFD-fed obese SD rats via the activation of AMPK-dependent and insulin signaling pathways.
Collapse
Affiliation(s)
- Maya Kudo
- School of Pharmacy and Pharmaceutical Science, Mukogawa Women’s University, Nishinomiya, Hyogo, Japan
| | - Ming Gao
- School of Pharmacy and Pharmaceutical Science, Mukogawa Women’s University, Nishinomiya, Hyogo, Japan
- Institute for Bioscience, Mukogawa Women’s University, Nishinomiya, Hyogo, Japan
| | - Misa Hayashi
- School of Pharmacy and Pharmaceutical Science, Mukogawa Women’s University, Nishinomiya, Hyogo, Japan
| | | | - Jinwei Yang
- Tokiwa Phytochemical Co., Ltd., Sakura, Chiba, Japan
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Tian P, Wu L, Kudo M, Hayashi M, Qin L, Gao M, Xu A, Liu T. TangNaiKang, herbal formulation, alleviates obesity in diabetic SHR/cp rats through modulation of gut microbiota and related metabolic functions. PHARMACEUTICAL BIOLOGY 2022; 60:2002-2010. [PMID: 36226871 PMCID: PMC9578476 DOI: 10.1080/13880209.2022.2096075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Tangnaikang (TNK) is a Chinese herbal formulation that has lipid-lowering effects, but its effect on reducing obesity has not been studied. OBJECTIVE To observe the effect of TNK on obesity and explore its effect on gut microbiota of obese rats. MATERIALS AND METHODS The SHR/NDmcr-cp rats were divided into three groups: (1) 3.24 g/kg TNK (High TNK), (2) 1.62 g/kg TNK (Low TNK), and (3) an untreated control (CON). Wistar-Kyoto rats were used as normal controls (WKY). After 8 weeks of TNK oral administration, body weight, abdominal circumference, triglycerides (TC) and total cholesterol (CHO) were measured. Gut microbiota diversity was studied by 16S rDNA sequencing, and metagenomes analysis was conducted to determine alteration in functional gene expression. RESULTS The body weight (496.60 ± 6.0 g vs. 523.40 ± 5.6 g), abdomen circumference (24.00 ± 0.11 cm vs. 24.87 ± 0.25 cm), TC (3.04 ± 0.16 mmol/L vs. 4.97 ± 0.21 mmol/L), CHO (2.42 ± 0.15 mmol/L vs. 2.84 ± 0.09 mmol/L) of rats in the High TNK group were decreased significantly (all p < 0.05). TNK administration regulates intestinal flora, up-regulates Eisenbergiella and down-regulates Clostridium_sensu_stricto_1, which is beneficial to the production of short-chain fatty acids (SCFAs). Metagenomes analysis shows that TNK is closely related to the fatty acid synthesis pathway. DISCUSSION AND CONCLUSIONS TNK can regulate gut microbiota to reduce obesity, which may be related to fatty acid metabolism. Our research supports the clinical application of TNK preparation and provides a new perspective for the treatment of obesity.
Collapse
Affiliation(s)
- Peng Tian
- Health-cultivation Laboratory of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
- Academy of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Lili Wu
- Health-cultivation Laboratory of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Maya Kudo
- School of Pharmaceutical Sciences, Mukogawa Women’s University, Hyogo, Japan
| | - Misa Hayashi
- School of Pharmaceutical Sciences, Mukogawa Women’s University, Hyogo, Japan
| | - Lingling Qin
- Health-cultivation Laboratory of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Ming Gao
- School of Pharmaceutical Sciences, Mukogawa Women’s University, Hyogo, Japan
- Institute for Biosciences, Mukogawa Women’s University, Hyogo, Japan
| | - Anlong Xu
- Academy of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tonghua Liu
- Health-cultivation Laboratory of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Amycenone reduces excess body weight and attenuates hyperlipidaemia by inhibiting lipogenesis and promoting lipolysis and fatty acid β-oxidation in KK- Ay obese diabetic mice. J Nutr Sci 2022; 11:e55. [PMID: 35836693 PMCID: PMC9274390 DOI: 10.1017/jns.2022.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/04/2022] Open
Abstract
Excess body weight and hyperlipidaemia cause severe health problems and have social implications. Amycenone is an active substance extracted from Yamabushitake mushrooms with no reports of its activity against excess body weight and hyperlipidaemia. This research clarifies the effects and mechanisms of action of amycenone on the inhibition of body weight excess and hyperlipidaemia attenuation using KK-Ay mice. Amycenone or water was administered to 8-week-old male KK-Ay mice by gavage for 8 weeks. Their body weight and food intake were recorded during the experiment. At the end of the experimental period, the mice were dissected, and blood samples, lipid metabolism-related organs and tissues were collected and stored for further analysis. Amycenone treatment suppressed body weight gain and improved serum levels of fasting blood glucose and non-esterified fatty acids. Additionally, serum and hepatic cholesterol and triacylglycerol levels were reduced after this treatment, whereas the phosphorylation levels of AMPK, PKA and HSL increased and the expression level of FAS decreased. The protein level of C/EBPβ and gene expression level of Cpt1 were higher in the perirenal adipose tissue of amycenone-treated KK-Ay mice. Furthermore, amycenone phosphorylated AMPK, PKA and ACC, and PPARγ expression was lower in the mesenteric adipose tissue. The phosphorylation levels of AMPK, LKB1, PKA and ACC were also induced, and FAS expression level was reduced in the liver of the amycenone-treated group. Amycenone could reduce excess body weight and attenuate hyperlipidaemia in KK-Ay mice by inhibiting lipogenesis and promoting lipolysis through lipid metabolism pathway stimulation and fatty acid β-oxidation acceleration.
Collapse
|
4
|
Su M, Hu R, Tang T, Tang W, Huang C. Review of the correlation between Chinese medicine and intestinal microbiota on the efficacy of diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:1085092. [PMID: 36760813 PMCID: PMC9905712 DOI: 10.3389/fendo.2022.1085092] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/06/2022] [Indexed: 01/26/2023] Open
Abstract
Diabetes mellitus is a serious metabolic disorder that can lead to a number of life-threatening complications. Studies have shown that intestinal microbiota is closely related to the development of diabetes, making it a potential target for the treatment of diabetes. In recent years, research on the active ingredients of traditional Chinese medicine (TCM), TCM compounds, and prepared Chinese medicines to regulate intestinal microbiota and improve the symptoms of diabetes mellitus is very extensive. We focus on the research progress of TCM active ingredients, herbal compounds, and prepared Chinese medicines in the treatment of diabetes mellitus in this paper. When diabetes occurs, changes in the abundance and function of the intestinal microbiota disrupt the intestinal environment by disrupting the intestinal barrier and fermentation. TCM and its components can increase the abundance of beneficial bacteria while decreasing the abundance of harmful bacteria, regulate the concentration of microbial metabolites, improve insulin sensitivity, regulate lipid metabolism and blood glucose, and reduce inflammation. TCM can be converted into active substances with pharmacological effects by intestinal microbiota, and these active substances can reverse intestinal microecological disorders and improve diabetes symptoms. This can be used as a reference for diabetes prevention and treatment.
Collapse
Affiliation(s)
- Min Su
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparation, Changsha Medical University, Changsha, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Rao Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Ting Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Weiwei Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Chunxia Huang
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparation, Changsha Medical University, Changsha, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
- *Correspondence: Chunxia Huang,
| |
Collapse
|
5
|
Tangnaikang Alleviates Hyperglycemia and Improves Gut Microbiota in Diabetic Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1089176. [PMID: 34868327 PMCID: PMC8639253 DOI: 10.1155/2021/1089176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
Dysregulation of gut microbiota contributes to the development of type 2 diabetes. To investigate the antidiabetic effect of Tangnaikang and its regulation of gut microbiota in diabetic KKAy mice, a type 2 diabetes mouse model was established by feeding KKAy mice with a high-fat diet (HFD) for 2 weeks. The diabetic KKAy mice were treated with vehicle, Acarbose, or different doses of Tangnaikang once a day for 8 weeks. The fasting plasma glucose (FPG) levels and bodyweights were measured weekly. The fecal and blood samples were collected 8 weeks after treatment. The 16s rRNA sequencing and bioinformatics analysis were conducted to explore the effects of Tangnaikang treatment on the richness, diversity, and relative abundance of gut microbiota. Compared with other treatments, high-dose Tangnaikang (4.68 g/kg) significantly reduced FPG levels while elevating bodyweights in model mice. Compared with saline treatment, different doses of Tangnaikang significantly increased gut microbial species richness and diversity. Linear discriminant analysis effect size identified potential bacterial biomarkers associated with Tangnaikang treatment. Relative abundance analysis revealed that Tangnaikang treatment modulated the abundance of gut bacteria at the class and genus levels, such as Bacilli, Lactobacillus, and Alistipes. The principal component analysis demonstrated that, compared with the samples of the high-dose group, the samples of medium-dose and low-dose groups were closer to those of the model group. Tangnaikang alleviated hyperglycemia and improved the composition and abundance of gut microbiota in diabetic KKAy mice.
Collapse
|
6
|
Palla AH, Amin F, Fatima B, Shafiq A, Rehman NU, Haq IU, Gilani AUH. Systematic Review of Polyherbal Combinations Used in Metabolic Syndrome. Front Pharmacol 2021; 12:752926. [PMID: 34690784 PMCID: PMC8529216 DOI: 10.3389/fphar.2021.752926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Metabolic syndrome (MetS) is a multifactorial disease, whose main stay of prevention and management is life-style modification which is difficult to attain. Combination of herbs have proven more efficacious in multi-targeted diseases, as compared to individual herbs owing to the "effect enhancing and side-effect neutralizing" properties of herbs, which forms the basis of polyherbal therapies This led us to review literature on the efficacy of herbal combinations in MetS. Methods: Electronic search of literature was conducted by using Cinnahl, Pubmed central, Cochrane and Web of Science, whereas, Google scholar was used as secondary search tool. The key words used were "metabolic syndrome, herbal/poly herbal," metabolic syndrome, clinical trial" and the timings were limited between 2005-2020. Results: After filtering and removing duplications by using PRISMA guidelines, search results were limited to 41 studies, out of which 24 studies were evaluated for combinations used in animal models and 15 in clinical trials related to metabolic syndrome. SPICE and SPIDER models were used to assess the clinical trials, whereas, a checklist and a qualitative and a semi-quantitative questionnaire was formulated to report the findings for animal based studies. Taxonomic classification of Poly herbal combinations used in animal and clinical studies was designed. Conclusion: With this study we have identified the potential polyherbal combinations along with a proposed method to validate animal studies through systematic qualitative and quantitative review. This will help researchers to study various herbal combinations in MetS, in the drug development process and will give a future direction to research on prevention and management of MetS through polyherbal combinations.
Collapse
Affiliation(s)
- Amber Hanif Palla
- Department of Biological and Biomedical Sciences, Aga Khan University Hospital, Karachi, Pakistan
| | - Faridah Amin
- Family Medicine, Liaquat National Hospital, Karachi, Pakistan
| | - Bilqees Fatima
- Department of Pharmaceutics, Faculty of Pharmacy, Hamdard University, Karachi, Pakistan
| | - Arooj Shafiq
- Department of Bioscience, Salim Habib University, Karachi, Pakistan
| | - Najeeb Ur Rehman
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al Kharj, Saudi Arabia
| | - Ikram ul Haq
- National Institute of Health, Islamabad, Pakistan
| | | |
Collapse
|
7
|
Kudo M, Yamagishi Y, Suguro S, Nishihara M, Yoshitomi H, Hayashi M, Gao M. L-citrulline inhibits body weight gain and hepatic fat accumulation by improving lipid metabolism in a rat nonalcoholic fatty liver disease model. Food Sci Nutr 2021; 9:4893-4904. [PMID: 34532001 PMCID: PMC8441368 DOI: 10.1002/fsn3.2439] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Body weight gain is a social issue all over the world. When body weight increased, hepatic fat accumulation also increased and it causes fatty liver disease. Therefore, developing a new treatment method and elucidating its mechanism is necessary. L-citrulline (L-Cit) is a free amino acid found mainly in watermelon. No reports regarding its effects on the improvement of hepatic steatosis and fibrogenesis are currently available. The aim of this study was to clarify the effect and the mechanism of L-Cit on inhibition of body weight gain and hepatic fat accumulation in high-fat and high-cholesterol fed SHRSP5/Dmcr rats. METHODS L-Cit or water (controls) was administered to six-week-old male SHRSP5/Dmcr rats by gavage for nine weeks. We recorded the level of body weight and food intake while performing the administration and sacrificed rats. After that, the blood and lipid metabolism-related organs and tissues were collected and analyzed. RESULTS L-Cit treatment reduced body weight gain and hepatic TC and TG levels, and serum levels of AST and ALT. L-Cit enhanced AMPK, LKB1, PKA, and hormone-sensitive lipase (HSL) protein phosphorylation levels in the epididymal fat. L-Cit treatment improved steatosis as revealed by HE staining of liver tissues and enhanced AMPK and LKB1 phosphorylation levels. Moreover, activation of Sirt1 was higher, while the liver fatty acid synthase (FAS) level was lower. Azan staining of liver sections revealed a reduction in fibrogenesis following L-Cit treatment. Further, the liver levels of TGF-β, Smad2/3, and α-SMA, fibrogenesis-related proteins and genes, were lower in the L-Cit-treated group. CONCLUSIONS From the results of analysis of the epididymal fat and the liver, L-Cit inhibits body weight gain and hepatic fat accumulation by activating lipid metabolism and promoting fatty acid β-oxidation in SHRSP5/Dmcr rats.
Collapse
Affiliation(s)
- Maya Kudo
- School of Pharmaceutical ScienceMukogawa Women’s UniversityNishinomiyaJapan
| | | | | | | | - Hisae Yoshitomi
- School of Pharmaceutical ScienceMukogawa Women’s UniversityNishinomiyaJapan
| | - Misa Hayashi
- School of Pharmaceutical ScienceMukogawa Women’s UniversityNishinomiyaJapan
| | - Ming Gao
- School of Pharmaceutical ScienceMukogawa Women’s UniversityNishinomiyaJapan
- Institute for BiosciencesMukogawa Women’s UniversityNishinomiyaJapan
| |
Collapse
|
8
|
Zhou X, Du HH, Ni L, Ran J, Hu J, Yu J, Zhao X. Nicotinamide Mononucleotide Combined With Lactobacillus fermentum TKSN041 Reduces the Photoaging Damage in Murine Skin by Activating AMPK Signaling Pathway. Front Pharmacol 2021; 12:643089. [PMID: 33841160 PMCID: PMC8027253 DOI: 10.3389/fphar.2021.643089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
Long-term exposure to UVB (280-320 nm) can cause oxidative skin damage, inflammatory injury, and skin cancer. Research on nicotinamide mononucleotide (NMN) and lactic acid bacteria (LAB) with regard to antioxidation, anti-inflammation, and prevention of other age-related diseases has received increasing attention. In the present study, the in vitro antioxidant analysis showed that NMN combined with Lactobacillus fermentum TKSN041 (L. fermentum TKSN041) has a high scavenging ability on hydroxyl (OH), 2, 2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) diammonium salt (ABTS) and 1, 1-diphenyl-2-picrylhydrazyl (DPPH), and it also possess a good total antioxidant capacity. The animal experimental results show that NMN combined with LAB maintained normal liver morphology of mice and reduced pathological damage to murine skin. NMN combined with LAB significantly increased the serum levels of total superoxide dismutase (T-SOD), catalase (CAT), and interleukin (IL)-10, but reduced the levels of malondialdehyde, advanced glycation end products, tumor necrosis factor (TNF)-α, and IL-6. NMN combined with LAB increased T-SOD, CAT, IL-10, Na+-K+-ATPase, and NAD+ levels in the skin, but reduced TNF-α level in the skin. NMN combined with LAB increased the mRNA expression levels of SOD1, CAT, glutathione (GSH), inhibitor of NF-κB (IκB-α), IL-10, AMP-activated protein kinase (AMPK), adaptor protein, phosphotyros ineinteraction, PH domain and leucine zipper containing 1 (APPL1), peroxisome proliferator-activated receptor γ co-activator-1α (PGC-1α), and forkhead transcription factor O (FOXO) in the skin and liver, but decreased the mRNA expression levels of nuclear factor (NF)-κBp65, TNF-α, IL-6, and rapamycin target protein (mTOR). NMN combined with LAB increased the protein expression levels of AMPK, IκB-α, SOD1, and CAT in the skin tissues and reduced protein expression of NF-κBp65. NMN combined with L. fermentum TKSN041 improved murine skin damage caused by UVB irradiation, and the protective mechanism may be related to activation of the AMPK signaling pathway. The results of this study are expected to provide a reference for preventing and the treating skin photoaging.
Collapse
Affiliation(s)
- Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Hang-Hang Du
- Department of Plastic Surgery, Chongqing Huamei Plastic Surgery Hospital, Chongqing, China
| | - Luyao Ni
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| | - Jie Ran
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| | - Jian Hu
- Effepharm (Shanghai) Co., Ltd., Shanghai, China
| | - Jianjun Yu
- Effepharm (Shanghai) Co., Ltd., Shanghai, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
9
|
Guo X, Sun W, Xu G, Hou D, Zhang Z, Wu L, Liu T. RNA-Seq Analysis of the Liver Transcriptome Reveals the Networks Regulating Treatment of Sitagliptin Phosphate plus Fuzhujiangtang Granule in the Zucker Diabetic Fatty Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8463858. [PMID: 32351607 PMCID: PMC7174946 DOI: 10.1155/2020/8463858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/12/2020] [Indexed: 11/26/2022]
Abstract
Diabetes is one of the most serious chronic diseases. Numerous drugs including oral agents and traditional Chinese medicines, such as sitagliptin phosphate (SP) and Fuzhujiangtang granules (FJG), have been discovered to treat diabetes and used in combination in clinical practice. However, the exact effect and underlying mechanism of using combined medicine is not clear. In this study, we compared the antidiabetic effect of SP, FJG, and SP plus FJG (SP-FJG) using forty 8-week-old Zucker diabetic fatty (ZDF) rats and 10 age-matched Zucker lean rats as the normal control group. ZDF rats were treated with different therapies, respectively, for 6 weeks. The study showed that the fast blood glucose, random blood glucose (RBG), oral glucose tolerance test (OGTT), insulin tolerance test (ITT), homeostasis model of assessment-insulin resistance index, triglyceride (TC), superoxide dismutase, and malondialdehyde of each treatment group were improved when compared with the diabetes mellitus (DM) control group. Using SP-FJG in combination had better improvements in OGTT, fast serum insulin levels, TNF-α, and IL-6 compared with using SP individually. Besides, the increased LDL and TC caused by using SP was attenuated by using FJG in combination. Meanwhile, compared with the DM group, 1781 differentially expressed genes (DEGs) (including 1248 mRNA, 211 ncRNA, 202 cirRNA, and 120 miRNA) were enriched in 58 pathways. Through analysis of ceRNA networks, we found that rno-miR-326-3p, rno-miR-423-5p, rno-miR-15b-5p, rno-let-7c-5p, and rno-let-7b-5p were related to pharmacodynamics in different groups. By analyzing the protein-protein interaction (PPI) and coexpression networks of the transcriptomes of different groups, it is inferred that Lrrk2 and Irak3 may be pharmacodynamic genes for type 2 diabetes mellitus (T2DM). Our research compared the treatment of SP, FJG, and SP-FJG and acquainted the PPI network, coexpression network, mutations, and pharmacodynamics genes, which reveals the new mechanisms of pathogenesis of T2DM.
Collapse
Affiliation(s)
- Xuan Guo
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wen Sun
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing 100029, China
- Beijing Key Laboratory of Health Cultivation, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guangyuan Xu
- Department of Traditional Chinese Medicine, Fu Xing Hospital of Capital Medical University, Beijing 100045, China
| | - Dan Hou
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhuo Zhang
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing 100029, China
- Beijing Key Laboratory of Health Cultivation, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tonghua Liu
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China
| |
Collapse
|
10
|
Li J, Bai L, Wei F, Zhao J, Wang D, Xiao Y, Yan W, Wei J. Therapeutic Mechanisms of Herbal Medicines Against Insulin Resistance: A Review. Front Pharmacol 2019; 10:661. [PMID: 31258478 PMCID: PMC6587894 DOI: 10.3389/fphar.2019.00661] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/23/2019] [Indexed: 12/16/2022] Open
Abstract
Insulin resistance is a condition in which insulin sensitivity is reduced and the insulin signaling pathway is impaired. Although often expressed as an increase in insulin concentration, the disease is characterized by a decrease in insulin action. This increased workload of the pancreas and the consequent decompensation are not only the main mechanisms for the development of type 2 diabetes (T2D), but also exacerbate the damage of metabolic diseases, including obesity, nonalcoholic fatty liver disease, polycystic ovary syndrome, metabolic syndrome, and others. Many clinical trials have suggested the potential role of herbs in the treatment of insulin resistance, although most of the clinical trials included in this review have certain flaws and bias risks in their methodological design, including the generation of randomization, the concealment of allocation, blinding, and inadequate reporting of sample size estimates. These studies involve not only the single-flavored herbs, but also herbal formulas, extracts, and active ingredients. Numerous of in vitro and in vivo studies have pointed out that the role of herbal medicine in improving insulin resistance is related to interventions in various aspects of the insulin signaling pathway. The targets involved in these studies include insulin receptor substrate, phosphatidylinositol 3-kinase, glucose transporter, AMP-activated protein kinase, glycogen synthase kinase 3, mitogen-activated protein kinases, c-Jun-N-terminal kinase, nuclear factor-kappaB, protein tyrosine phosphatase 1B, nuclear factor-E2-related factor 2, and peroxisome proliferator-activated receptors. Improved insulin sensitivity upon treatment with herbal medicine provides considerable prospects for treating insulin resistance. This article reviews studies of the target mechanisms of herbal treatments for insulin resistance.
Collapse
Affiliation(s)
- Jun Li
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Litao Bai
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fan Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Zhao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Danwei Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yao Xiao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weitian Yan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Yang H, Zhu R, Zhao X, Liu L, Zhou Z, Zhao L, Liang B, Ma W, Zhao J, Liu J, Huang G. Sirtuin-mediated deacetylation of hnRNP A1 suppresses glycolysis and growth in hepatocellular carcinoma. Oncogene 2019; 38:4915-4931. [PMID: 30858544 DOI: 10.1038/s41388-019-0764-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/25/2019] [Accepted: 02/16/2019] [Indexed: 01/06/2023]
Abstract
Tumor cells undergo a metabolic shift in order to adapt to the altered microenvironment, although the underlying mechanisms have not been fully explored. HnRNP A1 is involved in the alternative splicing of the pyruvate kinase (PK) mRNA, allowing tumor cells to specifically produce the PKM2 isoform. We found that the acetylation status of hnRNP A1 in hepatocellular carcinoma (HCC) cells was dependent on glucose availability, which affected the PKM2-dependent glycolytic pathway. In the glucose-starved HCC cells, SIRT1 and SIRT6, members of deacetylase sirtuin family, were highly expressed and deacetylated hnRNP A1 after direct binding. We identified four lysine residues in hnRNP A1 that were deacetylated by SIRT1 and SIRT6, resulting in significant inhibition of glycolysis in HCC cells. Deacetylated hnRNP A1 reduced PKM2 and increased PKM1 alternative splicing in HCC cells under normal glucose conditions, thereby reducing the metabolic activity of PK and the non-metabolic PKM2-β-catenin signaling pathway. However, under glucose starvation, the low levels of acetylated hnRNP A1 reduced HCC cell metabolism to adapt to the nutrient deficiency. Taken together, sirtuin-mediated hnRNP A1 deacetylation inhibits HCC cell proliferation and tumorigenesis in a PKM2-dependent manner. These findings point to the metabolic reprogramming induced by hnRNP A1 acetylation in order to adapt to the nutritional status of the tumor microenvironment.
Collapse
Affiliation(s)
- Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Rongxuan Zhu
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhaoli Zhou
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Li Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Beibei Liang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Wenjing Ma
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jian Zhao
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, 200433, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
12
|
Hashimoto M, Kusudo T, Takeuchi T, Kataoka N, Mukai T, Yamashita H. CREG1 stimulates brown adipocyte formation and ameliorates diet-induced obesity in mice. FASEB J 2019; 33:8069-8082. [PMID: 30917000 DOI: 10.1096/fj.201802147rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increased formation of brown and beige adipocytes is critical for adaptive thermogenesis to maintain homeothermy in cold or to circumvent diet-induced obesity (DIO). Cellular repressor of adenovirus early region 1A-stimulated genes 1 (CREG1) exhibits the ability to stimulate brown adipogenesis, including the induction of uncoupling protein 1 (UCP1), in vitro. Thus, we aimed to clarify whether CREG1 promotes brown adipocyte formation and inhibits DIO at the whole-animal level. In mouse brown adipose tissue (BAT), CREG1 expression was markedly increased in cold but was decreased under thermoneutrality, suggesting CREG1 involvement in BAT thermogenesis. Moreover, in BAT and white adipose tissue, expression of UCP1 and fibroblast growth factor-21 and browning were both significantly higher in adipocyte P2-Creg1-transgenic (Tg) mice than in wild-type (WT) littermates. Following stimulation with a β3-adrenergic agonist, energy consumption was elevated in the Tg mice, which showed increased resistance to DIO and improvement of obesity-associated complications including fatty liver relative to WT mice. The CREG1 stimulatory effect on brown adipogenesis was confirmed in Tg-BAT primary cultures. It was also found that CREG1 binds to retinoid X receptor α, which interacts with thyroid hormone receptor for brown adipogenesis. Our findings demonstrate that CREG1 stimulates brown adipocyte formation and browning, ameliorating obesity and its related pathology in vivo.-Hashimoto, M., Kusudo, T., Takeuchi, T., Kataoka, N., Mukai, T., Yamashita, H. CREG1 stimulates brown adipocyte formation and ameliorates diet-induced obesity in mice.
Collapse
Affiliation(s)
- Michihiro Hashimoto
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Tatsuya Kusudo
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan.,Department of Nutrition and Food Sciences, Faculty of Human Sciences, Tezukayama Gakuin University, Sakai, Japan
| | - Tamaki Takeuchi
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Naoya Kataoka
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan.,Department of Integrative Physiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Takako Mukai
- Department of Nutrition and Food Sciences, Faculty of Human Sciences, Tezukayama Gakuin University, Sakai, Japan
| | - Hitoshi Yamashita
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| |
Collapse
|
13
|
Haiyan W, Linyi L, Lingling Q, Dongchao W, Yueying J, Xinli W, Tunhai X, Tonghua L. Mixture of five herbal extracts ameliorates pioglitazone-induced aggravation of hepatic steatosis via activating the adiponectin receptor 2/AMP-activated protein kinase signal pathway in diabetic KKAy mice. J TRADIT CHIN MED 2017. [DOI: 10.1016/s0254-6272(17)30311-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Linyi L, Yoshitomi H, Lingling Q, Xinli W, Tian Z, Haiyan W, Yueying J, Ying W, Tunhai X, Tonghua L, Ming G. Tangnaikang improves insulin resistance and β-cell apoptosis by ameliorating metabolic inflammation in SHR.Cg-Lepr cp /NDmcr rats. J TRADIT CHIN MED 2017. [DOI: 10.1016/s0254-6272(17)30072-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|