1
|
Park J, Bird JE. The actin cytoskeleton in hair bundle development and hearing loss. Hear Res 2023; 436:108817. [PMID: 37300948 PMCID: PMC10408727 DOI: 10.1016/j.heares.2023.108817] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Inner ear hair cells assemble mechanosensitive hair bundles on their apical surface that transduce sounds and accelerations. Each hair bundle is comprised of ∼ 100 individual stereocilia that are arranged into rows of increasing height and width; their specific and precise architecture being necessary for mechanoelectrical transduction (MET). The actin cytoskeleton is fundamental to establishing this architecture, not only by forming the structural scaffold shaping each stereocilium, but also by composing rootlets and the cuticular plate that together provide a stable foundation supporting each stereocilium. In concert with the actin cytoskeleton, a large assortment of actin-binding proteins (ABPs) function to cross-link actin filaments into specific topologies, as well as control actin filament growth, severing, and capping. These processes are individually critical for sensory transduction and are all disrupted in hereditary forms of human hearing loss. In this review, we provide an overview of actin-based structures in the hair bundle and the molecules contributing to their assembly and functional properties. We also highlight recent advances in mechanisms driving stereocilia elongation and how these processes are tuned by MET.
Collapse
Affiliation(s)
- Jinho Park
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Myology Institute, University of Florida, Gainesville, FL 32610, United States
| | - Jonathan E Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Myology Institute, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
2
|
Bhattacharya MRC. A nerve-wracking buzz: lessons from Drosophila models of peripheral neuropathy and axon degeneration. Front Aging Neurosci 2023; 15:1166146. [PMID: 37614471 PMCID: PMC10442544 DOI: 10.3389/fnagi.2023.1166146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
The degeneration of axons and their terminals occurs following traumatic, toxic, or genetically-induced insults. Common molecular mechanisms unite these disparate triggers to execute a conserved nerve degeneration cascade. In this review, we will discuss how models of peripheral nerve injury and neuropathy in Drosophila have led the way in advancing molecular understanding of axon degeneration and nerve injury pathways. Both neuron-intrinsic as well as glial responses to injury will be highlighted. Finally, we will offer perspective on what additional questions should be answered to advance these discoveries toward clinical interventions for patients with neuropathy.
Collapse
|
3
|
Zhou J, Liu H, Zhang T, Wang Z, Zhang J, Lu Y, Li Z, Kong W, Zhao J. MORN4 protects cardiomyocytes against ischemic injury via MFN2-mediated mitochondrial dynamics and mitophagy. Free Radic Biol Med 2023; 196:156-170. [PMID: 36682578 DOI: 10.1016/j.freeradbiomed.2023.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023]
Abstract
The imbalance of mitochondrial fission and fusion dynamics causes ischemic cardiomyocyte apoptosis and heart injury by affecting mitophagy. Regulation of mitochondrial dynamics is an important therapeutic strategy for ischemic heart diseases. Considering the important roles of MORN motifs in heart diseases and chloroplast fission, we aimed to investigate the possible role of MORN repeat-containing protein 4 (MORN4) in the progression of myocardial infarction (MI), ischemic cardiomyocyte apoptosis, mitochondrial dynamics, and mitophagy. We found that in the MI mouse, MORN4 knockdown remarkably accelerated cardiac injury and fibrosis with deteriorating cardiac dysfunction. Sphingosylphosphorylcholine (SPC) alleviated ischemic cardiomyocyte apoptosis and heart injury through increased level of MORN4, indicating a vital function of MORN4 in heart with SPC used to clarify the molecular mechanisms underlying the functions of MORN4. Mechanistically, we found that MORN4 directly binds to MFN2 and promotes the phosphorylation of MFN2 S442 through Rho-associated protein kinase 2 (ROCK2), which mediates beneficial mitophagy induced by mitochondrial dynamics, while SPC promoted the binding of MORN4 and MFN2 and the process. Taken together, our data reveal a new perspective role of MORN4 in ischemic heart injury, and report that SPC could regulate myocardial mitochondrial homeostasis by activating the MORN4-MFN2 axis during the ischemic situation, this finding provides novel targets for improving myocardial ischemia tolerance and rescue of acute myocardial infarction.
Collapse
Affiliation(s)
- Jinrun Zhou
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Honghong Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Tianliang Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China; Experimental Center for Medical Research, Weifang Medical University, Weifang, 261000, PR China
| | - Zhaohui Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Jiaojiao Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Yao Lu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Zhiliang Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Weihua Kong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Jing Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
4
|
Selective binding and transport of protocadherin 15 isoforms by stereocilia unconventional myosins in a heterologous expression system. Sci Rep 2022; 12:13764. [PMID: 35962067 PMCID: PMC9374675 DOI: 10.1038/s41598-022-17757-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/30/2022] [Indexed: 11/09/2022] Open
Abstract
During hair cell development, the mechanoelectrical transduction (MET) apparatus is assembled at the stereocilia tips, where it coexists with the stereocilia actin regulatory machinery. While the myosin-based tipward transport of actin regulatory proteins is well studied, isoform complexity and built-in redundancies in the MET apparatus have limited our understanding of how MET components are transported. We used a heterologous expression system to elucidate the myosin selective transport of isoforms of protocadherin 15 (PCDH15), the protein that mechanically gates the MET apparatus. We show that MYO7A selectively transports the CD3 isoform while MYO3A and MYO3B transports the CD2 isoform. Furthermore, MYO15A showed an insignificant role in the transport of PCDH15, and none of the myosins tested transport PCDH15-CD1. Our data suggest an important role for MYO3A, MYO3B, and MYO7A in the MET apparatus formation and highlight the intricate nature of MET and actin regulation during development and functional maturation of the stereocilia bundle.
Collapse
|
5
|
Daks A, Vasileva E, Fedorova O, Shuvalov O, Barlev NA. The Role of Lysine Methyltransferase SET7/9 in Proliferation and Cell Stress Response. Life (Basel) 2022; 12:life12030362. [PMID: 35330113 PMCID: PMC8949485 DOI: 10.3390/life12030362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/14/2022] Open
Abstract
Lysine-specific methyltransferase 7 (KMT7) SET7/9, aka Set7, Set9, or SetD7, or KMT5 was discovered 20 years ago, yet its biological role remains rather enigmatic. In this review, we analyze the particularities of SET7/9 enzymatic activity and substrate specificity with respect to its biological importance, mostly focusing on its two well-characterized biological functions: cellular proliferation and stress response.
Collapse
Affiliation(s)
- Alexandra Daks
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (A.D.); (E.V.); (O.F.); (O.S.)
| | - Elena Vasileva
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (A.D.); (E.V.); (O.F.); (O.S.)
- Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA
| | - Olga Fedorova
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (A.D.); (E.V.); (O.F.); (O.S.)
| | - Oleg Shuvalov
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (A.D.); (E.V.); (O.F.); (O.S.)
| | - Nickolai A. Barlev
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (A.D.); (E.V.); (O.F.); (O.S.)
- Correspondence:
| |
Collapse
|
6
|
Abstract
Junctophilins (JPHs) comprise a family of structural proteins that connect the plasma membrane to intracellular organelles such as the endo/sarcoplasmic reticulum. Tethering of these membrane structures results in the formation of highly organized subcellular junctions that play important signaling roles in all excitable cell types. There are four JPH isoforms, expressed primarily in muscle and neuronal cell types. Each JPH protein consists of 6 'membrane occupation and recognition nexus' (MORN) motifs, a joining region connecting these to another set of 2 MORN motifs, a putative alpha-helical region, a divergent region exhibiting low homology between JPH isoforms, and a carboxy-terminal transmembrane region anchoring into the ER/SR membrane. JPH isoforms play essential roles in developing and maintaining subcellular membrane junctions. Conversely, inherited mutations in JPH2 cause hypertrophic or dilated cardiomyopathy, while trinucleotide expansions in the JPH3 gene cause Huntington Disease-Like 2. Loss of JPH1 protein levels can cause skeletal myopathy, while loss of cardiac JPH2 levels causes heart failure and atrial fibrillation, among other disease. This review will provide a comprehensive overview of the JPH gene family, phylogeny, and evolutionary analysis of JPH genes and other MORN domain proteins. JPH biogenesis, membrane tethering, and binding partners will be discussed, as well as functional roles of JPH isoforms in excitable cells. Finally, potential roles of JPH isoform deficits in human disease pathogenesis will be reviewed.
Collapse
Affiliation(s)
- Stephan E Lehnart
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, United States; Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Pediatrics (Cardiology), Neuroscience, and Center for Space Medicine, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
7
|
Gunther LK, Cirilo JA, Desetty R, Yengo CM. Deafness mutation in the MYO3A motor domain impairs actin protrusion elongation mechanism. Mol Biol Cell 2021; 33:ar5. [PMID: 34788109 PMCID: PMC8886822 DOI: 10.1091/mbc.e21-05-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Class III myosins are actin-based motors proposed to transport cargo to the distal tips of stereocilia in the inner ear hair cells and/or to participate in stereocilia length regulation, which is especially important during development. Mutations in the MYO3A gene are associated with delayed onset deafness. A previous study demonstrated that L697W, a dominant deafness mutation, disrupts MYO3A ATPase and motor properties but does not impair its ability to localize to the tips of actin protrusions. In the current study, we characterized the transient kinetic mechanism of the L697W motor ATPase cycle. Our kinetic analysis demonstrates that the mutation slows the ADP release and ATP hydrolysis steps, which results in a slight reduction in the duty ratio and slows detachment kinetics. Fluorescence recovery after photobleaching (FRAP) of filopodia tip localized L697W and WT MYO3A in COS-7 cells revealed that the mutant does not alter turnover or average intensity at the actin protrusion tips. We demonstrate that the mutation slows filopodia extension velocity in COS-7 cells which correlates with its twofold slower in vitro actin gliding velocity. Overall, this work allowed us to propose a model for how the motor properties of MYO3A are crucial for facilitating actin protrusion length regulation.
Collapse
Affiliation(s)
- Laura K Gunther
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, 17033
| | - Joseph A Cirilo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, 17033
| | - Rohini Desetty
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, 17033
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, 17033
| |
Collapse
|
8
|
Cirilo JA, Gunther LK, Yengo CM. Functional Role of Class III Myosins in Hair Cells. Front Cell Dev Biol 2021; 9:643856. [PMID: 33718386 PMCID: PMC7947357 DOI: 10.3389/fcell.2021.643856] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 11/14/2022] Open
Abstract
Cytoskeletal motors produce force and motion using the energy from ATP hydrolysis and function in a variety of mechanical roles in cells including muscle contraction, cargo transport, and cell division. Actin-based myosin motors have been shown to play crucial roles in the development and function of the stereocilia of auditory and vestibular inner ear hair cells. Hair cells can contain hundreds of stereocilia, which rely on myosin motors to elongate, organize, and stabilize their structure. Mutations in many stereocilia-associated myosins have been shown to cause hearing loss in both humans and animal models suggesting that each myosin isoform has a specific function in these unique parallel actin bundle-based protrusions. Here we review what is known about the classes of myosins that function in the stereocilia, with a special focus on class III myosins that harbor point mutations associated with delayed onset hearing loss. Much has been learned about the role of the two class III myosin isoforms, MYO3A and MYO3B, in maintaining the precise stereocilia lengths required for normal hearing. We propose a model for how class III myosins play a key role in regulating stereocilia lengths and demonstrate how their motor and regulatory properties are particularly well suited for this function. We conclude that ongoing studies on class III myosins and other stereocilia-associated myosins are extremely important and may lead to novel therapeutic strategies for the treatment of hearing loss due to stereocilia degeneration.
Collapse
Affiliation(s)
- Joseph A Cirilo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Laura K Gunther
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
9
|
Abstract
Unconventional myosins are a large superfamily of actin-based molecular motors that use ATP as fuel to generate mechanical motions/forces. The distinct tails in different unconventional myosin subfamilies can recognize various cargoes including proteins and lipids. Thus, they can play diverse roles in many biological processes such as cellular trafficking, mechanical supports, force sensing, etc. This chapter focuses on some recent advances on the structural studies of how unconventional myosins specifically bind to cargoes with their cargo-binding domains.
Collapse
|
10
|
Mackrill JJ, Shiels HA. Evolution of Excitation-Contraction Coupling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:281-320. [DOI: 10.1007/978-3-030-12457-1_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Li J, Liu H, Raval MH, Wan J, Yengo CM, Liu W, Zhang M. Structure of the MORN4/Myo3a Tail Complex Reveals MORN Repeats as Protein Binding Modules. Structure 2019; 27:1366-1374.e3. [PMID: 31279628 DOI: 10.1016/j.str.2019.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/25/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
Tandem repeats are basic building blocks for constructing proteins with diverse structures and functions. Compared with extensively studied α-helix-based tandem repeats such as ankyrin, tetratricopeptide, armadillo, and HEAT repeat proteins, relatively little is known about tandem repeat proteins formed by β hairpins. In this study, we discovered that the MORN repeats from MORN4 function as a protein binding module specifically recognizing a tail cargo binding region from Myo3a. The structure of the MORN4/Myo3a complex shows that MORN4 forms an extended single-layered β-sheet structure and uses a U-shaped groove to bind to the Myo3a tail with high affinity and specificity. Sequence and structural analyses further elucidated the unique sequence features for folding and target binding of MORN repeats. Our work establishes that the β-hairpin-based MORN repeats are protein-protein interaction modules.
Collapse
Affiliation(s)
- Jianchao Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Haiyang Liu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Manmeet H Raval
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jun Wan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China.
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
12
|
Mecklenburg KL, Weghorst FP, Freed SA, O'Tousa JE. Discordant Responses to MAPK Pathway Stimulation Include Axonal Growths in Adult Drosophila Photoreceptors. Front Mol Neurosci 2018; 11:441. [PMID: 30564098 PMCID: PMC6288290 DOI: 10.3389/fnmol.2018.00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/14/2018] [Indexed: 11/22/2022] Open
Abstract
Wallenda (WND) is the Drosophila member of a conserved family of dual leucine-zipper kinases (DLK) active in both neuronal regeneration and degeneration. We examined the role of WND over-expression on sensory neuron morphology by driving WND in multiple subtypes of Drosophila photoreceptors. WND overexpression under control of the pan-retinal GAL4 driver GMR causes multiple photoreceptor defects including cell death, rhabdomere degeneration, and axonal sprouting. Individual photoreceptor subtypes were assayed using GAL4 drivers specific for each photoreceptor class. Many R7 and R8 cells exhibit axonal sprouting while some show cell degeneration. Delaying the onset of WND overexpression until 20 days of age showed that older adult R7 cells retain the ability to initiate new axon growth. R1–6 photoreceptor cells degenerate in response to WND expression and exhibit rhodopsin loss and rhabdomere degeneration. RNAi knockdown of the MAPK signaling components Kayak (KAY) and Hemipterous (HEP) attenuates the WND-induced loss of Rh1 rhodopsin. UAS-induced HEP expression is similar to WND expression, causing degeneration in R1–6 photoreceptors and axonal sprouting in R7 photoreceptors. These results demonstrate that WND in adult Drosophila photoreceptor cells acts through MAPK signaling activity with both regenerative and degenerative responses. These photoreceptors provide a tractable experimental model to reveal cellular mechanisms driving contradictory WND signaling responses.
Collapse
Affiliation(s)
- Kirk L Mecklenburg
- Department of Biology, Indiana University South Bend, South Bend, IN, United States
| | - Forrest P Weghorst
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Stephanie A Freed
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Joseph E O'Tousa
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
13
|
Characterization of a novel MYO3A missense mutation associated with a dominant form of late onset hearing loss. Sci Rep 2018; 8:8706. [PMID: 29880844 PMCID: PMC5992146 DOI: 10.1038/s41598-018-26818-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/18/2018] [Indexed: 01/08/2023] Open
Abstract
Whole-exome sequencing of samples from affected members of two unrelated families with late-onset non-syndromic hearing loss revealed a novel mutation (c.2090 T > G; NM_017433) in MYO3A. The mutation was confirmed in 36 affected individuals, showing autosomal dominant inheritance. The mutation alters a single residue (L697W or p.Leu697Trp) in the motor domain of the stereocilia protein MYO3A, leading to a reduction in ATPase activity, motility, and an increase in actin affinity. MYO3A-L697W showed reduced filopodial actin protrusion initiation in COS7 cells, and a predominant tipward accumulation at filopodia and stereocilia when coexpressed with wild-type MYO3A and espin-1, an actin-regulatory MYO3A cargo. The combined higher actin affinity and duty ratio of the mutant myosin cause increased retention time at stereocilia tips, resulting in the displacement of the wild-type MYO3A protein, which may impact cargo transport, stereocilia length, and mechanotransduction. The dominant negative effect of the altered myosin function explains the dominant inheritance of deafness.
Collapse
|
14
|
Raval MH, Quintero OA, Weck ML, Unrath WC, Gallagher JW, Cui R, Kachar B, Tyska MJ, Yengo CM. Impact of the Motor and Tail Domains of Class III Myosins on Regulating the Formation and Elongation of Actin Protrusions. J Biol Chem 2016; 291:22781-22792. [PMID: 27582493 PMCID: PMC5077211 DOI: 10.1074/jbc.m116.733741] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/29/2016] [Indexed: 11/06/2022] Open
Abstract
Class III myosins (MYO3A and MYO3B) are proposed to function as transporters as well as length and ultrastructure regulators within stable actin-based protrusions such as stereocilia and calycal processes. MYO3A differs from MYO3B in that it contains an extended tail domain with an additional actin-binding motif. We examined how the properties of the motor and tail domains of human class III myosins impact their ability to enhance the formation and elongation of actin protrusions. Direct examination of the motor and enzymatic properties of human MYO3A and MYO3B revealed that MYO3A is a 2-fold faster motor with enhanced ATPase activity and actin affinity. A chimera in which the MYO3A tail was fused to the MYO3B motor demonstrated that motor activity correlates with formation and elongation of actin protrusions. We demonstrate that removal of individual exons (30-34) in the MYO3A tail does not prevent filopodia tip localization but abolishes the ability to enhance actin protrusion formation and elongation in COS7 cells. Interestingly, our results demonstrate that MYO3A slows filopodia dynamics and enhances filopodia lifetime in COS7 cells. We also demonstrate that MYO3A is more efficient than MYO3B at increasing formation and elongation of stable microvilli on the surface of cultured epithelial cells. We propose that the unique features of MYO3A, enhanced motor activity, and an extended tail with tail actin-binding motif, allow it to play an important role in stable actin protrusion length and ultrastructure maintenance.
Collapse
Affiliation(s)
- Manmeet H Raval
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033
| | - Omar A Quintero
- the Department of Biology, University of Richmond, Richmond, Virginia 23173
| | - Meredith L Weck
- the Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - William C Unrath
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033
| | - James W Gallagher
- the Department of Biology, Lincoln University, Philadelphia, Pennsylvania 19104, and
| | - Runjia Cui
- the Laboratory of Cell Structure and Dynamics, NIDCD, National Institutes of Health, Bethesda, Maryland 20892
| | - Bechara Kachar
- the Laboratory of Cell Structure and Dynamics, NIDCD, National Institutes of Health, Bethesda, Maryland 20892
| | - Matthew J Tyska
- the Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Christopher M Yengo
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033,
| |
Collapse
|
15
|
Ebrahim S, Avenarius MR, Grati M, Krey JF, Windsor AM, Sousa AD, Ballesteros A, Cui R, Millis BA, Salles FT, Baird MA, Davidson MW, Jones SM, Choi D, Dong L, Raval MH, Yengo CM, Barr-Gillespie PG, Kachar B. Stereocilia-staircase spacing is influenced by myosin III motors and their cargos espin-1 and espin-like. Nat Commun 2016; 7:10833. [PMID: 26926603 PMCID: PMC4773517 DOI: 10.1038/ncomms10833] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/25/2016] [Indexed: 12/12/2022] Open
Abstract
Hair cells tightly control the dimensions of their stereocilia, which are actin-rich protrusions with graded heights that mediate mechanotransduction in the inner ear. Two members of the myosin-III family, MYO3A and MYO3B, are thought to regulate stereocilia length by transporting cargos that control actin polymerization at stereocilia tips. We show that eliminating espin-1 (ESPN-1), an isoform of ESPN and a myosin-III cargo, dramatically alters the slope of the stereocilia staircase in a subset of hair cells. Furthermore, we show that espin-like (ESPNL), primarily present in developing stereocilia, is also a myosin-III cargo and is essential for normal hearing. ESPN-1 and ESPNL each bind MYO3A and MYO3B, but differentially influence how the two motors function. Consequently, functional properties of different motor-cargo combinations differentially affect molecular transport and the length of actin protrusions. This mechanism is used by hair cells to establish the required range of stereocilia lengths within a single cell.
Collapse
Affiliation(s)
- Seham Ebrahim
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Matthew R Avenarius
- Oregon Hearing Research Center and Vollum Institute, Oregon Health &Science University, Portland, Oregon 97239, USA
| | - M'hamed Grati
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jocelyn F Krey
- Oregon Hearing Research Center and Vollum Institute, Oregon Health &Science University, Portland, Oregon 97239, USA
| | - Alanna M Windsor
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Aurea D Sousa
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Angela Ballesteros
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Runjia Cui
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Bryan A Millis
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Felipe T Salles
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michelle A Baird
- National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, Florida 32310, USA
| | - Michael W Davidson
- National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, Florida 32310, USA
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, USA
| | - Dongseok Choi
- Department of Public Health and Preventive Medicine, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Manmeet H Raval
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center and Vollum Institute, Oregon Health &Science University, Portland, Oregon 97239, USA
| | - Bechara Kachar
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
16
|
Grati M, Yan D, Raval MH, Walsh T, Ma Q, Chakchouk I, Kannan-Sundhari A, Mittal R, Masmoudi S, Blanton SH, Tekin M, King MC, Yengo CM, Liu XZ. MYO3A Causes Human Dominant Deafness and Interacts with Protocadherin 15-CD2 Isoform. Hum Mutat 2016; 37:481-7. [PMID: 26841241 DOI: 10.1002/humu.22961] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/15/2016] [Indexed: 01/10/2023]
Abstract
Hereditary hearing loss (HL) is characterized by both allelic and locus genetic heterogeneity. Both recessive and dominant forms of HL may be caused by different mutations in the same deafness gene. In a family with post-lingual progressive non-syndromic deafness, whole-exome sequencing of genomic DNA from five hearing-impaired relatives revealed a single variant, p.Gly488Glu (rs145970949:G>A) in MYO3A, co-segregating with HL as an autosomal dominant trait. This amino acid change, predicted to be pathogenic, alters a highly conserved residue in the motor domain of MYO3A. The mutation severely alters the ATPase activity and motility of the protein in vitro, and the mutant protein fails to accumulate in the filopodia tips in COS7 cells. However, the mutant MYO3A was able to reach the tips of organotypic inner ear culture hair cell stereocilia, raising the possibility of a local effect on positioning of the mechanoelectrical transduction (MET) complex at the stereocilia tips. To address this hypothesis, we investigated the interaction of MYO3A with the cytosolic tail of the integral tip-link protein protocadherin 15 (PCDH15), a core component of MET complex. Interestingly, we uncovered a novel interaction between MYO3A and PCDH15 shedding new light on the function of myosin IIIA at stereocilia tips.
Collapse
Affiliation(s)
- M'hamed Grati
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Manmeet H Raval
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Tom Walsh
- Departments of Medicine and Genome Sciences, University of Washington, Seattle, Washington
| | - Qi Ma
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Imen Chakchouk
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida.,Laboratoire Procédés de Criblage Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisie
| | | | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Saber Masmoudi
- Laboratoire Procédés de Criblage Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisie
| | - Susan H Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida.,Dr. John T. Macdonald Foundation, Department of Human Genetics, and John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida
| | - Mustafa Tekin
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida.,Dr. John T. Macdonald Foundation, Department of Human Genetics, and John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida
| | - Mary-Claire King
- Departments of Medicine and Genome Sciences, University of Washington, Seattle, Washington
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida.,Dr. John T. Macdonald Foundation, Department of Human Genetics, and John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida.,Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
17
|
Lavrov AV, Chelysheva EY, Smirnikhina SA, Shukhov OA, Turkina AG, Adilgereeva EP, Kutsev SI. Frequent variations in cancer-related genes may play prognostic role in treatment of patients with chronic myeloid leukemia. BMC Genet 2016; 17 Suppl 1:14. [PMID: 26822197 PMCID: PMC4895599 DOI: 10.1186/s12863-015-0308-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Genome variability of host genome and cancer cells play critical role in diversity of response to existing therapies and overall success in treating oncological diseases. In chronic myeloid leukemia targeted therapy with tyrosine kinase inhibitors demonstrates high efficacy in most of the patients. However about 15 % of patients demonstrate primary resistance to standard therapy. Whole exome sequencing is a good tool for unbiased search of genetic variations important for prognosis of survival and therapy efficacy in many cancers. We apply this approach to CML patients with optimal response and failure of tyrosine kinase therapy. RESULTS We analyzed exome variations between optimal responders and failures and found 7 variants in cancer-related genes with different genotypes in two groups of patients. Five of them were found in optimal responders: rs11579366, rs1990236, rs176037, rs10653661, rs3803264 and two in failures: rs3099950, rs9471966. These variants were found in genes associated with cancers (ANKRD35, DNAH9, MAGEC1, TOX3) or participating in cancer-related signaling pathways (THSD1, MORN2, PTCRA). CONCLUSION We found gene variants which may become early predictors of the therapy outcome and allow development of new early prognostic tests for estimation of therapy efficacy in CML patients. Normal genetic variation may influence therapy efficacy during targeted treatment of cancers.
Collapse
Affiliation(s)
- Alexander V Lavrov
- Laboratory of Mutagenesis, Federal State Budgetary Institution "Research Centre for Medical Genetics", Moskvorechie, 1, Moscow, 115478, Russia. .,Department of Molecular and Cellular Genetics, State Budgetary Educational Institution of Higher Professional Education "Russian National Research Medical University named after N.I. Pirogov" of Ministry of Health of the Russian Federation, Moscow, Russia.
| | - Ekaterina Y Chelysheva
- Scientific and Advisory Department of Chemotherapy of Myeloproliferative Disorders, Federal State-Funded Institution National Research Center for Hematology of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Svetlana A Smirnikhina
- Laboratory of Mutagenesis, Federal State Budgetary Institution "Research Centre for Medical Genetics", Moskvorechie, 1, Moscow, 115478, Russia
| | - Oleg A Shukhov
- Scientific and Advisory Department of Chemotherapy of Myeloproliferative Disorders, Federal State-Funded Institution National Research Center for Hematology of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Anna G Turkina
- Scientific and Advisory Department of Chemotherapy of Myeloproliferative Disorders, Federal State-Funded Institution National Research Center for Hematology of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Elmira P Adilgereeva
- Laboratory of Mutagenesis, Federal State Budgetary Institution "Research Centre for Medical Genetics", Moskvorechie, 1, Moscow, 115478, Russia
| | - Sergey I Kutsev
- Laboratory of Mutagenesis, Federal State Budgetary Institution "Research Centre for Medical Genetics", Moskvorechie, 1, Moscow, 115478, Russia.,Department of Molecular and Cellular Genetics, State Budgetary Educational Institution of Higher Professional Education "Russian National Research Medical University named after N.I. Pirogov" of Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
18
|
Liu H, Li J, Raval MH, Yao N, Deng X, Lu Q, Nie S, Feng W, Wan J, Yengo CM, Liu W, Zhang M. Myosin III-mediated cross-linking and stimulation of actin bundling activity of Espin. eLife 2016; 5. [PMID: 26785147 PMCID: PMC4758956 DOI: 10.7554/elife.12856] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/18/2016] [Indexed: 11/13/2022] Open
Abstract
Class III myosins (Myo3) and actin-bundling protein Espin play critical roles in regulating the development and maintenance of stereocilia in vertebrate hair cells, and their defects cause hereditary hearing impairments. Myo3 interacts with Espin1 through its tail homology I motif (THDI), however it is not clear how Myo3 specifically acts through Espin1 to regulate the actin bundle assembly and stabilization. Here we discover that Myo3 THDI contains a pair of repeat sequences capable of independently and strongly binding to the ankyrin repeats of Espin1, revealing an unexpected Myo3-mediated cross-linking mechanism of Espin1. The structures of Myo3 in complex with Espin1 not only elucidate the mechanism of the binding, but also reveal a Myo3-induced release of Espin1 auto-inhibition mechanism. We also provide evidence that Myo3-mediated cross-linking can further promote actin fiber bundling activity of Espin1.
Collapse
Affiliation(s)
- Haiyang Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jianchao Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Manmeet H Raval
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, United States
| | - Ningning Yao
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xiaoying Deng
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Qing Lu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Si Nie
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Feng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, United States
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Mingjie Zhang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China.,Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
19
|
Lelli A, Michel V, Boutet de Monvel J, Cortese M, Bosch-Grau M, Aghaie A, Perfettini I, Dupont T, Avan P, El-Amraoui A, Petit C. Class III myosins shape the auditory hair bundles by limiting microvilli and stereocilia growth. J Cell Biol 2016; 212:231-44. [PMID: 26754646 PMCID: PMC4738386 DOI: 10.1083/jcb.201509017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/07/2015] [Indexed: 11/22/2022] Open
Abstract
Analysis of mice deficient for myosin IIIa and myosin IIIb shows that class III myosins limit the elongation of stereocilia and of subsequently regressing microvilli, thus contributing to the early hair bundle shaping. The precise architecture of hair bundles, the arrays of mechanosensitive microvilli-like stereocilia crowning the auditory hair cells, is essential to hearing. Myosin IIIa, defective in the late-onset deafness form DFNB30, has been proposed to transport espin-1 to the tips of stereocilia, thereby promoting their elongation. We show that Myo3a−/−Myo3b−/− mice lacking myosin IIIa and myosin IIIb are profoundly deaf, whereas Myo3a-cKO Myo3b−/− mice lacking myosin IIIb and losing myosin IIIa postnatally have normal hearing. Myo3a−/−Myo3b−/− cochlear hair bundles display robust mechanoelectrical transduction currents with normal kinetics but show severe embryonic abnormalities whose features rapidly change. These include abnormally tall and numerous microvilli or stereocilia, ungraded stereocilia bundles, and bundle rounding and closure. Surprisingly, espin-1 is properly targeted to Myo3a−/−Myo3b−/− stereocilia tips. Our results uncover the critical role that class III myosins play redundantly in hair-bundle morphogenesis; they unexpectedly limit the elongation of stereocilia and of subsequently regressing microvilli, thus contributing to the early hair bundle shaping.
Collapse
Affiliation(s)
- Andrea Lelli
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75724 Paris, Cedex 15, France Unité Mixte de Recherche UMRS1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France Sorbonne Universités, Université Pierre et Marie Curie (UPMC Paris VI), Complexité du Vivant, 75005 Paris, France
| | - Vincent Michel
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75724 Paris, Cedex 15, France Unité Mixte de Recherche UMRS1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France Sorbonne Universités, Université Pierre et Marie Curie (UPMC Paris VI), Complexité du Vivant, 75005 Paris, France
| | - Jacques Boutet de Monvel
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75724 Paris, Cedex 15, France Unité Mixte de Recherche UMRS1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France Sorbonne Universités, Université Pierre et Marie Curie (UPMC Paris VI), Complexité du Vivant, 75005 Paris, France
| | - Matteo Cortese
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75724 Paris, Cedex 15, France Unité Mixte de Recherche UMRS1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France Sorbonne Universités, Université Pierre et Marie Curie (UPMC Paris VI), Complexité du Vivant, 75005 Paris, France
| | - Montserrat Bosch-Grau
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75724 Paris, Cedex 15, France Unité Mixte de Recherche UMRS1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France Sorbonne Universités, Université Pierre et Marie Curie (UPMC Paris VI), Complexité du Vivant, 75005 Paris, France
| | - Asadollah Aghaie
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75724 Paris, Cedex 15, France Unité Mixte de Recherche UMRS1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France Sorbonne Universités, Université Pierre et Marie Curie (UPMC Paris VI), Complexité du Vivant, 75005 Paris, France Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France
| | - Isabelle Perfettini
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75724 Paris, Cedex 15, France Unité Mixte de Recherche UMRS1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France Sorbonne Universités, Université Pierre et Marie Curie (UPMC Paris VI), Complexité du Vivant, 75005 Paris, France
| | - Typhaine Dupont
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75724 Paris, Cedex 15, France Unité Mixte de Recherche UMRS1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France Sorbonne Universités, Université Pierre et Marie Curie (UPMC Paris VI), Complexité du Vivant, 75005 Paris, France
| | - Paul Avan
- Laboratoire de Biophysique Sensorielle, Faculté de Médecine, Université d'Auvergne; Biophysique Médicale, Centre Jean Perrin, 63000 Clermont-Ferrand, France
| | - Aziz El-Amraoui
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75724 Paris, Cedex 15, France Unité Mixte de Recherche UMRS1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France Sorbonne Universités, Université Pierre et Marie Curie (UPMC Paris VI), Complexité du Vivant, 75005 Paris, France
| | - Christine Petit
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75724 Paris, Cedex 15, France Unité Mixte de Recherche UMRS1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France Sorbonne Universités, Université Pierre et Marie Curie (UPMC Paris VI), Complexité du Vivant, 75005 Paris, France Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France Collège de France, 75005 Paris, France
| |
Collapse
|