1
|
Ramosaj A, Borsuk M, Underhaug J, Mathis D, Matsumoto S, Keogh A, Banz V, Pandey AV, Gougeard N, Rubio V, Martinez A, Allegri G, Poms M, Thöny B, Häberle J, Laemmle A. Novel Treatment Strategy for Patients With Urea Cycle Disorders: Pharmacological Chaperones Enhance Enzyme Stability and Activity in Patient-Derived Liver Disease Models. J Inherit Metab Dis 2025; 48:e70043. [PMID: 40421674 DOI: 10.1002/jimd.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/10/2025] [Accepted: 04/10/2025] [Indexed: 05/28/2025]
Abstract
Urea cycle disorders (UCDs) are inherited diseases causing recurrent life-threatening metabolic decompensations due to impaired hepatic ammonia detoxification and decreased ureagenesis. Ornithine transcarbamylase (OTC) deficiency (OTCD) is X-linked and the most common and often fatal UCD. In male hemizygous patients, disease severity primarily depends on the pathogenic sequence variant, while in heterozygous females, disease severity also depends on the X-chromosomal inactivation (XCI) pattern. Females with unfavorable XCI predominantly expressing the mutant OTC protein may be severely affected. Here, we investigated a novel treatment strategy for OTCD since there is an unmet need for better therapies. In the first step, we performed a high throughput screening (HTS) using a diversity library with 10 000 chemical compounds to identify pharmacological chaperone (PC) candidates that stabilize purified wild-type OTC. Stratification of our HTS results revealed five potential PCs, which were selected for further experimentation in cellular systems using primary human hepatocytes (PHHs) and human induced pluripotent stem cell (hiPSC)-derived hepatocytes (hiPSC-Heps) from healthy controls and OTCD patients. Two PCs-PC1 and PC4-increased OTC protein stability and activity in control hiPSC-Heps, while PC4 in addition increased OTC activity in patient-derived PHHs from a female OTCD patient with unfavorable XCI. Finally, PC1 and PC4 both significantly increased ureagenesis in patient-derived PHHs. To conclude, we identified two PCs that stabilized wild-type OTC and enhanced enzyme activity and ureagenesis. Our work suggests that PCs could provide a novel treatment strategy for OTCD specifically in females with unfavorable XCI.
Collapse
Affiliation(s)
- Adhuresa Ramosaj
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mariia Borsuk
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jarl Underhaug
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Déborah Mathis
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Shirou Matsumoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Adrian Keogh
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Vanessa Banz
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Amit V Pandey
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Nadine Gougeard
- Instituto de Biomedicina de Valencia (IBV-CSIC) and Group 739 of CIBER de Enfermedades Raras (CIBERER-ISCIII), Valencia, Spain
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia (IBV-CSIC) and Group 739 of CIBER de Enfermedades Raras (CIBERER-ISCIII), Valencia, Spain
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Gabriella Allegri
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Martin Poms
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Beat Thöny
- Division of Metabolism and Children's Research Center (CRC), University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center (CRC), University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Alexander Laemmle
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Karjosukarso DW, Bukkems F, Duijkers L, Tomkiewicz TZ, Kiefmann J, Sarlea A, Bervoets S, Vázquez-Domínguez I, Molday LL, Molday RS, Netea MG, Hoyng CB, Garanto A, Collin RWJ. Preclinical assessment of splicing modulation therapy for ABCA4 variant c.768G>T in Stargardt disease. COMMUNICATIONS MEDICINE 2025; 5:25. [PMID: 39838063 PMCID: PMC11751084 DOI: 10.1038/s43856-024-00712-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Stargardt disease type 1 (STGD1) is a progressive retinal disorder caused by bi-allelic variants in the ABCA4 gene. A recurrent variant at the exon-intron junction of exon 6, c.768G>T, causes a 35-nt elongation of exon 6 that leads to premature termination of protein synthesis. METHODS To correct this aberrant splicing, twenty-five 2'-O-methoxyethyl antisense oligonucleotides (AONs) were designed, spanning the entire exon elongation. RESULTS Testing of these AONs in patient-derived photoreceptor precursor cells and retinal organoids allow the selection of a lead candidate AON (A7 21-mer) that rescues on average 52% and 50% expression of wild-type ABCA4 transcript and protein, respectively. In situ hybridization and probe-based ELISA demonstrate its distribution and stability in vitro and in vivo. No major safety concerns regarding off-targets, immunostimulation and toxicity are observed in transcriptomics analysis, cytokine stimulation assays in human primary immune cells, and cytotoxicity assays. CONCLUSIONS Additional optimization and in vivo studies will be performed to further investigate the lead candidate. Considering the high prevalence of this variant, a substantial number of patients are likely to benefit from a successful further development and implementation of this therapy.
Collapse
Affiliation(s)
- Dyah W Karjosukarso
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Femke Bukkems
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Astherna B.V., Nijmegen, The Netherlands
| | - Lonneke Duijkers
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tomasz Z Tomkiewicz
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Julia Kiefmann
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andrei Sarlea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Research Institute for Medical Innovation, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Sander Bervoets
- Radboudumc Technology Center Bioinformatics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Irene Vázquez-Domínguez
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurie L Molday
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, Canada
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, Canada
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Research Institute for Medical Innovation, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Carel B Hoyng
- Astherna B.V., Nijmegen, The Netherlands
- Department of Ophthalmology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alejandro Garanto
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands.
- Astherna B.V., Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Richard E, Martínez‐Pizarro A, Desviat LR. Exploring RNA therapeutics for urea cycle disorders. J Inherit Metab Dis 2024; 47:1269-1277. [PMID: 39449289 PMCID: PMC11586603 DOI: 10.1002/jimd.12807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
RNA has triggered a significant shift in modern medicine, providing a promising way to revolutionize disease treatment methods. Different therapeutic RNA modalities have shown promise to replace, supplement, correct, suppress, or eliminate the expression of a targeted gene. Currently, there are 22 RNA-based drugs approved for clinical use, including the COVID-19 mRNA vaccines, whose unprecedented worldwide success has meant a definitive boost in the RNA research field. Urea cycle disorders (UCD), liver diseases with high mortality and morbidity, may benefit from the progress achieved, as different genetic payloads have been successfully targeted to liver using viral vectors, N-acetylgalactosamine (GalNAc) conjugations or lipid nanoparticles (LNP). This review explores the potential of RNA-based medicines for UCD and the ongoing development of applications targeting specific gene defects, enzymes, or transporters taking part in the urea cycle. Notably, LNP-formulated mRNA therapy has been assayed preclinically for citrullinemia type I (CTLN1), adolescent and adult citrin deficiency, argininosuccinic aciduria, arginase deficiency and ornithine transcarbamylase deficiency, in the latter case has progressed to the clinical trials phase.
Collapse
Affiliation(s)
- Eva Richard
- Centro de Biología Molecular Severo Ochoa UAM‐CSIC, IUBM, CIBERER, IdiPazUniversidad Autónoma de MadridMadridSpain
| | - Ainhoa Martínez‐Pizarro
- Centro de Biología Molecular Severo Ochoa UAM‐CSIC, IUBM, CIBERER, IdiPazUniversidad Autónoma de MadridMadridSpain
| | - Lourdes R. Desviat
- Centro de Biología Molecular Severo Ochoa UAM‐CSIC, IUBM, CIBERER, IdiPazUniversidad Autónoma de MadridMadridSpain
| |
Collapse
|
4
|
Martínez-Pizarro A, Picó S, López-Márquez A, Rodriguez-López C, Montalvo E, Alvarez M, Castro M, Ramón-Maiques S, Pérez B, Lucas JJ, Richard E, Desviat LR. PAH deficient pathology in humanized c.1066-11G>A phenylketonuria mice. Hum Mol Genet 2024; 33:1074-1089. [PMID: 38520741 PMCID: PMC11153335 DOI: 10.1093/hmg/ddae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
We have generated using CRISPR/Cas9 technology a partially humanized mouse model of the neurometabolic disease phenylketonuria (PKU), carrying the highly prevalent PAH variant c.1066-11G>A. This variant creates an alternative 3' splice site, leading to the inclusion of 9 nucleotides coding for 3 extra amino acids between Q355 and Y356 of the protein. Homozygous Pah c.1066-11A mice, with a partially humanized intron 10 sequence with the variant, accurately recapitulate the splicing defect and present almost undetectable hepatic PAH activity. They exhibit fur hypopigmentation, lower brain and body weight and reduced survival. Blood and brain phenylalanine levels are elevated, along with decreased tyrosine, tryptophan and monoamine neurotransmitter levels. They present behavioral deficits, mainly hypoactivity and diminished social interaction, locomotor deficiencies and an abnormal hind-limb clasping reflex. Changes in the morphology of glial cells, increased GFAP and Iba1 staining signals and decreased myelinization are observed. Hepatic tissue exhibits nearly absent PAH protein, reduced levels of chaperones DNAJC12 and HSP70 and increased autophagy markers LAMP1 and LC3BII, suggesting possible coaggregation of mutant PAH with chaperones and subsequent autophagy processing. This PKU mouse model with a prevalent human variant represents a useful tool for pathophysiology research and for novel therapies development.
Collapse
Affiliation(s)
- Ainhoa Martínez-Pizarro
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Av. Monforte de Lemos, 3-5. 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), Pedro Rico, 6, 28029 Madrid, Spain
| | - Sara Picó
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Arístides López-Márquez
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Claudia Rodriguez-López
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Elena Montalvo
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Mar Alvarez
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Margarita Castro
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Av. Monforte de Lemos, 3-5. 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), Pedro Rico, 6, 28029 Madrid, Spain
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Francisco Tomás y Valiente 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Santiago Ramón-Maiques
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Av. Monforte de Lemos, 3-5. 28029 Madrid, Spain
- Instituto de Biomedicina de Valencia (IBV-CSIC), Jaume Roig, 11, 46010 València, Valencia, Spain
| | - Belén Pérez
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Av. Monforte de Lemos, 3-5. 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), Pedro Rico, 6, 28029 Madrid, Spain
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Francisco Tomás y Valiente 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José J Lucas
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Av. Monforte de Lemos, 3-5. 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), Pedro Rico, 6, 28029 Madrid, Spain
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Av. Monforte de Lemos, 3-5. 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), Pedro Rico, 6, 28029 Madrid, Spain
| |
Collapse
|
5
|
Kido J, Sugawara K, Sawada T, Matsumoto S, Nakamura K. Pathogenic variants of ornithine transcarbamylase deficiency: Nation-wide study in Japan and literature review. Front Genet 2022; 13:952467. [PMID: 36303552 PMCID: PMC9593096 DOI: 10.3389/fgene.2022.952467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Ornithine transcarbamylase deficiency (OTCD) is an X-linked disorder. Several male patients with OTCD suffer from severe hyperammonemic crisis in the neonatal period, whereas others develop late-onset manifestations, including hyperammonemic coma. Females with heterozygous pathogenic variants in the OTC gene may develop a variety of clinical manifestations, ranging from asymptomatic conditions to severe hyperammonemic attacks, owing to skewed lyonization. We reported the variants of CPS1, ASS, ASL and OTC detected in the patients with urea cycle disorders through a nation-wide survey in Japan. In this study, we updated the variant data of OTC in Japanese patients and acquired information regarding genetic variants of OTC from patients with OTCD through an extensive literature review. The 523 variants included 386 substitution (330 missense, 53 nonsense, and 3 silent), eight deletion, two duplication, one deletion-insertion, 55 frame shift, two extension, and 69 no category (1 regulatory and 68 splice site error) mutations. We observed a genotype-phenotype relation between the onset time (neonatal onset or late onset), the severity, and genetic mutation in male OTCD patients because the level of deactivation of OTC significantly depends on the pathogenic OTC variants. In conclusion, genetic information about OTC may help to predict long-term outcomes and determine specific treatment strategies, such as liver transplantation, in patients with OTCD.
Collapse
Affiliation(s)
- Jun Kido
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Keishin Sugawara
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takaaki Sawada
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shirou Matsumoto
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
6
|
Abstract
The urea cycle is a liver-based pathway enabling disposal of nitrogen waste. Urea cycle disorders (UCDs) are inherited metabolic diseases caused by deficiency of enzymes or transporters involved in the urea cycle and have a prevalence of 1:35,000 live births. Patients present recurrent acute hyperammonaemia, which causes high rate of death and neurological sequelae. Long-term therapy relies on a protein-restricted diet and ammonia scavenger drugs. Currently, liver transplantation is the only cure. Hence, high unmet needs require the identification of effective methods to model these diseases to generate innovative therapeutics. Advances in both induced pluripotent stem cells (iPSCs) and genome editing technologies have provided an invaluable opportunity to model patient-specific phenotypes in vitro by creating patients' avatar models, to investigate the pathophysiology, uncover novel therapeutic targets and provide a platform for drug discovery. This review summarises the progress made thus far in generating 2- and 3-dimensional iPSCs models for UCDs, the challenges encountered and how iPSCs offer future avenues for innovation in developing the next-generation of therapies for UCDs.
Collapse
Affiliation(s)
- Claire Duff
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Julien Baruteau
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK.
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London, UK.
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
7
|
Sacchetto C, Peretto L, Baralle F, Maestri I, Tassi F, Bernardi F, van de Graaf SFJ, Pagani F, Pinotti M, Balestra D. OTC intron 4 variations mediate pathogenic splicing patterns caused by the c.386G>A mutation in humans and spf ash mice, and govern susceptibility to RNA-based therapies. Mol Med 2021; 27:157. [PMID: 34906067 PMCID: PMC8670272 DOI: 10.1186/s10020-021-00418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/30/2021] [Indexed: 12/01/2022] Open
Abstract
Background Aberrant splicing is a common outcome in the presence of exonic or intronic variants that might hamper the intricate network of interactions defining an exon in a specific gene context. Therefore, the evaluation of the functional, and potentially pathological, role of nucleotide changes remains one of the major challenges in the modern genomic era. This aspect has also to be taken into account during the pre-clinical evaluation of innovative therapeutic approaches in animal models of human diseases. This is of particular relevance when developing therapeutics acting on splicing, an intriguing and expanding research area for several disorders. Here, we addressed species-specific splicing mechanisms triggered by the OTC c.386G>A mutation, relatively frequent in humans, leading to Ornithine TransCarbamylase Deficiency (OTCD) in patients and spfash mice, and its differential susceptibility to RNA therapeutics based on engineered U1snRNA. Methods Creation and co-expression of engineered U1snRNAs with human and mouse minigenes, either wild-type or harbouring different nucleotide changes, in human (HepG2) and mouse (Hepa1-6) hepatoma cells followed by analysis of splicing pattern. RNA pulldown studies to evaluate binding of specific splicing factors. Results Comparative nucleotide analysis suggested a role for the intronic +10-11 nucleotides, and pull-down assays showed that they confer preferential binding to the TIA1 splicing factor in the mouse context, where TIA1 overexpression further increases correct splicing. Consistently, the splicing profile of the human minigene with mouse +10-11 nucleotides overlapped that of mouse minigene, and restored responsiveness to TIA1 overexpression and to compensatory U1snRNA. Swapping the human +10-11 nucleotides into the mouse context had opposite effects. Moreover, the interplay between the authentic and the adjacent cryptic 5′ss in the human OTC dictates pathogenic mechanisms of several OTCD-causing 5′ss mutations, and only the c.386+5G>A change, abrogating the cryptic 5′ss, was rescuable by engineered U1snRNA. Conclusions Subtle intronic variations explain species-specific OTC splicing patterns driven by the c.386G>A mutation, and the responsiveness to engineered U1snRNAs, which suggests careful elucidation of molecular mechanisms before proposing translation of tailored therapeutics from animal models to humans. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00418-9.
Collapse
Affiliation(s)
- Claudia Sacchetto
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy.,Department of Molecular Genetics, University of Maastricht, Maastricht, The Netherlands
| | - Laura Peretto
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy
| | | | - Iva Maestri
- Department of Translational Medicine and for Romagna, Pathology Unit of Pathologic Anatomy, Histology and Cytology, University of Ferrara, Ferrara, Italy
| | - Francesca Tassi
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - Franco Pagani
- Human Molecular Genetics, ICGEB - International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy.
| | - Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy.
| |
Collapse
|
8
|
Hammond SM, Aartsma‐Rus A, Alves S, Borgos SE, Buijsen RAM, Collin RWJ, Covello G, Denti MA, Desviat LR, Echevarría L, Foged C, Gaina G, Garanto A, Goyenvalle AT, Guzowska M, Holodnuka I, Jones DR, Krause S, Lehto T, Montolio M, Van Roon‐Mom W, Arechavala‐Gomeza V. Delivery of oligonucleotide-based therapeutics: challenges and opportunities. EMBO Mol Med 2021; 13:e13243. [PMID: 33821570 PMCID: PMC8033518 DOI: 10.15252/emmm.202013243] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Nucleic acid-based therapeutics that regulate gene expression have been developed towards clinical use at a steady pace for several decades, but in recent years the field has been accelerating. To date, there are 11 marketed products based on antisense oligonucleotides, aptamers and small interfering RNAs, and many others are in the pipeline for both academia and industry. A major technology trigger for this development has been progress in oligonucleotide chemistry to improve the drug properties and reduce cost of goods, but the main hurdle for the application to a wider range of disorders is delivery to target tissues. The adoption of delivery technologies, such as conjugates or nanoparticles, has been a game changer for many therapeutic indications, but many others are still awaiting their eureka moment. Here, we cover the variety of methods developed to deliver nucleic acid-based therapeutics across biological barriers and the model systems used to test them. We discuss important safety considerations and regulatory requirements for synthetic oligonucleotide chemistries and the hurdles for translating laboratory breakthroughs to the clinic. Recent advances in the delivery of nucleic acid-based therapeutics and in the development of model systems, as well as safety considerations and regulatory requirements for synthetic oligonucleotide chemistries are discussed in this review on oligonucleotide-based therapeutics.
Collapse
Affiliation(s)
| | | | - Sandra Alves
- Department of Human Genetics, Research and Development UnitNational Health Institute Doutor Ricardo JorgePortoPortugal
| | - Sven E Borgos
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | - Ronald A M Buijsen
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Rob W J Collin
- Department of Human Genetics and Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Giuseppina Covello
- Department of BiologyUniversity of PadovaPadovaItaly
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Michela A Denti
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa UAM‐CSICCIBERER, IdiPazUniversidad Autónoma de MadridMadridSpain
| | | | - Camilla Foged
- Department of PharmacyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagen ØDenmark
| | - Gisela Gaina
- Victor Babes National Institute of PathologyBucharestRomania
- Department of Biochemistry and Molecular BiologyUniversity of BucharestBucharestRomania
| | - Alejandro Garanto
- Department of Human Genetics and Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of PediatricsRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Magdalena Guzowska
- Department of Physiological SciencesFaculty of Veterinary MedicineWarsaw University of Life Sciences – SGGWWarsawPoland
| | - Irina Holodnuka
- Institute of Microbiology and VirologyRiga Stradins UniversityRigaLatvia
| | | | - Sabine Krause
- Department of NeurologyFriedrich‐Baur‐InstituteLudwig‐Maximilians‐University of MunichMunichGermany
| | - Taavi Lehto
- Institute of TechnologyUniversity of TartuTartuEstonia
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetHuddingeSweden
| | - Marisol Montolio
- Duchenne Parent Project EspañaMadridSpain
- Department of Cell Biology, Fisiology and ImmunologyFaculty of BiologyUniversity of BarcelonaBarcelonaSpain
| | - Willeke Van Roon‐Mom
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Virginia Arechavala‐Gomeza
- Neuromuscular Disorders GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| |
Collapse
|
9
|
Gene Editing Correction of a Urea Cycle Defect in Organoid Stem Cell Derived Hepatocyte-like Cells. Int J Mol Sci 2021; 22:ijms22031217. [PMID: 33530582 PMCID: PMC7865883 DOI: 10.3390/ijms22031217] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Urea cycle disorders are enzymopathies resulting from inherited deficiencies in any genes of the cycle. In severe cases, currently available therapies are marginally effective, with liver transplantation being the only definitive treatment. Donor liver availability can limit even this therapy. Identification of novel therapeutics for genetic-based liver diseases requires models that provide measurable hepatic functions and phenotypes. Advances in stem cell and genome editing technologies could provide models for the investigation of cell-based genetic diseases, as well as the platforms for drug discovery. This report demonstrates a practical, and widely applicable, approach that includes the successful reprogramming of somatic cells from a patient with a urea cycle defect, their genetic correction and differentiation into hepatic organoids, and the subsequent demonstration of genetic and phenotypic change in the edited cells consistent with the correction of the defect. While individually rare, there is a large number of other genetic-based liver diseases. The approach described here could be applied to a broad range and a large number of patients with these hepatic diseases where it could serve as an in vitro model, as well as identify successful strategies for corrective cell-based therapy.
Collapse
|
10
|
Zabulica M, Srinivasan RC, Akcakaya P, Allegri G, Bestas B, Firth M, Hammarstedt C, Jakobsson T, Jakobsson T, Ellis E, Jorns C, Makris G, Scherer T, Rimann N, van Zuydam NR, Gramignoli R, Forslöw A, Engberg S, Maresca M, Rooyackers O, Thöny B, Häberle J, Rosen B, Strom SC. Correction of a urea cycle defect after ex vivo gene editing of human hepatocytes. Mol Ther 2021; 29:1903-1917. [PMID: 33484963 PMCID: PMC8116578 DOI: 10.1016/j.ymthe.2021.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/17/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022] Open
Abstract
Ornithine transcarbamylase deficiency (OTCD) is a monogenic disease of ammonia metabolism in hepatocytes. Severe disease is frequently treated by orthotopic liver transplantation. An attractive approach is the correction of a patient’s own cells to regenerate the liver with gene-repaired hepatocytes. This study investigates the efficacy and safety of ex vivo correction of primary human hepatocytes. Hepatocytes isolated from an OTCD patient were genetically corrected ex vivo, through the deletion of a mutant intronic splicing site achieving editing efficiencies >60% and the restoration of the urea cycle in vitro. The corrected hepatocytes were transplanted into the liver of FRGN mice and repopulated to high levels (>80%). Animals transplanted and liver repopulated with genetically edited patient hepatocytes displayed normal ammonia, enhanced clearance of an ammonia challenge and OTC enzyme activity, as well as lower urinary orotic acid when compared to mice repopulated with unedited patient hepatocytes. Gene expression was shown to be similar between mice transplanted with unedited or edited patient hepatocytes. Finally, a genome-wide screening by performing CIRCLE-seq and deep sequencing of >70 potential off-targets revealed no unspecific editing. Overall analysis of disease phenotype, gene expression, and possible off-target editing indicated that the gene editing of a severe genetic liver disease was safe and effective.
Collapse
Affiliation(s)
- Mihaela Zabulica
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
| | | | - Pinar Akcakaya
- Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Gabriella Allegri
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zürich, Switzerland
| | - Burcu Bestas
- Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Mike Firth
- Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Cambridge, UK
| | | | - Tomas Jakobsson
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Towe Jakobsson
- Department of Clinical Sciences Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ewa Ellis
- Department of Clinical Sciences Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Carl Jorns
- Department of Clinical Sciences Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Georgios Makris
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zürich, Switzerland
| | - Tanja Scherer
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zürich, Switzerland
| | - Nicole Rimann
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zürich, Switzerland
| | - Natalie R van Zuydam
- Department of Quantitative Biology, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Anna Forslöw
- Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Susanna Engberg
- Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Marcello Maresca
- Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Olav Rooyackers
- Department of Clinical Sciences Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Beat Thöny
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zürich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zürich, Switzerland
| | - Barry Rosen
- Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Cambridge, UK
| | - Stephen C Strom
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden.
| |
Collapse
|
11
|
Cavino K, Sung B, Su Q, Na E, Kim J, Cheng X, Gromada J, Okamoto H. Glucagon Receptor Inhibition Reduces Hyperammonemia and Lethality in Male Mice with Urea Cycle Disorder. Endocrinology 2021; 162:5988952. [PMID: 33206168 DOI: 10.1210/endocr/bqaa211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 12/14/2022]
Abstract
The liver plays a critical role in maintaining ammonia homeostasis. Urea cycle defects, liver injury, or failure and glutamine synthetase (GS) deficiency result in hyperammonemia, serious clinical conditions, and lethality. In this study we used a mouse model with a defect in the urea cycle enzyme ornithine transcarbamylase (Otcspf-ash) to test the hypothesis that glucagon receptor inhibition using a monoclonal blocking antibody will reduce the hyperammonemia and associated lethality induced by a high-protein diet, which exacerbates disease. We found reduced expression of glutaminase, which degrades glutamine and increased expression of GS in livers of Otcspf-ash mice treated with the glucagon receptor blocking antibody. The gene expression changes favor ammonia consumption and were accompanied by increased circulating glutamine levels and diminished hyperammonemia. Otcspf-ash mice treated with the glucagon receptor-blocking antibody gained lean and body mass and had increased survival. These data suggest that glucagon receptor inhibition using a monoclonal antibody could reduce the risk for hyperammonemia and other clinical manifestations of patients suffering from defects in the urea cycle, liver injury, or failure and GS deficiency.
Collapse
Affiliation(s)
- Katie Cavino
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | - Biin Sung
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | - Qi Su
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | - Erqian Na
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | - Jinrang Kim
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | - Xiping Cheng
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | | | | |
Collapse
|
12
|
Makris G, Lauber M, Rüfenacht V, Gemperle C, Diez-Fernandez C, Caldovic L, Froese DS, Häberle J. Clinical and structural insights into potential dominant negative triggers of proximal urea cycle disorders. Biochimie 2020; 183:89-99. [PMID: 33309754 DOI: 10.1016/j.biochi.2020.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
Abstract
Despite biochemical and genetic testing being the golden standards for identification of proximal urea cycle disorders (UCDs), genotype-phenotype correlations are often unclear. Co-occurring partial defects affecting more than one gene have not been demonstrated so far in proximal UCDs. Here, we analyzed the mutational spectrum of 557 suspected proximal UCD individuals. We probed oligomerizing forms of NAGS, CPS1 and OTC, and evaluated the surface exposure of residues mutated in heterozygously affected individuals. BN-PAGE and gel-filtration chromatography were employed to discover protein-protein interactions within recombinant enzymes. From a total of 281 confirmed patients, only 15 were identified as "heterozygous-only" candidates (i.e. single defective allele). Within these cases, the only missense variants to potentially qualify as dominant negative triggers were CPS1 p.Gly401Arg and NAGS p.Thr181Ala and p.Tyr512Cys, as assessed by residue oligomerization capacity and surface exposure. However, all three candidates seem to participate in critical intramolecular functions, thus, unlikely to facilitate protein-protein interactions. This interpretation is further supported by BN-PAGE and gel-filtration analyses revealing no multiprotein proximal urea cycle complex formation. Collectively, genetic analysis, structural considerations and in vitro experiments point against a prominent role of dominant negative effects in human proximal UCDs.
Collapse
Affiliation(s)
- Georgios Makris
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Matthias Lauber
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Véronique Rüfenacht
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Corinne Gemperle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Carmen Diez-Fernandez
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Nextech Invest, Bahnhofstrasse 18, 8001, Zurich, Switzerland
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
An Exon-Specific Small Nuclear U1 RNA (ExSpeU1) Improves Hepatic OTC Expression in a Splicing-Defective spf/ ash Mouse Model of Ornithine Transcarbamylase Deficiency. Int J Mol Sci 2020; 21:ijms21228735. [PMID: 33228018 PMCID: PMC7699343 DOI: 10.3390/ijms21228735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/22/2022] Open
Abstract
OTC splicing mutations are generally associated with the severest and early disease onset of ornithine transcarbamylase deficiency (OTCD), the most common urea cycle disorder. Noticeably, splicing defects can be rescued by spliceosomal U1snRNA variants, which showed their efficacy in cellular and animal models. Here, we challenged an U1snRNA variant in the OTCD mouse model (spf/ash) carrying the mutation c.386G > A (p.R129H), also reported in OTCD patients. It is known that the R129H change does not impair protein function but affects pre-mRNA splicing since it is located within the 5′ splice site. Through in vitro studies, we identified an Exon Specific U1snRNA (ExSpeU1O3) that targets an intronic region downstream of the defective exon 4 and rescues exon inclusion. The adeno-associated virus (AAV8)-mediated delivery of the ExSpeU1O3 to mouse hepatocytes, although in the presence of a modest transduction efficiency, led to increased levels of correct OTC transcripts (from 6.1 ± 1.4% to 17.2 ± 4.5%, p = 0.0033). Consistently, this resulted in increased liver expression of OTC protein, as demonstrated by Western blotting (~3 fold increase) and immunostaining. Altogether data provide the early proof-of-principle of the efficacy of ExSpeU1 in the spf/ash mouse model and encourage further studies to assess the potential of RNA therapeutics for OTCD caused by aberrant splicing.
Collapse
|
14
|
Allegri G, Deplazes S, Rimann N, Causton B, Scherer T, Leff JW, Diez-Fernandez C, Klimovskaia A, Fingerhut R, Krijt J, Kožich V, Nuoffer JM, Grisch-Chan HM, Thöny B, Häberle J. Comprehensive characterization of ureagenesis in the spf ash mouse, a model of human ornithine transcarbamylase deficiency, reveals age-dependency of ammonia detoxification. J Inherit Metab Dis 2019; 42:1064-1076. [PMID: 30714172 DOI: 10.1002/jimd.12068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/30/2019] [Indexed: 12/24/2022]
Abstract
The most common ureagenesis defect is X-linked ornithine transcarbamylase (OTC) deficiency which is a main target for novel therapeutic interventions. The spf ash mouse model carries a variant (c.386G>A, p.Arg129His) that is also found in patients. Male spf ash mice have a mild biochemical phenotype with low OTC activity (5%-10% of wild-type), resulting in elevated urinary orotic acid but no hyperammonemia. We recently established a dried blood spot method for in vivo quantification of ureagenesis by Gas chromatography-mass spectrometry (GC-MS) using stable isotopes. Here, we applied this assay to wild-type and spf ash mice to assess ureagenesis at different ages. Unexpectedly, we found an age-dependency with a higher capacity for ammonia detoxification in young mice after weaning. A parallel pattern was observed for carbamoylphosphate synthetase 1 and OTC enzyme expression and activities, which may act as pacemaker of this ammonia detoxification pathway. Moreover, high ureagenesis in younger mice was accompanied by elevated periportal expression of hepatic glutamine synthetase, another main enzyme required for ammonia detoxification. These observations led us to perform a more extensive analysis of the spf ash mouse in comparison to the wild-type, including characterization of the corresponding metabolites, enzyme activities in the liver and plasma and the gut microbiota. In conclusion, the comprehensive enzymatic and metabolic analysis of ureagenesis performed in the presented depth was only possible in animals. Our findings suggest such analyses being essential when using the mouse as a model and revealed age-dependent activity of ammonia detoxification.
Collapse
Affiliation(s)
- Gabriella Allegri
- Division of Metabolism and Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| | - Sereina Deplazes
- Division of Metabolism and Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| | - Nicole Rimann
- Division of Metabolism and Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| | | | - Tanja Scherer
- Division of Metabolism and Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| | | | - Carmen Diez-Fernandez
- Division of Metabolism and Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| | - Anna Klimovskaia
- Institute for Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Ralph Fingerhut
- Swiss Newborn Screening Laboratory, University Children's Hospital, Zurich, Switzerland
| | - Jakub Krijt
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Viktor Kožich
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Jean-Marc Nuoffer
- Department of Clinical Chemistry, Inselspital Bern, Bern, Switzerland
| | - Hiu M Grisch-Chan
- Division of Metabolism and Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| | - Beat Thöny
- Division of Metabolism and Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Srinivasan RC, Zabulica M, Hammarstedt C, Wu T, Gramignoli R, Kannisto K, Ellis E, Karadagi A, Fingerhut R, Allegri G, Rüfenacht V, Thöny B, Häberle J, Nuoffer JM, Strom SC. A liver-humanized mouse model of carbamoyl phosphate synthetase 1-deficiency. J Inherit Metab Dis 2019; 42:1054-1063. [PMID: 30843237 DOI: 10.1002/jimd.12067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/25/2019] [Indexed: 12/31/2022]
Abstract
A liver-humanized mouse model for CPS1-deficiency was generated by the high-level repopulation of the mouse liver with CPS1-deficient human hepatocytes. When compared with mice that are highly repopulated with CPS1-proficient human hepatocytes, mice that are repopulated with CPS1-deficient human hepatocytes exhibited characteristic symptoms of human CPS1 deficiency including an 80% reduction in CPS1 metabolic activity, delayed clearance of an ammonium chloride infusion, elevated glutamine and glutamate levels, and impaired metabolism of [15 N]ammonium chloride into urea, with no other obvious phenotypic differences. Because most metabolic liver diseases result from mutations that alter critical pathways in hepatocytes, a model that incorporates actual disease-affected, mutant human hepatocytes is useful for the investigation of the molecular, biochemical, and phenotypic differences induced by that mutation. The model is also expected to be useful for investigations of modified RNA, gene, and cellular and small molecule therapies for CPS1-deficiency. Liver-humanized models for this and other monogenic liver diseases afford the ability to assess the therapy on actual disease-affected human hepatocytes, in vivo, for long periods of time and will provide data that are highly relevant for investigations of the safety and efficacy of gene-editing technologies directed to human hepatocytes and the translation of gene-editing technology to the clinic.
Collapse
Affiliation(s)
- Raghuraman C Srinivasan
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mihaela Zabulica
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Christina Hammarstedt
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Tingting Wu
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Kannisto
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Ewa Ellis
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Ahmad Karadagi
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Ralph Fingerhut
- Division of Metabolism and Children's Research Centre (CRC), University Children's Hospital Zurich, Zurich, Switzerland
- Swiss Newborn Screening Laboratory, University Children's Hospital Zurich, Zurich, Switzerland
| | - Gabriella Allegri
- Division of Metabolism and Children's Research Centre (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| | - Véronique Rüfenacht
- Division of Metabolism and Children's Research Centre (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| | - Beat Thöny
- Division of Metabolism and Children's Research Centre (CRC), University Children's Hospital Zurich, Zurich, Switzerland
- Swiss Newborn Screening Laboratory, University Children's Hospital Zurich, Zurich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children's Research Centre (CRC), University Children's Hospital Zurich, Zurich, Switzerland
- Zurich Centre for Integrative Human Physiology (ZIHP) and, Neuroscience Centre Zurich (ZNZ), Zurich, Switzerland
| | - Jean-Marc Nuoffer
- Institute for Clinical Chemistry and University Children's Hospital, Bern, Switzerland
| | - Stephen C Strom
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Laróvere LE, Silvera Ruiz SM, Arranz JA, Dodelson de Kremer R. Mutation Spectrum and Genotype–Phenotype Correlation in a Cohort of Argentine Patients with Ornithine Transcarbamylase Deficiency: A Single-Center Experience. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2018. [DOI: 10.1177/2326409818813177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Laura E. Laróvere
- Centro de Estudio de las Metabolopatías Congénitas, Hospital de Niños de la Santísima Trinidad; Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina, Ferroviarios 1250 – 5014 – Córdoba Argentina
| | - Silene M. Silvera Ruiz
- Centro de Estudio de las Metabolopatías Congénitas, Hospital de Niños de la Santísima Trinidad; Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina, Ferroviarios 1250 – 5014 – Córdoba Argentina
| | - José A. Arranz
- Laboratori de Metabolopaties, Hospital Universitari Vall d'Hebron Barcelona, España
| | - Raquel Dodelson de Kremer
- Centro de Estudio de las Metabolopatías Congénitas, Hospital de Niños de la Santísima Trinidad; Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina, Ferroviarios 1250 – 5014 – Córdoba Argentina
| |
Collapse
|
17
|
Wang X, Yuan Y, Didelija IC, Mohammad MA, Marini JC. Ex Vivo Enteroids Recapitulate In Vivo Citrulline Production in Mice. J Nutr 2018; 148:1415-1420. [PMID: 30184221 PMCID: PMC6669957 DOI: 10.1093/jn/nxy126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/29/2018] [Accepted: 05/24/2018] [Indexed: 12/15/2022] Open
Abstract
Background The endogenous production of arginine relies on the synthesis of citrulline by enteral ornithine transcarbamylase (OTC). Mutations in the gene coding for this enzyme are the most frequent cause of urea cycle disorders. There is a lack of correlation between in vivo metabolic function and DNA sequence, transcript abundance, or in vitro enzyme activity. Objective The goal of the present work was to test the hypothesis that enteroids, a novel ex vivo model, are able to recapitulate the in vivo citrulline production of wild-type (WT) and mutant mice. Methods Six-week-old male WT and OTC-deficient mice [sparse fur and abnormal skin (spf-ash) mutation] were studied. Urea and citrulline fluxes were determined in vivo, and OTC abundance was measured in liver and gut tissue. Intestinal crypts were isolated and cultured to develop enteroids. Ex vivo citrulline production and OTC abundance were determined in these enteroids. Results Liver OTC abundance was lower (mean ± SE: 0.16 ± 0.01 compared with 1.85 ± 0.18 arbitrary units; P < 0.001) in spf-ash mice than in WT mice, but there was no difference in urea production. In gut tissue, OTC was barely detectable in mutant mice; despite this, a lower but substantial citrulline production (67 ± 3 compared with 167 ± 8 µmol · kg-1 · h-1; P < 0.001) was shown in the mutant mice. Enteroids recapitulated the in vivo findings of a very low OTC content accompanied by a reduced citrulline production (1.07 ± 0.20 compared with 4.64 ± 0.44 nmol · µg DNA-1 · d-1; P < 0.001). Conclusions Enteroids recapitulate in vivo citrulline production and offer the opportunity to study the regulation of citrulline production in a highly manipulable system.
Collapse
Affiliation(s)
- Xiaoying Wang
- USDA–Agricultural Research Service Children's Nutrition Research Center, Houston, TX
| | - Yang Yuan
- USDA–Agricultural Research Service Children's Nutrition Research Center, Houston, TX
| | - Inka C Didelija
- USDA–Agricultural Research Service Children's Nutrition Research Center, Houston, TX
| | - Mahmoud A Mohammad
- USDA–Agricultural Research Service Children's Nutrition Research Center, Houston, TX
| | - Juan C Marini
- USDA–Agricultural Research Service Children's Nutrition Research Center, Houston, TX
- Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
18
|
Allegri G, Deplazes S, Grisch-Chan HM, Mathis D, Fingerhut R, Häberle J, Thöny B. A simple dried blood spot-method for in vivo measurement of ureagenesis by gas chromatography-mass spectrometry using stable isotopes. Clin Chim Acta 2016; 464:236-243. [PMID: 27923571 DOI: 10.1016/j.cca.2016.11.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/07/2016] [Accepted: 11/28/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Clinical management of inherited or acquired hyperammonemia depends mainly on the plasma ammonia level which is not a reliable indicator of urea cycle function as its concentrations largely fluctuate. The gold standard to assess ureagenesis in vivo is the use of stable isotopes. METHODS Here we developed and validated a simplified in vivo method with [15N]ammonium chloride ([15N]H4Cl) as a tracer. Non-labeled and [15N]urea were quantified by GC-MS after extraction and silylation. RESULTS Different matrices were evaluated for suitability of analysis. Ureagenesis was assessed in ornithine transcarbamylase (OTC)-deficient spfash mice with compromised urea cycle function during fasted and non-fasted feeding states, and after rAAV2/8-vector delivery expressing the murine OTC-cDNA in liver. Blood (5μL) was collected through tail vein puncture before and after [15N]H4Cl intraperitoneal injections over a two hour period. The tested matrices, blood, plasma and dried blood spots, can be used to quantify ureagenesis. Upon [15N]H4Cl challenge, urea production in spfash mice was reduced compared to wild-type and normalized following rAAV2/8-mediated gene therapeutic correction. The most significant difference in ureagenesis was at 30min after injection in untreated spfash mice under fasting conditions (19% of wild-type). Five consecutive injections over a period of five weeks had no effect on body weight or ureagenesis. CONCLUSION This method is simple, robust and with no apparent risk, offering a sensitive, minimal-invasive, and fast measurement of ureagenesis capacity using dried blood spots. The stable isotope-based quantification of ureagenesis can be applied for the efficacy-testing of novel molecular therapies.
Collapse
Affiliation(s)
- Gabriella Allegri
- Division of Metabolism and Children's Research Centre (CRC), University Children's Hospital Zurich, Switzerland
| | - Sereina Deplazes
- Division of Metabolism and Children's Research Centre (CRC), University Children's Hospital Zurich, Switzerland
| | - Hiu Man Grisch-Chan
- Division of Metabolism and Children's Research Centre (CRC), University Children's Hospital Zurich, Switzerland
| | - Déborah Mathis
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Switzerland
| | - Ralph Fingerhut
- Division of Metabolism and Children's Research Centre (CRC), University Children's Hospital Zurich, Switzerland; Swiss Newborn Screening Laboratory, University Children's Hospital Zurich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children's Research Centre (CRC), University Children's Hospital Zurich, Switzerland; Zurich Centre for Integrative Human Physiology (ZIHP) and the Neuroscience Centre Zurich (ZNZ), Zurich, Switzerland
| | - Beat Thöny
- Division of Metabolism and Children's Research Centre (CRC), University Children's Hospital Zurich, Switzerland; Zurich Centre for Integrative Human Physiology (ZIHP) and the Neuroscience Centre Zurich (ZNZ), Zurich, Switzerland.
| |
Collapse
|
19
|
Laemmle A, Gallagher RC, Keogh A, Stricker T, Gautschi M, Nuoffer JM, Baumgartner MR, Häberle J. Frequency and Pathophysiology of Acute Liver Failure in Ornithine Transcarbamylase Deficiency (OTCD). PLoS One 2016; 11:e0153358. [PMID: 27070778 PMCID: PMC4829252 DOI: 10.1371/journal.pone.0153358] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/29/2016] [Indexed: 12/13/2022] Open
Abstract
Background Acute liver failure (ALF) has been reported in ornithine transcarbamylase deficiency (OTCD) and other urea cycle disorders (UCD). The frequency of ALF in OTCD is not well-defined and the pathogenesis is not known. Aim To evaluate the prevalence of ALF in OTCD, we analyzed the Swiss patient cohort. Laboratory data from 37 individuals, 27 females and 10 males, diagnosed between 12/1991 and 03/2015, were reviewed for evidence of ALF. In parallel, we performed cell culture studies using human primary hepatocytes from a single patient treated with ammonium chloride in order to investigate the inhibitory potential of ammonia on hepatic protein synthesis. Results More than 50% of Swiss patients with OTCD had liver involvement with ALF at least once in the course of disease. Elevated levels of ammonia often correlated with (laboratory) coagulopathy as reflected by increased values for international normalized ratio (INR) and low levels of hepatic coagulation factors which did not respond to vitamin K. In contrast, liver transaminases remained normal in several cases despite massive hyperammonemia and liver involvement as assessed by pathological INR values. In our in vitro studies, treatment of human primary hepatocytes with ammonium chloride for 48 hours resulted in a reduction of albumin synthesis and secretion by approximately 40%. Conclusion In conclusion, ALF is a common complication of OTCD, which may not always lead to severe symptoms and may therefore be underdiagnosed. Cell culture experiments suggest an ammonia-induced inhibition of hepatic protein synthesis, thus providing a possible pathophysiological explanation for hyperammonemia-associated ALF.
Collapse
Affiliation(s)
- Alexander Laemmle
- Division of Metabolism and Children`s Research Center (CRC), University Children`s Hospital, Zurich, Switzerland
- radiz–Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
- * E-mail: ;
| | - Renata C. Gallagher
- Department of Pediatrics, Medical Genetics, University of California San Francisco, San Francisco, United States of America
| | - Adrian Keogh
- Department of Clinical Research and Clinic for Visceral Surgery and Medicine, Bern University Hospital, Bern, Switzerland
| | - Tamar Stricker
- Division of Metabolism and Children`s Research Center (CRC), University Children`s Hospital, Zurich, Switzerland
| | - Matthias Gautschi
- Department of Pediatrics, University Children's Hospital, Bern, Switzerland
- University Institute of Clinical Chemistry, University of Bern, Bern, Switzerland
| | - Jean-Marc Nuoffer
- Department of Pediatrics, University Children's Hospital, Bern, Switzerland
- University Institute of Clinical Chemistry, University of Bern, Bern, Switzerland
| | - Matthias R. Baumgartner
- Division of Metabolism and Children`s Research Center (CRC), University Children`s Hospital, Zurich, Switzerland
- radiz–Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children`s Research Center (CRC), University Children`s Hospital, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Rivera-Barahona A, Sánchez-Alcudia R, Viecelli HM, Rüfenacht V, Pérez B, Ugarte M, Häberle J, Thöny B, Desviat LR. Correction: Functional Characterization of the spf/ash Splicing Variation in OTC Deficiency of Mice and Man. PLoS One 2015; 10:e0128506. [PMID: 25992811 PMCID: PMC4438054 DOI: 10.1371/journal.pone.0128506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|