1
|
Zhao J, Zhou M, Yang C, Liu YW, Yang T, Sun B, Li B, Zheng J, Dai S, Yang Z, Wang X. S100A9 as a potential novel target for experimental autoimmune cystitis and interstitial cystitis/bladder pain syndrome. Biomark Res 2025; 13:72. [PMID: 40346703 PMCID: PMC12065242 DOI: 10.1186/s40364-025-00763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/10/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic inflammatory disease of the bladder for which no effective therapy is currently available. Understanding the pathogenesis of IC/BPS and identifying effective intervention targets are of great clinical importance for its effective treatment. Our work focuses on elucidating the key targets and underlying mechanisms of IC/BPS. METHODS We established an experimental autoimmune cystitis (EAC) mouse model and generated gene knockout mice to elucidate key mediators triggering chronic inflammatory damage in IC/BPS through using single-cell RNA sequencing, proteomic sequencing, and molecular biology experiments. RESULTS Our study revealed that the infiltration and activation of macrophages, T cells, and mast cells exacerbated inflammatory bladder damage in both IC/BPS and EAC mice. Notably, cell-cell communication among bladder immune cells was significantly enhanced in EAC mice. Macrophages, as the main cell types altered in EAC mice, received and transmitted the most intensity signalling. Mechanistically, macrophages synthesized and secreted S100A9, which in turn facilitated macrophage polarization and promoted the production of pro-inflammatory cytokines. S100A9 emerged as an important pro-inflammatory and pathogenic molecule in IC/BPS and EAC. Further analysis demonstrated that S100A9 activation enhanced the inflammatory response and exacerbated bladder tissue damage in IC/BPS patients and EAC mice via TLR4/NF-κB and TLR4/p38 signalling pathways. Importantly, inhibition of S100A9 with paquinimod, as well as genetic knockout of S100A9, significantly attenuated the pathological process. CONCLUSIONS S100A9 is an important pro-inflammatory and pathogenic molecule in IC/BPS and EAC. Targeting S100A9-initiated signalling pathways may offer a novel therapeutic strategy for IC/BPS.
Collapse
Affiliation(s)
- Jiang Zhao
- Department of Urology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, PR China.
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, PR China.
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Mi Zhou
- Department of Biochemistry and Molecular Biology, Army Military Medical University, Chongqing, 400038, PR China
- Department of Central Laboratory, Qianjiang Hospital, Chongqing University, Chongqing, RP, 409000, China
| | - Chengfei Yang
- Department of Thoracic Surgery, Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, PR China
| | - Yang-Wuyue Liu
- Department of Biochemistry and Molecular Biology, Army Military Medical University, Chongqing, 400038, PR China
| | - Teng Yang
- Department of Biochemistry and Molecular Biology, Army Military Medical University, Chongqing, 400038, PR China
| | - Bishao Sun
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, PR China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Ji Zheng
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, PR China
| | - Shuangshuang Dai
- Department of Biochemistry and Molecular Biology, Army Military Medical University, Chongqing, 400038, PR China.
| | - Zhenxing Yang
- Department of Blood Transfusion, Irradiation Biology Laboratory, Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, PR China.
| | - Xiangwei Wang
- Department of Urology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, PR China.
| |
Collapse
|
2
|
Lemos G, Fernandes CMADS, Watanabe IKM, Delbin MA, Silva FH, Calmasini FB. Trehalose induces bladder smooth muscle hypercontractility in mice: involvement of oxidative stress and cellular senescence. Front Physiol 2025; 16:1572139. [PMID: 40255637 PMCID: PMC12006093 DOI: 10.3389/fphys.2025.1572139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
Autophagy, a conserved catabolic process, is critical for cellular homeostasis and its dysregulation has been implicated in a number of conditions including hypertension, obesity and bladder dysfunctions. The autophagy inducer trehalose has shown promise in treating diseases; however, some studies have reported detrimental effects in vascular tissue under health conditions. In the bladder, the effects of trehalose remain unclear. Therefore, in the present study, male C57BL6/JUnib mice (8 weeks old) were divided into control and trehalose-treated groups (120 mg/mouse/day via gavage) for 4 weeks. After treatment, bladders were harvested for functional, biochemical, and molecular analyses. The trehalose treatment increased the bladder smooth muscle (BSM) contractility to carbachol (CCh), without altering relaxation response to isoproterenol. The CCh-induced BSM hypercontractility was completely abolished by the in vitro incubation of apocynin and diphenyleneiodonium (DPI), implicating NADPH oxidase-derived reactive oxygen species (ROS) on this process. Accordingly, increased levels of superoxide anion (O2-) were found in the urothelial layer, but not in BSM, of trehalose-treated mice. Trehalose also increased senescence-associated β-galactosidase activity in the bladder but failed to upregulate autophagy-related proteins LAMP1 and Beclin-1 in the bladder. Collectively, we show for the first time that trehalose induces BSM hypercontractility in mice, linked to increased levels of O2- and senescent cell, independently of autophagy activation. Therefore, trehalose administration is an effective model for studying BSM hypercontractility in mice, particularly associated with oxidative stress and cellular senescence.
Collapse
Affiliation(s)
- Guilherme Lemos
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Maria Andreia Delbin
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Fábio Henrique Silva
- Laboratory of Multidisciplinary Research, São Francisco University (USF), Sao Paulo, Brazil
| | - Fabiano Beraldi Calmasini
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Wang L, Yu B, Wang Y, Qu X, Tang W. Active Compounds, Targets, and Mechanisms of Salvia miltiorrhiza Bunge in Treating Interstitial Cystitis/Bladder Pain Syndrome. Immun Inflamm Dis 2025; 13:e70173. [PMID: 40226969 PMCID: PMC11995424 DOI: 10.1002/iid3.70173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/04/2025] [Accepted: 03/03/2025] [Indexed: 04/15/2025] Open
Abstract
OBJECTIVE To investigate the active compounds, molecular targets, and biological mechanisms of Salvia miltiorrhiza Bunge (SM) in treating interstitial cystitis/bladder pain syndrome (IC/BPS) through network pharmacology and a cyclophosphamide-induced cystitis model. METHODS A network pharmacology approach was used to assess the effects of SM and luteolin in IC/BPS. Female C57BL/6 mice were divided into four groups: CON, CON + Luteolin, CYP, and CYP + Luteolin, with luteolin (100 mg/kg) administered for CYP-induced cystitis. Histological and molecular analyses, including H&E staining, TUNEL, ELISA, Western blot, and urodynamics, were performed to explore the mechanisms. RESULTS Network pharmacology showed 65 active ingredients and 148 potential targets of SM in the treatment of IC/BPS, of which luteolin had the highest potential. TP53, AKT1, CCND1, EGFR, and ERBB2 are the core targets, and PI3K-Akt and p53 are important signaling pathways for luteolin in the treatment of IC/BPS. Compared with the CYP group, the CYP + Luteolin group showed significantly lower bladder tissue scores; reduced expression of malondialdehyde, inflammatory factors (IL-18, IL-1β, IL-6), and apoptosis-related proteins (cleaved-Caspase-3, Bax, cleaved-Caspase-8); significantly increased expression of total SOD and glutathione; and improved bladder function. Animal experiments have shown that luteolin can block the activation of the PI3K-Akt and p53 signaling pathways. CONCLUSION SM has a variety of potentially active components for the treatment of IC/BPS, of which luteolin has the highest potential. Luteolin can inhibit inflammation, oxidative stress, and apoptosis through the p53 and PI3K-Akt signaling pathways and plays a role in treating IC/PBS.
Collapse
Affiliation(s)
- Liang Wang
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Bei Yu
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - YaRong Wang
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xi Qu
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Wei Tang
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
4
|
Dong C, Sun Q, Zheng F, Ji J, Xu X, Yao X, Gan D. Heavy moxibustion at Sanyin point ameliorates neurogenic bladder dysfunction in spinal cord injury rats through the PI3 K/mTOR pathway. J Spinal Cord Med 2024:1-11. [PMID: 39660978 DOI: 10.1080/10790268.2024.2420431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVE The present study aims to investigate the effect and mechanism of heavy moxibustion (100 moxa-cone) at Sanyin point (the common point of Yin and kidney) on the function of neurogenic bladder (NB) dysfunction in rats with spinal cord injury (SCI). METHODS Twenty-four male Sprague-Dawley rats were divided into four groups (n = 6): control, NB, NB + Moxibustion, and NB + Moxibustion + YS-49 (PI3 K agonist). The rats in control groups accepted a cut open of the skin, fascia, and muscle. The NB model was established using spinal cord transection. Fourteen days later, animals received heavy moxibustion at Sanyin point for three weeks or/and intraperitoneal administration of YS-49 (a PI3 K agonist). Basso, Beattie, and Bresnahan (BBB) scale, urodynamic parameters, bladder size, and weight were measured. The hematoxylin-eosin staining method was used to observe the histology of the bladder mucosa. Moreover, NB dysfunction after SCI could be restored by autophagy activation and autophagy is mediated by the PI3 K/Akt/mTOR pathway. Therefore, the expressions of autophagy factor (LC3 II/I and p62), PI3 K, and p-mTOR in the bladder mucosa were evaluated by western blotting. RESULTS Heavy moxibustion treatment relieved the development of NB dysfunction in rats with SCI, with an increase in the bladder voiding efficiency and a decrease in afferent activity during storage in the moxibustion group compared with the NB group. The expression levels of LC3 II/I were markedly elevated by moxibustion, accompanied by a decrease in the levels of p62. YS-49 addition increased the PI3 K and p-mTOR expression which were down-regulated by moxibustion. Importantly, YS-49 reversed the effects of moxibustion on autophagy and bladder function. CONCLUSION Heavy moxibustion at Sanyin point exerted its effect on healing-impaired NB dysfunction in rats with SCI, possibly activating autophagy through the PI3 K/mTOR pathway.
Collapse
Affiliation(s)
- Chunxuan Dong
- Department of Rehabilitation, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, People's Republic of China
| | - Qibin Sun
- Department of Workstation of Sun Qibin, The Famous Old TCM Doctor in China, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, People's Republic of China
| | - Fangjiang Zheng
- Department of Publicity, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, People's Republic of China
| | - Jing Ji
- Department of Rehabilitation, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, People's Republic of China
| | - Xiumei Xu
- Department of Rehabilitation, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, People's Republic of China
| | - Xingzhang Yao
- Department of Orthopedic Reconstruction, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, People's Republic of China
| | - Decheng Gan
- Department of Traditional Chinese Medicine, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, People's Republic of China
| |
Collapse
|
5
|
Jesus CPS, Pimenta GF, de Oliveira MG, Dourado TMH, Antunes E, Tirapelli CR. Nebivolol prevents redox imbalance and attenuates bladder dysfunction induced by cyclophosphamide in mice. Can J Physiol Pharmacol 2024; 102:729-740. [PMID: 39270309 DOI: 10.1139/cjpp-2024-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Cyclophosphamide (CYP) is combined with cytoprotective agents to minimize its toxicity in the bladder, which is mediated by reactive oxygen species (ROS). Using multiple antioxidant mechanisms, nebivolol protects from oxidative stress in distinctive conditions. We hypothesized that nebivolol would attenuate both molecular and functional alterations induced by CYP in the bladder. Male C57BL/6 were pretreated or not with nebivolol (10 mg/kg/day, gavage), which was given 5 days before a single injection of CYP (300 mg/kg; i.p.). Molecular and functional parameters were assessed at 24 h in the bladder. Nebivolol prevented increases in ROS generation and lipoperoxidation as well as reduction of superoxide dismutase activity induced by CYP. Increased voiding frequency, decreased voiding interval, and reduced bladder capacity were found in CYP-treated mice. These responses were prevented by nebivolol. An augmented number of urinary spots and smaller urinary volumes were detected in CYP-injected mice, and nebivolol partially prevented these responses. The reduction of ROS levels is the primary mechanism by which nebivolol attenuates the deleterious effects of CYP in the bladder. The association of nebivolol with other cytoprotective agents could be an option to prevent CYP-associated oxidative damage to the bladder during chemotherapy.
Collapse
Affiliation(s)
- Carolina P S Jesus
- Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Programa de Pós-graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Gustavo F Pimenta
- Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Programa de Pós-graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Mariana G de Oliveira
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Thales M H Dourado
- Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Programa de Pós-graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Edson Antunes
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Carlos R Tirapelli
- Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
6
|
Zhao J, Luo X, Yang C, Yang X, Deng M, Sun B, Zhu J, Dong Z, Wang Y, Li J, Yang X, Li B, Wang X, Zheng J. Chemokine receptor 7 contributes to T- and B-cell filtering in ageing bladder, cystitis and bladder cancer. Immun Ageing 2024; 21:33. [PMID: 38762550 PMCID: PMC11102276 DOI: 10.1186/s12979-024-00432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/23/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Research has suggested significant correlations among ageing, immune microenvironment, inflammation and tumours. However, the relationships among ageing, immune microenvironment, cystitis and bladder urothelial carcinoma (BLCA) in the bladder have rarely been reported. METHODS Bladder single-cell and transcriptomic data from young and old mice were used for immune landscape analysis. Transcriptome, single-cell and The Cancer Genome Atlas Program datasets of BLCA and interstitial cystitis/bladder pain syndrome (IC/BPS) were used to analyse immune cell infiltration and molecular expression. Bladder tissues from mice, IC/BPS and BLCA were collected to validate the results. RESULTS Eight types of immune cells (macrophages, B-cells, dendritic cells, T-cells, monocytes, natural killer cells, γδ T-cells and ILC2) were identified in the bladder of mice. Aged mice bladder tissues had a significantly higher number of T-cells, γδ T-cells, ILC2 and B-cells than those in the young group (P < 0.05). Three types of T-cells (NK T-cells, γδ T-cells and naïve T-cells) and three types of B-cells (follicular B-cells, plasma and memory B-cells) were identified in aged mice bladder. Chemokine receptor 7 (CCR7) is highly expressed in aged bladder, IC/BPS and BLCA (P < 0.05). CCR7 is likely to be involved in T- and B-cell infiltration in aged bladder, IC/BPS and BLCA. Interestingly, the high CCR7 expression on BLCA cell membranes was a prognostic protective factor. CONCLUSIONS In this study, we characterised the expression profiles of immune cells in bladder tissues of aged and young mice and demonstrated that CCR7-mediated T- and B-cell filtration contributes to the development of bladder ageing, IC/BPS and BLCA.
Collapse
Affiliation(s)
- Jiang Zhao
- Department of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, PR China.
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China.
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Xing Luo
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Chengfei Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Xiao Yang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400037, China
| | - Min Deng
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Bishao Sun
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Jingzhen Zhu
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Zongming Dong
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Yangcai Wang
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Jia Li
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Xingliang Yang
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Xiangwei Wang
- Department of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, PR China.
| | - Ji Zheng
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
7
|
Chueh KS, Lu JH, Juan TJ, Chuang SM, Juan YS. The Molecular Mechanism and Therapeutic Application of Autophagy for Urological Disease. Int J Mol Sci 2023; 24:14887. [PMID: 37834333 PMCID: PMC10573233 DOI: 10.3390/ijms241914887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Autophagy is a lysosomal degradation process known as autophagic flux, involving the engulfment of damaged proteins and organelles by double-membrane autophagosomes. It comprises microautophagy, chaperone-mediated autophagy (CMA), and macroautophagy. Macroautophagy consists of three stages: induction, autophagosome formation, and autolysosome formation. Atg8-family proteins are valuable for tracking autophagic structures and have been widely utilized for monitoring autophagy. The conversion of LC3 to its lipidated form, LC3-II, served as an indicator of autophagy. Autophagy is implicated in human pathophysiology, such as neurodegeneration, cancer, and immune disorders. Moreover, autophagy impacts urological diseases, such as interstitial cystitis /bladder pain syndrome (IC/BPS), ketamine-induced ulcerative cystitis (KIC), chemotherapy-induced cystitis (CIC), radiation cystitis (RC), erectile dysfunction (ED), bladder outlet obstruction (BOO), prostate cancer, bladder cancer, renal cancer, testicular cancer, and penile cancer. Autophagy plays a dual role in the management of urologic diseases, and the identification of potential biomarkers associated with autophagy is a crucial step towards a deeper understanding of its role in these diseases. Methods for monitoring autophagy include TEM, Western blot, immunofluorescence, flow cytometry, and genetic tools. Autophagosome and autolysosome structures are discerned via TEM. Western blot, immunofluorescence, northern blot, and RT-PCR assess protein/mRNA levels. Luciferase assay tracks flux; GFP-LC3 transgenic mice aid study. Knockdown methods (miRNA and RNAi) offer insights. This article extensively examines autophagy's molecular mechanism, pharmacological regulation, and therapeutic application involvement in urological diseases.
Collapse
Affiliation(s)
- Kuang-Shun Chueh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, San-min District, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jian-He Lu
- Center for Agricultural, Forestry, Fishery, Livestock and Aquaculture Carbon Emission Inventory and Emerging Compounds (CAFEC), General Research Service Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Tai-Jui Juan
- Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Shu-Mien Chuang
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yung-Shun Juan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, San-min District, Kaohsiung 80708, Taiwan;
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
8
|
Jia L, Jingzhen Z, Xinliang Y, Bishao S, Xin L, Ji Z, Zhenqiang F. 4-PBA inhibits endoplasmic reticulum stress to improve autophagic flux in the treatment of protamine/lipopolysaccharide-induced interstitial cystitis in rats. Sci Rep 2023; 13:14057. [PMID: 37640742 PMCID: PMC10462651 DOI: 10.1038/s41598-023-38584-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/11/2023] [Indexed: 08/31/2023] Open
Abstract
Interstitial cystitis (IC) has severe clinical symptoms with unclear mechanism. The continuous inflammatory response of the bladder is the basis of its pathogenesis. Endoplasmic reticulum stress (ERS) is involved in the regulation and development of various inflammatory diseases. And autophagy plays an important role in IC. In this study, we mainly focus on the therapeutic effect of endoplasmic reticulum stress and autophagy on protamine/lipopolysaccharide-induced interstitial cystitis. Female Sprague-Dawley rats were randomized into three experimental groups as follows: sham controls(N), IC alone, and IC+4-PBA.Rats in group IC received 10 mg/ml PS in the urinary bladder, followed by 2 mg/ml LPS instillation after 30 min, IC+4-PBA group SD rats received 4-PBA solution administered intragastrically once a day for 5 days. ERS biomarker (GRP78), autophagy-related proteins (LC3I/II, and Beclin1), autophagic flux biomarker (P62), inflammatory biomarkers (IL-6, TNF-a, NF-κB), apoptotic biomarkers (Caspase 3, Bax) were highest in the IC group compared to IC+4-PBA group and N group and the biomarkers expression in IC+4-PBA group were lower than in the IC group, anti-apoptotic biomarker (Bcl-2) was highest in the N group compared to the IC group and IC+4-PBA group and lower in the IC group than in the IC+4-PBA group, oxidative stress biomarkers (HO-1, NQO-1) were remarkably lower in the control group than in the IC and IC+4-PBA groups and notably lower in the IC group than in the IC+4-PBA group. The histological score and mast cell count demonstrated most severe in the IC group than those in the IC+4-PBA group. TUNEL assay examined the level of apoptosis in IC group was higher than in the IC+4-PBA group. The bladder micturition function was significantly improved with 4-PBA treatment. 4-PBA inhibits ERS to recover autophagic flux, and then to suppress the bladder oxidative stress, the inflammatory reaction and apoptosis, finally improve the bladder urinary function in Protamine/Lipopolysaccharide (PS/LPS) induced IC.
Collapse
Affiliation(s)
- Li Jia
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 40037, China
| | - Zhu Jingzhen
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 40037, China
| | - Yang Xinliang
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 40037, China
| | - Sun Bishao
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 40037, China
| | - Luo Xin
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 40037, China
| | - Zheng Ji
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 40037, China.
| | - Fang Zhenqiang
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 40037, China.
| |
Collapse
|
9
|
Zhao J, Lu Q, Yang Z, Sun B, Zhu J, Zhang H, Yang C, Yi S, Dong X. Decreased autophagic activity of detrusor cells is involved in the inflammatory response of interstitial cystitis/bladder pain syndrome. Int Urogynecol J 2023; 34:843-851. [PMID: 35689690 DOI: 10.1007/s00192-022-05224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/22/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION AND HYPOTHESIS Genome-wide association studies suggest that autophagy plays an important regulatory role in inflammatory and autoimmune diseases. Inflammation and immune regulation disorders are involved in the occurrence and development of interstitial cystitis/bladder pain syndrome (IC/BPS). However, the changes and roles of autophagy in IC/BPS have not been reported. Therefore, this study aimed to investigate bladder autophagy and inflammation changes in patients with IC/BPS. METHODS Bladder specimens (n = 5) from patients with cystectomy due to end-stage IC/BPS were collected. The bladder samples of the control group (n = 5) were derived from the normal area bladder tissue after radical cystectomy. H&E and toluidine blue staining were used for histological evaluation. The co-location of LC3, alpha-smooth muscle actin (α-SMA), and autophagosome was investigated with double-labeled immunofluorescence and transmission electron microscopy (TEM). The expression of IL-6, TNF-α, Bax, caspase-3, and BCL-2 in the detrusor layer was analyzed using immunohistochemistry (IHC) and Western blot (WB). RESULTS Compared with the control group, bladder tissue from IC/BPS patients revealed thinner and edematous epithelium with many mast cells (P < 0.05) infiltrating into the muscle layer. By using TEM (P < 0.05), double-labeled immunofluorescence (P < 0.05), and Western blot (P < 0.05) in IC/BPS patients, autophagy was also found and was significantly increased in detrusor myocytes. IHC and WB indicate the expression of BCL-2 (P < 0.05) was decreased, while IL-6, TNF-α, Bax, and caspase-3 expression was elevated (P < 0.05). CONCLUSIONS The number of autophagosomes in detrusor cells was increased in IC/BPS. However, autophagy of detrusor muscle cells may not have sufficient phagocytic activity to effectively remove damaged proteins and mitochondria, which may lead to the continued deterioration of IC/BPS inflammation and apoptosis.
Collapse
Affiliation(s)
- Jiang Zhao
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Qudong Lu
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Zhengxin Yang
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Bishao Sun
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Jingzheng Zhu
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Hengshuai Zhang
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Chengfei Yang
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Shanghong Yi
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Xinyou Dong
- Department of Urology, People's Hospital of Shapingba District, Chongqing, 400030, China.
| |
Collapse
|
10
|
Shao Y, Liu Y, Shen B, Zhou Q, Wei Z. Echinacoside Ameliorates Cyclophosphamide-Induced Bladder Damage in Mice. J Med Food 2022; 25:722-731. [PMID: 35758826 DOI: 10.1089/jmf.2021.k.0194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interstitial cystitis (IC) is featured by apoptosis and chronic inflammation in bladder tissue. We aimed to evaluate the effect of echinacoside (ECH), which is known to modulate inflammation and apoptosis on IC using relevant models. We established a mouse model of cystitis using cyclophosphamide (CYP) and treated human urothelium cells (SV-HUC-1) with lipopolysaccharide (LPS) + ATP as in vitro model. The bladder function was tested by urodynamics. Apoptosis of bladder cells was assessed by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. Expressions of apoptosis-associated and inflammation-related proteins were assessed using western blotting. Treatment with ECH significantly improved bladder function, reduced inflammatory damage, and decreased apoptosis in the models. Furthermore, ECH decreased the phosphorylation levels of IκB and NF-κB(p65), and upregulated the expression of peroxisome proliferator-activated receptor gamma (PPARγ), which are related to apoptosis and inflammation in CYP-induced mouse cystitis. Moreover, ECH did not reduce apoptosis of urothelial cells after treatment with PPARγ antagonist GW9662. Our findings suggest that ECH might have protective effect against IC in bladder and be mediated through modulation of the PPARγ/NF-κB pathway.
Collapse
Affiliation(s)
- Yunpeng Shao
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Liu
- Department of Reproduction, The affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Baixin Shen
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiao Zhou
- Department of Reproduction, The affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Zhongqing Wei
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Li Y, Dong Z, Wen G, Ren X, Ren W, Yan L, Wang X, Yu H, Wu X, Xia X, Lu Y, Wu X. Long-term ketamine administration induces bladder damage and upregulates autophagy-associated proteins in bladder smooth muscle tissue. ENVIRONMENTAL TOXICOLOGY 2021; 36:2521-2529. [PMID: 34487425 DOI: 10.1002/tox.23365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Long-term ketamine abuse can cause significant lower urinary tract symptoms in humans, termed ketamine-associated cystitis (KC). Here, we established a model of long-term (6 months) ketamine administration in wild-type (C57BL/6) mice. We elucidated the pathological effects of ketamine in the bladder and investigated changes in autophagy-associated protein expression (i.e., LC3, Beclin-1, and P62) and inflammatory cytokines (i.e., IL-6 and IL-1β) in the bladder smooth muscle tissue. Long-term ketamine administration reduced the number of layers in the bladder mucosal epithelial cells (4-5 layers in the saline group vs. 2-3 layers in the ketamine groups), but increased the number of mast cells and collagen fibers. LC3-II/LC3-I, Beclin-1, IL-6, and IL-1β protein expression in the bladder smooth muscle tissues of ketamine-treated mice was significantly increased. The mRNA and protein levels of P62 in the Ket-60 mg/kg group were also significantly increased, but not the Ket-30 mg/kg group. Our results reveal that long-term ketamine administration can cause cystitis-like pathological changes in mice, and the disordered autophagy in the bladder tissue may be involved in the persistent bladder damage following long-term administration of ketamine at 60 mg/kg.
Collapse
Affiliation(s)
- Yanning Li
- School of Forensic Medicine, China Medical University, Shenyang, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Zhibin Dong
- Qixia District Branch of Nanjing Public Security Bureau, Nanjing, China
| | - Gehua Wen
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xinghua Ren
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Weishu Ren
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Lei Yan
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xiaolong Wang
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Hao Yu
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xue Wu
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xi Xia
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Yan Lu
- Key Laboratory of Health Ministry in Congenital Malformation, Affiliated Shengjing Hospital of China Medical University, Shenyang, China
| | - Xu Wu
- School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
12
|
Sousa AH, do Vale GT, da Silva CBP, Awata WMC, Pinheiro LC, Tirapelli CR. Ethanol and cyclophosphamide induce similar nephrotoxic effects: possible role for Nox4 and superoxide. Can J Physiol Pharmacol 2021; 99:744-751. [PMID: 33175570 DOI: 10.1139/cjpp-2020-0246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We tested the hypothesis that ethanol consumption would aggravate the renal damage induced by cyclophosphamide (CYP). Male C57BL/6 J mice from control (n = 8) and CYP (n = 12) groups had free access to filtered water and standard rodent chow for 12 weeks. Then, 24 h before euthanasia mice received an intraperitoneal injection of saline or CYP (300 mg/kg). Mice from ethanol (n = 8) and CYP + ethanol (n = 12) groups had free access to increasing doses of ethanol for 12 weeks. Twenty-four hours before euthanasia, mice from ethanol and CYP + ethanol groups received an intraperitoneal injection of saline or CYP, respectively. Ethanol, CYP, or the association of both drugs augmented serum levels of creatinine and increased the levels of superoxide ([Formula: see text]) generation and thiobarbituric acid reactive substances in the renal cortex. Upregulation of Nox4 and increased activity of superoxide dismutase were detected in the renal cortex of mice treated with ethanol, CYP, or the combination of these drugs; however, these molecular alterations induced by CYP were not potentiated by ethanol consumption. Our findings revealed that chronic ethanol consumption had no potentiating effect on the nephrotoxic effects displayed by CYP. It is possible that the combination of these drugs showed no synergistic effect because they share the same molecular mechanisms of renal toxicity.
Collapse
Affiliation(s)
- Arthur H Sousa
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Gabriel T do Vale
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Departamento de Ciências Biológicas, Universidade do Estado de Minas Gerais (UEMG), Passos, Minas Gerais, Brazil
| | - Carla B P da Silva
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Programa de Pós-Graduação em Toxicologia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Wanessa M C Awata
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Lucas C Pinheiro
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Carlos R Tirapelli
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
13
|
El-Emam SZ. Sesamol Alleviates the Cytotoxic Effect of Cyclophosphamide on Normal Human Lung WI-38 Cells via Suppressing RAGE/NF-κB/Autophagy Signaling. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:333-343. [PMID: 33216292 PMCID: PMC8141072 DOI: 10.1007/s13659-020-00286-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/11/2020] [Indexed: 05/07/2023]
Abstract
Cyclophosphamide (CYL) is a chemotherapeutic medication commonly used in managing various malignancies like breast cancer or leukemia. Though, CYL has been documented to induce lung toxicity. Mechanism of CYL toxicity is through oxidative stress and the release of damage-associated molecular patterns (DAMPs). Sesamol (SES) is a natural antioxidant isolated from Sesamum indicum and its effect against CYL-induced lung toxicity is not studied yet. This study aims to investigate whether SES could prevent any deleterious effects induced by CYL on lung using normal human lung cells, WI-38 cell line, without suppressing its efficacy. Cells were pretreated with SES and/or CYL for 24 h, then cell viability was estimated by MTS and trypan blue assays. The mode of cell death was determined by AO/EB staining. Additionally, caspase-3 level, oxidative stress, and inflammatory markers were evaluated by colorimetric and ELISA techniques. qRT-PCR was performed to evaluate RAGE, NF-κB, and Beclin-1 mRNA-expression. CYL-treated WI-38 cells developed a significantly increased cell death with enhanced oxidative and RAGE/NF-κb/Autophagy signaling, which were all attenuated after pretreatment with SES. Thus, we concluded that SES offered a protective role against CYL-induced lung injury via suppressing oxidative stress and RAGE/NF-κB/Autophagy signaling, which is a natural safe therapeutic option against CYL toxicities.
Collapse
Affiliation(s)
- Soad Z El-Emam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, 6 October City, Giza, 12566, Egypt.
| |
Collapse
|
14
|
Lu JH, Wu YH, Juan TJ, Lin HY, Lin RJ, Chueh KS, Lee YC, Chang CY, Juan YS. Autophagy Alters Bladder Angiogenesis and Improves Bladder Hyperactivity in the Pathogenesis of Ketamine-Induced Cystitis in a Rat Model. BIOLOGY 2021; 10:biology10060488. [PMID: 34070854 PMCID: PMC8228861 DOI: 10.3390/biology10060488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/23/2022]
Abstract
Simple Summary Long-term ketamine abuse may increase urinary frequency, nocturia, urgency, bladder pain, dysuria, and sometimes hematuria. Evaluation of the pathophysiological mechanism of bladder voiding dysfunction in ketamine-induced cystitis (KIC) patients is a critical step for therapy. This study uses autophagy inducer (rapamycin, mTOR inhibitor) and inhibitor (wortmannin, PI3K-III inhibitor) to identify the role of autophagy in bladder angiogenesis alteration and bladder hyperactivity improvement. Abstract The present study attempts to elucidate whether autophagy alters bladder angiogenesis, decreases inflammatory response, and ameliorates bladder hyperactivity—thereby influencing bladder function in ketamine-induced cystitis (KIC). In our methodology, female Sprague-Dawley (S-D) rats were randomly divided into the control group, the ketamine group, the ketamine+rapamycin group, and the ketamine+wortmannin group. The bladder function, contractile activity of detrusor smooth muscle, distribution of autophagosome and autolysosome, total white blood cells (WBCs) and leukocyte differential counts, the expressions of autophagy-associated protein, angiogenesis markers, and signaling pathway molecules involved in KIC were tested, respectively. The data revealed that treatment with ketamine significantly results in bladder overactivity, enhanced interstitial fibrosis, impaired endothelium, induced eosinophil-mediated inflammation, swelling, and degraded mitochondria and organelles, inhibited angiogenesis, and elevated the phosphorylation of Akt. However, treatment with rapamycin caused an inhibitory effect on vascular formation, removed ketamine metabolites, decreased the eosinophil-mediated inflammation, and ameliorated bladder hyperactivity, leading to improve bladder function in KIC. Moreover, wortmannin treatment reduced basophil-mediated inflammatory response, improved bladder angiogenesis by increasing capillary density and VEGF expression, to reverse antiangiogenic effect to repair KIC. In conclusion, these findings suggested that autophagy could modulate inflammatory responses and angiogenesis, which improved bladder function in KIC.
Collapse
Affiliation(s)
- Jian-He Lu
- Emerging Compounds Research Center, Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Yi-Hsuan Wu
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tai-Jui Juan
- Department of Medicine, National Defense Medical College, Taipei 11490, Taiwan;
| | - Hung-Yu Lin
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 84001, Taiwan;
- Division of Urology, Department of Surgery, E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
- Division of Urology, Department of Surgery, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - Rong-Jyh Lin
- Department of Parasitology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.L.); (C.-Y.C.)
| | - Kuang-Shun Chueh
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80661, Taiwan
| | - Yi-Chen Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.L.); (C.-Y.C.)
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chao-Yuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.L.); (C.-Y.C.)
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yung-Shun Juan
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80661, Taiwan
- Correspondence: ; Tel.: +886-7-312-1101; Fax: +886-7-350-6269
| |
Collapse
|
15
|
Evaluation of ultra-early and dose-dependent edema and ultrastructural changes in the myocyte during anti-hypertensive drug delivery in the spontaneously hypertensive rat model. PLoS One 2020; 15:e0231244. [PMID: 32298274 PMCID: PMC7162487 DOI: 10.1371/journal.pone.0231244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/17/2020] [Indexed: 02/05/2023] Open
Abstract
Background Quantifying dose-dependent ultra-early edema and ultrastructural changes in the myocyte after drug delivery is important for the development of new mixed calcium channel blockers (CCBs). Materials and methods Arterial cannulation was used to measure mean arterial pressure in real time; simultaneously, magnetic resonance imaging proton density mapping was used to quantify edema 5–55 min after the delivery of L-type CCBs, T- and L-type CCBs, and solvent to a spontaneously hypertensive rat model. Transmission electron microscopy was used to show ultrastructural changes in the myocyte. Results Analysis of variance showed significant differences among the three groups in mean arterial pressure reduction (F = 246.36, P = 5.75E-25), ultra-early level of edema (ULE) (F = 175.49, P = 5.62E-22), and dose-dependent level of edema (DLE) (F = 199.48, P = 4.28E-23). Compared with the solvent’s mean arterial pressure reduction (2.65±6.56±1.64), ULE (1.16±0.09±0.02), and DLE (0.0010±0.0001±0.0000), post hoc tests showed that T- and L-type CCBs had better mean arterial pressure reduction (90.67±11.58±2.90, P = 1.06E-24 vs. 68.34±15.19±3.80, P = 1.76E-12), lower ULE (1.53±0.14±0.04, P = 4.74E-9 vs. 2.08±0.18±0.04, P = 2.68E-22), and lower DLE (0.0025±0.0004±0.0001, P = 1.14E-11 vs. 0.0047±0.0008±0.0002, P = 2.10E-11) than L- type CCBs. Transmission electron microscopy showed that T- and L-type CCBs caused fewer ultrastructural changes in the myocytes after drug delivery than L-type CCBs. Conclusion T- and L-type CCBs produced less ultra-early and dose-dependent edema, fewer ultrastructural changes in the myocyte, and a greater antihypertensive effect. Proton density mapping combined with arterial cannulation and transmission electron microscopy allowed for quantification of ultra-early and dose-dependent edema, antihypertensive efficacy, and ultrastructural changes in the myocyte. This is important for the evaluation of induced vasodilatory edema.
Collapse
|
16
|
Wei L, Wu J, Li D, Shan Z. Intraperitoneal injection of ketamine enhances apoptosis in urothelium via autophagy in rats. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220935661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ketamine abusing is associated with ulcerative cystitis, but the mechanisms remain unclear. This study aimed to investigate the existence of ketamine-induced symptom in a rat model and evaluate the underlining mechanisms. Sprague-Dawley rats were chosen and randomly divided into 12 groups (n = 8), such as the control group, low dose of ketamine (10 mg/kg/day), middle dose of ketamine (30 mg/kg/day) and high dose of ketamine (50 mg/kg/day) groups. The experimental groups were administrated ketamine i.p. daily, whereas the control groups were administrated with saline. After 1, 3, and 6 months of treatment, the bladder tissues were collected. Haematoxylin and eosin (HE) staining and a transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay were used to evaluate the bladder epithelium pathology and urothelial apoptosis, respectively. The protein expression levels of LC3, p62, Beclin1 were assessed by Western blotting. HE staining results of the experimental rats showed the bladder tissue denudation of the urothelial epithelium with edema and congestion compared with the control groups. TUNEL staining showed a significantly higher number of apoptotic cells in experimental groups than in the control groups. The protein LC3 and Beclin1 had significantly higher levels compared with control groups. The protein p62 had lower levels compared with control groups. The expression levels correlated with contraction of ketamine and treatment time. HE staining, TUNEL staining and Western blot results showed dose-dependent, time-dependent autophage in ketamine-treated rats. All the results suggested that autophagy proteins might be involved in inflammatory response in rats.
Collapse
Affiliation(s)
- Liqin Wei
- Department of Pediatrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Danxia Li
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhengfei Shan
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Department of Organ Transplantation, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
17
|
Ibrahim HM, Mohammed-Geba K, Tawfic AA, El-Magd MA. Camel milk exosomes modulate cyclophosphamide-induced oxidative stress and immuno-toxicity in rats. Food Funct 2019; 10:7523-7532. [PMID: 31674611 DOI: 10.1039/c9fo01914f] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Camel milk proteins exhibit many beneficial properties including immuno-modulatory and anti-oxidant effects. Recent studies demonstrated that most of these properties are ascribed to the presence of extracellular nanovesicles known as exosomes. Therefore, the current study aimed to investigate the effect of the immuno-modulatory and anti-oxidant properties of camel milk exosomes on the immuno-toxicity and oxidative stress induced by cyclophosphamide (CTX) in albino rats. Exosomes were isolated from camel milk and exosomal kappa casein and lactoferrin mRNAs were detected and then sequenced. CTX was used to induce immunosuppression in rats, which were further treated with camel milk and its exosomes. The alterations in biochemical parameters, antioxidant status, cytokine profile, spleen histopathology and flow cytometric analysis were detected. Treatment with CTX resulted in a significant decrease in total protein, albumin, globulin, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels associated with a significant increase in the levels of malondialdehyde (MDA) when compared with the control group. Moreover, CTX depleted lymphocytes in the spleen tissue, significantly reduced the expression of interferon gamma (IFN-γ) in the spleen cells and decreased the CD4+ and CD8+ cell percentages in the blood and spleen, while it induced a significant increase in the expression of interleukin (IL)-6 and tumor necrosis factor (TNF)-α. Co-administration of camel milk exosomes was able to normalize the antioxidant status and most of the biochemical and immunological parameters. This study clarifies that camel milk and its exosomes successfully ameliorate immunosuppression and oxidative stress induced by CTX in rats.
Collapse
Affiliation(s)
- Hany M Ibrahim
- Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt.
| | - Khaled Mohammed-Geba
- Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt.
| | - Amr A Tawfic
- Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt.
| | - Mohammed A El-Magd
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrel shiekh University, Egypt.
| |
Collapse
|
18
|
Wang SS, Chen G, Li SH, Pang JS, Cai KT, Yan HB, Huang ZG, He RQ. Identification and validation of an individualized autophagy-clinical prognostic index in bladder cancer patients. Onco Targets Ther 2019; 12:3695-3712. [PMID: 31190871 PMCID: PMC6526186 DOI: 10.2147/ott.s197676] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/22/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose: Autophagy is a major catabolic system by which eukaryotic cells undergo self-degradation of damaged, defective, or unwanted intracellular components. An abnormal autophagic level is implicated in the pathogenesis of multiple diseases, including cancers. The aim of this study is to explore the prognostic value of autophagy in bladder cancer (BC), which is a major cause of cancer-related death globally. Patients and methods: First, 27 differentially expressed autophagy-related genes (ARGs) were identified in BC patients based on The Cancer Genome Atlas (TCGA) database. Functional enrichment analyses hinted that autophagy may act in a tumor-suppressive role in the initiation of BC. Then, the Cox proportional hazard regression model were employed to identify three key prognostic ARGs (JUN, MYC, and ITGA3), which were related with overall survival (OS) significantly in BC. The three genes represented important clinical significance and prognostic value in BC. Then a prognostic index (PI) was constructed. Results: The PI was constructed based on the three genes, and significantly stratified BC patients into high- and low-risk groups in terms of OS (HR=1.610, 95% CI=1.200–2.160, P=0.002). PI remained as an independent prognostic factor in multivariate analyses (HR=2.355, 95% CI=1.483–3.739, P<0.001). When integrated with clinical characteristics of age and stage, an autophagy-clinical prognostic index (ACPI) was finally validated, which had improved performance in predicting OS of BC patients (HR=2.669, 95% CI=1.986–3.587, P<0.001). The ACPI was confirmed in datasets of GSE13507 (HR=7.389, 95% CI=3.645–14.980, P<0.001) and GSE31684 (HR=1.665, 95% CI=0.872–3.179, P=0.122). Conclusion: This study provides a potential prognostic signature for predicting prognosis of BC patients and molecular insights of autophagy in BC.
Collapse
Affiliation(s)
- Shi-Shuo Wang
- Department of Pathology, The First Affilated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affilated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Sheng-Hua Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jin-Shu Pang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Kai-Teng Cai
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hai-Biao Yan
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affilated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Rong-Quan He
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
19
|
Zhang Y, Zeng Y. Curcumin reduces inflammation in knee osteoarthritis rats through blocking TLR4 /MyD88/NF-κB signal pathway. Drug Dev Res 2019; 80:353-359. [PMID: 30663793 DOI: 10.1002/ddr.21509] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/28/2018] [Accepted: 12/13/2018] [Indexed: 01/06/2023]
Abstract
Preclinical Research & Development Curcumin has been shown to possess a series of beneficial effects, such as antiinflammatory, antioxidant, analgesic, and promoting healing. However, the effect and relative mechanism of curcumin on knee osteoarthritis (OA) have not been elucidated. The aim of this study is to explore the protective effect of curcumin on monosodium iodoacetate (MIA)-induced OA. Forty-eight rats were randomized into four experimental groups: control group, OA group, OA + PBS group, and OA + curcumin group, respectively. A single intraarticular injection of MIA was applied to establish the rat model of knee OA. Hematoxylin-eosin staining was used to evaluate histological changes of knee joint. The paw withdrawal threshold was collected and the expression of synovial fluid cytokine levels was measured by ELISA. The protein expression of TRL-4, MyD88, p-IκBα, NF-κB, TNF-α, IL-1β, and IL6 was measured by western blot. Treating with curcumin can significantly reduce joint diameter and Mankin's score, and increase the paw withdrawal threshold. The expression of synovial fluid inflammatory biomarkers, IL-6, IL-1β, and TNF-α in the OA + curcumin group were lower than that in OA and OA + PBS group. The protein expression of the TLR4 receptor was increased in the OA, OA + PBS, and OA + curcumin group compared to the control group. However, curcumin treatment can significantly decrease the expression of MyD88, p-IκBα, NF-κB, TNF-α, IL-1β, and IL6 in OA + curcumin group. These findings may indicate that curcumin could block TLR4/NF-κB signal pathway, and reduce inflammation level to prevent knee wound in OA rats. Curcumin may be a feasible kind of medicament in the treatment of knee OA.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Orthopedics of Traditional Chinese Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Yu Zeng
- Department of Hyperbaric Oxygen, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
20
|
Shan Z, Wei L, Yu S, Jiang S, Ma Y, Zhang C, Wang J, Gao Z, Wan F, Zhuang G, Wu J, Liu D. Ketamine induces reactive oxygen species and enhances autophagy in SV-HUC-1 human uroepithelial cells. J Cell Physiol 2018; 234:2778-2787. [PMID: 30145832 DOI: 10.1002/jcp.27094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/26/2018] [Indexed: 02/01/2023]
Abstract
This study was aimed at exploring the underlying mechanisms of ketamine in the SV-40 immortalized human ureteral epithelial (SV-HUC-1) cells. The viability and apoptosis of SV-HUC-1 cells treated with 0.01, 0.1, and 1 mM ketamine were respectively detected via cell counting kit-8 (CCK-8) assay and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) staining. Reactive oxygen species (ROS) level was measured through ROS probe staining. Apoptosis-related proteins (B-cell lymphoma 2 [Bcl-2] and Bax) and autophagy-associated proteins (light chain 3-I [LC3-I] and LC3-II) were determined by western blot or immunofluorescent assay. Additionally, transmission electron microscopy (TEM) was used to evaluate the formation of autophagosomes. After cotreatment of 3-methyladenine (3-MA) or N-acetyl-l-cysteine (NAC), the biological functions of SV-HUC-1 cells were analyzed to determine the association of ROS with cell viability and autophagy. CCK-8 assay and TUNEL staining indicated that ketamine effectively decreased the viability of SV-HUC-1 cells and accelerated apoptosis of SV-HUC-1 cells through regulating the expression level of IKBα (phospho), nuclear factor кB (P65), Bcl-2, and Bax proteins. Enhanced ROS production was also confirmed in ketamine-treated SV-HUC-1 cells treated with ketamine. Ketamine-induced autophagosomes in SV-HUC-1 cells were observed by means of TEM, and increased levels of LC3 II/I ratio and Beclin 1 were examined through western blot and immunofluorescent assay. Furthermore, ketamine exerted effects on SV-HUC-1 cells in a dose-dependent and time-dependent manner. Additionally, cotreatment of NAC with 3-MA significantly attenuated the ROS level and suppressed the cell autophagy. Ketamine promoted SV-HUC-1 cell autophagy and impaired the cell viability of SV-HUC-1 cells by inducing ROS.
Collapse
Affiliation(s)
- Zhengfei Shan
- Department of Organ Transplantation, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.,Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Liqin Wei
- Outpatient Department of Pediatrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shengqiang Yu
- Department of Organ Transplantation, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.,Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shanling Jiang
- Department of Pharmacy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yue Ma
- Department of Organ Transplantation, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.,Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Chengjun Zhang
- Department of Organ Transplantation, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.,Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jiantao Wang
- Department of Organ Transplantation, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.,Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhenli Gao
- Department of Organ Transplantation, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.,Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Fengchun Wan
- Department of Organ Transplantation, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.,Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Guimin Zhuang
- Department of Organ Transplantation, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.,Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Dongfu Liu
- Department of Organ Transplantation, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.,Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
21
|
Eberli D, Horst M, Mortezavi A, Andersson KE, Gobet R, Sulser T, Simon HU, Salemi S. Increased autophagy contributes to impaired smooth muscle function in neurogenic lower urinary tract dysfunction. Neurourol Urodyn 2018; 37:2414-2424. [PMID: 29797356 DOI: 10.1002/nau.23705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/09/2018] [Indexed: 12/14/2022]
Abstract
AIMS To explore whether autophagy plays a role in the remodeling of bladder smooth muscle cells (SMCs) in children with neurogenic lower urinary tract dysfunction (NLUTD), we investigated the effect of autophagy in NLUTD in the paediatric population. METHODS Bladder biopsies were taken from children with NLUTD and healthy donors as controls. Samples were labeled with the SMC markers calponin, smoothelin, and the autophagy proteins LC3, ATG5, and Beclin1. The contractile ability of bladder derived SMCs was investigated. RESULTS ATG5 gene and protein was upregulated in NLUTD muscle tissue compared to normal bladder. NLUTD muscle exhibited a punctated immunostaining pattern for LC3 in a subset of the SMCs, confirming the accumulation of autophagosomes. Pronounced elevation of ATG5 in the SMC in NLUTD tissue was associated with a downregulation of the key contractile proteins smoothelin and calponin. Pharmacological blocking of autophagy completely stopped the cells growth in normal bladder SMCs. Inhibition of autophagy in the NLUTD SMCs, with already elevated levels of ATG5, resulted in a reduction of ATG5 protein expression to the basal level found in normal controls. CONCLUSIONS Our study suggests that autophagy is an important factor affecting the remodeling of SMCs and the alteration of functionality in bladder smooth muscle tissue in the NLUTD. Since autophagy can be influenced by oral medication, this finding might lead to novel strategies preventing the deterioration of NLUTD muscle.
Collapse
Affiliation(s)
- Daniel Eberli
- Department of Urology, Laboratory for Tissue Engineering and Stem Cell Therapy, University Hospital Zürich, Zürich, Switzerland
| | - Maya Horst
- Division of Paediatric Urology, Department of Paediatric Surgery, University Children's Hospital, Zürich, Switzerland
| | - Ashkan Mortezavi
- Department of Urology, Laboratory for Tissue Engineering and Stem Cell Therapy, University Hospital Zürich, Zürich, Switzerland
| | - Karl-Erik Andersson
- Wake Forest University Health Sciences, Wake Forest Institute for Regenerative Medicine, Medical Center Boulevard, Winston Salem, North Carolina
| | - Rita Gobet
- Division of Paediatric Urology, Department of Paediatric Surgery, University Children's Hospital, Zürich, Switzerland
| | - Tullio Sulser
- Department of Urology, Laboratory for Tissue Engineering and Stem Cell Therapy, University Hospital Zürich, Zürich, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Souzan Salemi
- Department of Urology, Laboratory for Tissue Engineering and Stem Cell Therapy, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
22
|
Li J, Luo H, Dong X, Liu Q, Wu C, Zhang T, Hu X, Zhang Y, Song B, Li L. Therapeutic effect of urine-derived stem cells for protamine/lipopolysaccharide-induced interstitial cystitis in a rat model. Stem Cell Res Ther 2017; 8:107. [PMID: 28482861 PMCID: PMC5422864 DOI: 10.1186/s13287-017-0547-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 01/04/2017] [Accepted: 03/31/2017] [Indexed: 01/21/2023] Open
Abstract
Background Interstitial cystitis (IC) is a chronic inflammation disorder mainly within the submucosal and muscular layers of the bladder. As the cause of IC remains unknown, no effective treatments are currently available. Administration of stem cell provides a potential for treatment of IC. Methods This study was conducted using urine-derived stem cells (USCs) for protamine/lipopolysaccharide (PS/LPS)-induced interstitial cystitis in a rodent model. In total, 60 female Sprague–Dawley rats were randomized into three experimental groups (n = 5/group): sham controls; IC model alone; and IC animals intravenously treated with USCs (1.2 × 106 suspended in 0.2 ml phosphate-buffered saline (PBS). Results Our data showed that the bladder micturition function was significantly improved in IC animals intravenously treated with USCs compared to those in the IC model alone group. The amount of antioxidants and antiapoptotic protein biomarkers heme oxygenase (HO)-1, NAD(P)H quinine oxidoreductase (NQO)-1, and Bcl-2 within the bladder tissues were significantly higher in IC animals intravenously treated with USCs and lower in the sham controls group as assessed by Western blot and immunofluorescent staining. In addition, the expression of autophagy-related protein LC3A was significantly higher in the IC model alone group than that in IC animals intravenously treated with USCs. Inflammatory biomarkers and apoptotic biomarkers (interleukin (IL)-6, tumor necrosis factor (TNF)α, nuclear factor (NF)-κB, caspase 3, and Bax) and the downstream inflammatory and oxidative stress biomarkers (endoplasmic reticulum stress and autophagy-related protein (GRP78, LC3, Beclin1)) in the bladder tissue revealed statistically different results between groups. Conclusions USCs restored the bladder function and histological construction via suppressing oxidative stress, inflammatory reaction, and apoptotic processes in a PS/LPS-induced IC rodent model, which provides potential for treatment of patients with IC.
Collapse
Affiliation(s)
- Jia Li
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Hui Luo
- Department of Physical examination, Second Affiliated Hospital, Third Military University, Chongqing, 40037, China
| | - Xingyou Dong
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Qian Liu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Chao Wu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Teng Zhang
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Xiaoyan Hu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yuanyuan Zhang
- Wake Forest Institute of Regenerative Medicine, Wake Forest University, Winston Salem, North Carolina, USA
| | - Bo Song
- Department of Urology, First Affiliated Hospital, Third Military University, Chongqing, 40037, China.
| | - Longkun Li
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
23
|
Wang Q, Zhao J, Wu C, Yang Z, Dong X, Liu Q, Sun B, Wei C, Hu X, Li L. Large conductance voltage and Ca 2+-activated K + channels affect the physiological characteristics of human urine-derived stem cells. Am J Transl Res 2017; 9:1876-1885. [PMID: 28469792 PMCID: PMC5411935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 01/31/2017] [Indexed: 06/07/2023]
Abstract
We investigated the current characteristics of large conductance voltage and Ca2+-activated K+ (BK) channels in human urine-derived stem cells (hUSCs) and the effect of BK channels on proliferation and differentiation of hUSCs. Fresh human urine (n=6) was collected from healthy donors to isolate hUSCs. Human KCNMA1 gene silencing U6 shRNA was used to down regulate the expression of BK in hUSCs. IBTX (BK channel antagonist) and NS1619 (BK channel agonist) were used to examine the effect of BK channels on hUSCs. Whole cell patch-clamping was employed to detect the current of BK channels. Flow cytometry, immunofluorescence, and western blotting were used to analyze the cell cycle and related protein levels. The results showed that the activities of BK channels were significantly decreased in P5, P7 and induced hUSCs (endothelial, urothelial and smooth muscle cells) compared with P3 hUSCs when normalized to the cell capacitance. In addition, the average BK channel current density of hUSCs was significantly decreased upon silencing BK channel expression by hnRNA. Apoptosis rates of hUSCs in iberiotoxin (IBTX) and hnRNA treatment groups were significantly increased compared with the control group, whereas treatment with BK agonist NS1619 decreased apoptosis rates. Compared with the control group, hUSCs in S phase were significantly decreased in IBTX and hnRNA treatment groups. In conclusion, BK channels play an important role in maintaining the proliferation and differentiation of hUSCs. Overexpression of BK channels in hUSCs be provide a basis for future clinical application to an overactive bladder.
Collapse
Affiliation(s)
- Qingqing Wang
- Department of Urology, Second Affiliated Hospital, Third Military Medical UniversityChongqing 400037, China
| | - Jiang Zhao
- Department of Urology, Second Affiliated Hospital, Third Military Medical UniversityChongqing 400037, China
| | - Chao Wu
- Department of Urology, Second Affiliated Hospital, Third Military Medical UniversityChongqing 400037, China
| | - Zhenxing Yang
- Department of Urology, Second Affiliated Hospital, Third Military Medical UniversityChongqing 400037, China
| | - Xingyou Dong
- Department of Urology, Second Affiliated Hospital, Third Military Medical UniversityChongqing 400037, China
| | - Qian Liu
- Department of Urology, Second Affiliated Hospital, Third Military Medical UniversityChongqing 400037, China
| | - Bishao Sun
- Department of Urology, Second Affiliated Hospital, Third Military Medical UniversityChongqing 400037, China
| | - Chen Wei
- Department of Urology, Second Affiliated Hospital, Third Military Medical UniversityChongqing 400037, China
| | - Xiaoyan Hu
- Department of Urology, Second Affiliated Hospital, Third Military Medical UniversityChongqing 400037, China
| | - Longkun Li
- Department of Urology, Second Affiliated Hospital, Third Military Medical UniversityChongqing 400037, China
| |
Collapse
|
24
|
Expression of autophagy in different stages of neurogenic bladder after spinal cord injury in rats. Spinal Cord 2017; 55:834-839. [DOI: 10.1038/sc.2017.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 02/05/2023]
|
25
|
de Oliveira MG, Calmasini FB, Alexandre EC, De Nucci G, Mónica FZ, Antunes E. Activation of soluble guanylyl cyclase by BAY 58-2667 improves bladder function in cyclophosphamide-induced cystitis in mice. Am J Physiol Renal Physiol 2016; 311:F85-93. [PMID: 27122537 DOI: 10.1152/ajprenal.00041.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/19/2016] [Indexed: 01/15/2023] Open
Abstract
Activators of soluble guanylyl cyclase (sGC) interact directly with its prosthetic heme group, enhancing the enzyme responsiveness in pathological conditions. This study aimed to evaluate the effects of the sGC activator BAY 58-2667 on voiding dysfunction, protein expressions of α1 and β1 sGC subunits and cGMP levels in the bladder tissues after cyclophosphamide (CYP) exposure. Female C57BL/6 mice (20-25 g) were injected with CYP (300 mg/kg ip) to induce cystitis. Mice were pretreated or not with BAY 58-2667 (1 mg/kg, gavage), given 1 h before CYP injection. The micturition patterns and in vitro bladder contractions were evaluated at 24 h. In freely moving mice, the CYP injection produced reduced the micturition volume and increased the number of urine spots. Cystometric recordings in CYP-injected mice revealed significant increases in basal pressure, voiding frequency, and nonvoiding contractions (NVCs), along with decreases in bladder capacity, intercontraction interval, and compliance. BAY 58-2667 significantly prevented the micturition alterations observed in both freely moving mice and cystometry and normalized the reduced in vitro carbachol-induced contractions in the CYP group. Reduced protein expressions of α1 and β1 sGC subunits and of cGMP levels were observed in the CYP group, all of which were prevented by BAY 58-2667. CYP exposure significantly increased reactive-oxygen species (ROS) generation in both detrusor and urothelium, and this was normalized by BAY 58-2667. The increased myeloperoxidase and cyclooxygenase-2 activities in the bladders of the CYP group remained unchanged by BAY 58-2667. Activators of sGC may constitute a novel and promising therapeutic approach for management of interstitial cystitis.
Collapse
Affiliation(s)
- Mariana G de Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Fabiano B Calmasini
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Eduardo C Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Fabíola Z Mónica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| |
Collapse
|
26
|
Increased autophagic activity in dorsal root ganglion attenuates neuropathic pain following peripheral nerve injury. Neurosci Lett 2015; 599:158-63. [DOI: 10.1016/j.neulet.2015.05.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/12/2015] [Accepted: 05/21/2015] [Indexed: 01/01/2023]
|