1
|
Kamel NA, Rozik NN, Abd El-Messieh SL. Preparation of antimicrobial polymeric composites using defective silk cocoons and moringa seed oil as additives for polyvinyl chloride. Sci Rep 2025; 15:15652. [PMID: 40325099 PMCID: PMC12053577 DOI: 10.1038/s41598-025-97540-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/04/2025] [Indexed: 05/07/2025] Open
Abstract
In this work, novel polymeric blends were prepared from polyvinyl chloride (PVC) and silkworm cocoon waste (SCW), that were defective cocoons excluded during the silk-making process in the ratio 50:50 w/w. These blends were incorporated with moringa seed oil (MSO) as a bio-based plasticizer with different concentrations (1, 2, and 3%) to obtain a final bioplastic with superior antimicrobial properties. The new composites are characterized through Scanning Electron Microscope (SEM), Fourier Transmission Infrared Spectroscopy (FTIR), contact angle measurements, Thermogravimetric analysis (TGA), dielectric, mechanical, and antimicrobial properties. Results of the study pointed to improved linking between the blend phases after incorporating 2% MSO. The composites could inhibit the growth of all the tested microorganisms. The conductivity σdc values increased by increasing the content of MSO in the composite. The results demonstrate the potential of the new MSO plasticized composites as promising candidates for use in hospitals as antimicrobial surfaces.
Collapse
Affiliation(s)
- Nagwa A Kamel
- Microwave Physics and Dielectrics Department, Physics Research Institute. National Research Centre, Dokki, Cairo, Egypt.
| | - Nehad N Rozik
- Polymers and Pigments Department, Chemical Industrial Research Institute. National Research Centre, Dokki, Cairo, Egypt
| | - Salwa L Abd El-Messieh
- Microwave Physics and Dielectrics Department, Physics Research Institute. National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
2
|
Guo K, Duan J, Jing X, Zhang X, Ding Q, Dong Z, Xia Q, Zhao P. Silk components and properties of the multilayer cocoon of the greater wax moth, Galleria mellonella. INSECT SCIENCE 2025. [PMID: 40296465 DOI: 10.1111/1744-7917.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 04/30/2025]
Abstract
The greater wax moth Galleria mellonella is a major pest of brood combs, and produces large quantities of strong, elastic silk in the environment. However, little research has been conducted on the silk glands (SGs), silk composition and functions of G. mellonella. In this study, we compared the morphologies of the SGs of G. mellonella and Bombyx mori and found that the nuclei of the anterior SGs differ distinctly. We also investigated the protein components and morphology of the G. mellonella cocoon in terms of its multilayer structure. Proteomic analyses identified 158 secretory proteins across the various cocoon layers. Fibroin, sericin, seroin and adhesive proteins were the most abundant proteins. The expression patterns of the major silk genes were investigated, and the results revealed the specific expression of P16 and Seroin3 genes in the anterior SG. Scanning electron microscopy and proteomic analyses of the cocoon layers showed that the sericin contents in the outermost and middle layers were significantly higher than that in the innermost layer. We extracted the soluble proteins from the different cocoon layers and evaluated their antimicrobial activities in vitro. Only the outermost cocoon layer showed antibacterial activity against Escherichia coli. Mechanical property tests showed that G. mellonella silk was stronger than B. mori silk. Our study provides important information on the composition and properties of G. mellonella cocoon silk, and serves as a basis for future research and use.
Collapse
Affiliation(s)
- Kaiyu Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Jingmin Duan
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Xinyuan Jing
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Xiaolu Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Qiao Ding
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Zhaoming Dong
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Qingyou Xia
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Wasserman O, Morley JJ, Williams MKF, Bell BE, Cox-Foster DL, Jones JA. An effective protocol to isolate and mechanically test silk fibers spun by Osmia lignaria Say (Hymenoptera: Megachilidae) fifth instar larvae. PLoS One 2025; 20:e0318918. [PMID: 40009637 PMCID: PMC11864535 DOI: 10.1371/journal.pone.0318918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/23/2025] [Indexed: 02/28/2025] Open
Abstract
Silk, a remarkable protein-based fiber spun by various arthropod lineages, has been prized for millennia, with the cocoon silk of domesticated silkworms and spiders being the most utilized and extensively studied. There is limited information on how silk can be used to investigate biology, development, and health in other silk-producing species, particularly for solitary bees such as Osmia lignaria Say (Hymenoptera: Megachilidae). Osmia lignaria, an increasingly managed solitary pollinator, produces silk cocoons during the fifth instar larval stage. We have developed a minimally invasive protocol to isolate and mechanically test O. lignaria silk fibers using a 3-D printed well plate system for rearing and two specific isolation techniques. Our protocol allows for collecting individual fibers directly from silk-spinning larvae between silk initiation and cocoon formation without preventing subsequent cocoon development, enabling silk characterization as part of larger rearing and developmental studies. For this study, isolated fibers were mounted on C-cards, facilitating diameter measurement using a microscope and mechanical testing with an MTS Synergie 100 tensile testing instrument. We successfully isolated and tested the mechanical properties of naturally spun silk from O. lignaria, with 20 fibers isolated and mechanically tested from seven larvae. Further examination of isolated silk can reveal physical, molecular, chemical, and morphological characteristics, advancing our understanding of bee silk properties and their role in bee biology, evolution, and nutritional status. This protocol provides a practical tool for researchers to isolate and study silk from silk-producing bee species.
Collapse
Affiliation(s)
- Oran Wasserman
- Department of Biology, Utah State University, Logan, Utah, USA
| | - Jackson J. Morley
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Mary-Kate F. Williams
- Department of Biology, Utah State University, Logan, Utah, USA
- Pollinating Insect Research Unit, Pacific West Area, Agricultural Research Service, United States Department of Agriculture, Logan, Utah, USA
| | - Brianne E. Bell
- Department of Biology, Utah State University, Logan, Utah, USA
| | - Diana L. Cox-Foster
- Pollinating Insect Research Unit, Pacific West Area, Agricultural Research Service, United States Department of Agriculture, Logan, Utah, USA
| | - Justin A. Jones
- Department of Biology, Utah State University, Logan, Utah, USA
| |
Collapse
|
4
|
Zhang Z, Li Y, Yang X, Chen C, Ru S, Jiang J, Cai W, Li J, Du J, Qiao D. Construction of Tandem Multimers with Different Combinatorial Forms of BmSPI38 and BmSPI39 and Analysis of Their Expression and Activity in Escherichia coli. Int J Mol Sci 2025; 26:1788. [PMID: 40076416 PMCID: PMC11899716 DOI: 10.3390/ijms26051788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
It was found that the serine protease inhibitors BmSPI38 and BmSPI39 in silkworm can strongly inhibit the activity of porcine pancreatic elastase, which has potential applicational value in the drug research and development of lung diseases, inflammatory diseases, and skin aging caused by the excessive release of elastase. Previous studies have shown that homotypic multimers obtained by tandem expression can significantly enhance the antifungal activity and structural homogeneity of BmSPI38 and BmSPI39, while the effect of the tandem expression of these two inhibitors, with different combinations, on the total activity and expression levels of multimers remains unclear. The aim of this study is to explore whether it is possible to obtain the combination of BmSPI38 and BmSPI39 with strong total expression activity by protein engineering. In this study, 40 tandem multimer expression vectors with different combinatorial forms of BmSPI38 and BmSPI39 were constructed by the isocaudomer method, and recombinant proteins were obtained by the prokaryotic expression system. The target proteins were separated by SDS-PAGE to analyze the expression levels of multimer proteins with different combinatorial forms. The total activity of the recombinant expression products with different tandem forms was investigated using the in-gel activity staining technique of protease inhibitors. The SDS-PAGE results show that the expression levels of tandem multimers containing the BmSPI39 module at the carboxyl terminus were generally higher in the Escherichia coli supernatant than that of the tandem multimers containing the BmSPI38 module at the carboxyl terminus. The activity staining results indicate that compared with BmSPI38 and BmSPI39 homotypic multimers, the total activity of some recombinant expression products with different tandem forms was stronger. Furthermore, the total activity level was relatively higher when the carboxyl terminus of the multimer was a BmSPI39 module, such as the tandem dimers SPIAB and SPIaB and the tandem trimers SPIabB, SPIaaB, and SPIbaB. In this study, the expression of tandem fusion proteins with different combinations of the silkworm protease inhibitors BmSPI38 and BmSPI39 in E. coli was successfully achieved. It was confirmed that the tandem of different combinatorial forms, based on protein engineering, was an effective way to enhance the total activity of the fusion proteins of BmSPI38 and BmSPI39 and to improve their expression levels. Additionally, a number of multimer proteins with strong total activity and high exogenous expression levels were also screened, for example, SPIbaA, SPIbbA, SPIbbB, SPIabB, SPIaaB, and SPIbaB. This study not only lays the foundation for the exogenous production and development of BmSPI38 and BmSPI39 but also provides a reference for the construction of tandem and multimerization exploration of other protease inhibitors.
Collapse
Affiliation(s)
- Zhaofeng Zhang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Z.Z.); (X.Y.)
| | - Youshan Li
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Z.Z.); (X.Y.)
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Hanzhong 723001, China; (C.C.); (S.R.)
| | - Xi Yang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Z.Z.); (X.Y.)
| | - Changqing Chen
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Hanzhong 723001, China; (C.C.); (S.R.)
| | - Shuai Ru
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Hanzhong 723001, China; (C.C.); (S.R.)
| | - Jie Jiang
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, China; (J.J.); (W.C.); (J.L.)
| | - Wenyao Cai
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, China; (J.J.); (W.C.); (J.L.)
| | - Jiyu Li
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, China; (J.J.); (W.C.); (J.L.)
| | - Juanle Du
- Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong 723001, China; (J.D.); (D.Q.)
| | - Dejue Qiao
- Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong 723001, China; (J.D.); (D.Q.)
| |
Collapse
|
5
|
Li Y, Cui J, Xiao D, Cao B, Wei J, Wang Q, Zong J, Wang J, Song M. Advances in arthropod-inspired bionic materials for wound healing. Mater Today Bio 2024; 29:101307. [PMID: 39554840 PMCID: PMC11567928 DOI: 10.1016/j.mtbio.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/21/2024] [Accepted: 10/20/2024] [Indexed: 11/19/2024] Open
Abstract
Arthropods contain lots of valuable bionic information from the composition to the special structure of the body. In particular, the rapid self-healing ability and antibacterial properties are amazing. Biomimetic materials for arthropods have been helpful methods for wound management. Here, we have identified four major dimensions needed to create biomimetic materials for arthropods, including ingredient, behavior, structure and internal reaction. According to different dimensions, we classify and introduce the reported arthropod biomimetic materials. Antibacterial, hemostatic and healing promotion are the main functions of the active compositions of arthropods developed by humans, and most of them play a drug effect. We believe that an ideal biomimetic material of arthropod should have the effect on promoting wound healing through the advantages of structure and composition. The special macroscopic and microscopic structure of the epidermis may provide good mechanical support for biomimetic materials. The drug release regularity in the bionic materials can be referred to the aggressive and secretory behavior of arthropods. The synthesis of substances in arthropods is also noteworthy, and we can learn these special reactions to complete the fast preparation of materials. Arthropod-inspired bionic materials have broad innovation and application prospects in the field of wound repair.
Collapse
Affiliation(s)
- Yuchen Li
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Jiaming Cui
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Di Xiao
- Liuzhou Traditional Chinese Medical Hospital, Guangxi University of Chinese Medicine, Liuzhou, Guangxi, China
| | - Bixuan Cao
- Department of Orthopedics, the Third Affiliated Hospital of Anhui Medical University, the First People's Hospital of Hefei, Hefei, Anhui, China
| | - Jing Wei
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Qian Wang
- Department of Orthopaedics, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Junwei Zong
- Department of Orthopaedics, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jinwu Wang
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhi Song
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Wu M, Sun H, Wang A, Lao J, Liu D, Chen C, Zhang Y, Xia Q, Ma S. Effects of poly (ADP-ribose) polymerase 1 (PARP1) on silk proteins in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2024; 33:732-743. [PMID: 38961541 DOI: 10.1111/imb.12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Animal silk is economically important, while silk secretion is a complex and subtle mechanism regulated by many genes. We identified the poly (ADP-ribose) polymerase (PARP1) gene of the silkworm and successfully cloned its coding sequence (CDS) sequence. Using clustered regularly interspaced short palindromic repeat (CRISPR/Cas9) technology, we screened single guide RNA (sgRNA) with high knockout efficiency by cellular experiments and obtained PARP1 mutants by knocking out the PARP1 gene of the silkworm at the individual level. We found that the mutants mainly exhibited phenotypes such as smaller cocoon size and reduced cocoon shell rate than the wild type. We also detected the expression of silk protein genes in the mutant by quantitative real-time PCR (qPCR) and found that the expression of some silk protein genes was slightly down-regulated. Meanwhile, together with the results of transcriptomic analysis, we hypothesized that PARP1 may affect the synthesis of silk proteins, resulting in their failure to function properly. Our study may provide an important reference for future in-depth refinement of the molecular mechanism of silk protein expression in silk-producing animals, as well as a potential idea for future development of molecular breeding lines of silkworms to improve silk production.
Collapse
Affiliation(s)
- Mingke Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Hao Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Aoming Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Junjie Lao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Dan Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Chaojie Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yan Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
| | - Sanyuan Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Wu BCH, Zabelina V, Zurovcova M, Zurovec M. Characterization and comparative analysis of sericin protein 150 in Bombyx mori. Sci Rep 2024; 14:20990. [PMID: 39251726 PMCID: PMC11385562 DOI: 10.1038/s41598-024-71503-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
Lepidopteran silk is a complex mixture of proteins, consisting mainly of fibroins and sericins. Sericins are a small family of highly divergent proteins that serve as adhesives and coatings for silk fibers. So far, five genes encoding sericin proteins have been identified in Bombyx mori. Having previously identified sericin protein 150 (SP150) as a major sericin-like protein in the cocoons of the pyralid moths Galleria mellonella and Ephestia kuehniella, we describe the identification of its homolog in B. mori. Our refined gene model shows that it consists of four exons and a long open reading frame with a conserved motif, CXCXCX, at the C-terminus, reminiscent of the structure observed in a class of mucin proteins. Notably, despite a similar expression pattern, both mRNA and protein levels of B. mori SP150 were significantly lower than those of its pyralid counterpart. We also discuss the synteny of homologous genes on corresponding chromosomes in different moth species and the possible phylogenetic relationships between SP150 and certain mucin-like proteins. Our results improve our understanding of silk structure and the evolutionary relationships between adhesion proteins in the silk of different lepidopteran species.
Collapse
Affiliation(s)
- Bulah Chia-Hsiang Wu
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 37005, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005, Ceske Budejovice, Czech Republic
| | - Valeriya Zabelina
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 37005, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005, Ceske Budejovice, Czech Republic
| | - Martina Zurovcova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 37005, Ceske Budejovice, Czech Republic
| | - Michal Zurovec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 37005, Ceske Budejovice, Czech Republic.
- Faculty of Science, University of South Bohemia, 37005, Ceske Budejovice, Czech Republic.
| |
Collapse
|
8
|
Rehman A, Koutsos V, Alam P. Mode III Tear Resistance of Bombyx mori Silk Cocoons. ACS MATERIALS AU 2024; 4:403-412. [PMID: 39006395 PMCID: PMC11240411 DOI: 10.1021/acsmaterialsau.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 07/16/2024]
Abstract
This paper concerns the tear properties and behavior of Bombyx mori (B. Mori) silk cocoons. The tear resistance of cocoon layers is found to increase progressively from the innermost layer to the outermost layer. Importantly, the increase in tear strength correlates with increased porosity, which itself affects fiber mobility. We propose a microstructural mechanism for tear failure, which begins with fiber stretching and sliding, leading to fiber piling, and eventuating in fiber fracture. The direction of fracture is then deemed to be a function of the orientation of piled fibers, which is influenced by the presence of junctions where fibers cross at different angles and which may then act as nucleating sites for fiber piling. The interfaces between cocoon wall layers in B. mori cocoon walls account for 38% of the total wall tear strength. When comparing the tear energies and densities of B. mori cocoon walls against other materials, we find that the B. mori cocoon walls exhibit a balanced trade-off between tear resistance and lightweightness.
Collapse
Affiliation(s)
- Ateeq
Ur Rehman
- School of Engineering, Institute
for Materials and Processes, The University
of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, U.K.
| | - Vasileios Koutsos
- School of Engineering, Institute
for Materials and Processes, The University
of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, U.K.
| | - Parvez Alam
- School of Engineering, Institute
for Materials and Processes, The University
of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, U.K.
| |
Collapse
|
9
|
Wang YJ, Liu QS, Liu LP, Zhang YC, Qiu S, Zhang WG, Lin JH, Qin YT, Wang X, Wu YY, Zhao P, Xia QY, Ding L, Rong DY, Wang H, Dong ZM. The silk gland proteome of Stenopsyche angustata provides insights into the underwater silk secretion. INSECT MOLECULAR BIOLOGY 2024; 33:41-54. [PMID: 37740676 DOI: 10.1111/imb.12874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/30/2023] [Indexed: 09/25/2023]
Abstract
Caddisworms (Trichoptera) spin adhesive silks to construct a variety of underwater composite structures. Many studies have focused on the fibroin heavy chain of caddisworm silk and found that it contains heavy phosphorylation to maintain a stable secondary structure. Besides fibroins, recent studies have also identified some new silk proteins within caddisworm silk. To better understand the silk composition and its secretion process, this study reports the silk gland proteome of a retreat-building caddisworm, Stenopsyche angustata Martynov (Trichoptera, Stenopsychidae). Using liquid chromatography tandem mass spectrometry (LC-MS/MS), 2389 proteins were identified in the silk gland of S. angustata, among which 192 were predicted as secreted silk proteins. Twenty-nine proteins were found to be enriched in the front silk gland, whereas 109 proteins were enriched in the caudal silk gland. The fibroin heavy chain and nine uncharacterized silk proteins were identified as phosphorylated proteins. By analysing the sequence of the fibroin heavy chain, we found that it contains 13 Gly/Thr/Pro-rich regions, 12 Val/Ser/Arg-rich regions and a Gly/Arg/Thr-rich region. Three uncharacterized proteins were identified as sericin-like proteins due to their larger molecular weights, signal peptides and repetitive motifs rich in serine. This study provides valuable information for further clarifying the secretion and adhesion of underwater caddisworm silk.
Collapse
Affiliation(s)
- Yu-Jun Wang
- Institute of Sericulture, Chengde Medical University, Chengde, Hebei, China
| | - Qing-Song Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Li-Ping Liu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou, China
| | - Yi-Chuan Zhang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou, China
| | - Shuang Qiu
- College of Life Science and Technology, Huazhong Univeristy of Science and Technology, Wuhan, Hubei, China
| | - Wen-Guang Zhang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou, China
| | - Jin-Hang Lin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yu-Ting Qin
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou, China
| | - Xin Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yue-Ying Wu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qing-You Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Ling Ding
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou, China
| | - Dong-Ying Rong
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou, China
| | - Hong Wang
- Institute of Sericulture, Chengde Medical University, Chengde, Hebei, China
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou, China
| | - Zhao-Ming Dong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Lin YH, Silven JJM, Wybouw N, Fandino RA, Dekker HL, Vogel H, Wu YL, de Koster C, Große-Wilde E, Haring MA, Schuurink RC, Allmann S. A salivary GMC oxidoreductase of Manduca sexta re-arranges the green leaf volatile profile of its host plant. Nat Commun 2023; 14:3666. [PMID: 37380635 DOI: 10.1038/s41467-023-39353-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/08/2023] [Indexed: 06/30/2023] Open
Abstract
Green leaf volatiles (GLVs) are short-chain oxylipins that are emitted from plants in response to stress. Previous studies have shown that oral secretions (OS) of the tobacco hornworm Manduca sexta, introduced into plant wounds during feeding, catalyze the re-arrangement of GLVs from Z-3- to E-2-isomers. This change in the volatile signal however is bittersweet for the insect as it can be used by their natural enemies, as a prey location cue. Here we show that (3Z):(2E)-hexenal isomerase (Hi-1) in M. sexta's OS catalyzes the conversion of the GLV Z-3-hexenal to E-2-hexenal. Hi-1 mutants that were raised on a GLV-free diet showed developmental disorders, indicating that Hi-1 also metabolizes other substrates important for the insect's development. Phylogenetic analysis placed Hi-1 within the GMCβ-subfamily and showed that Hi-1 homologs from other lepidopterans could catalyze similar reactions. Our results indicate that Hi-1 not only modulates the plant's GLV-bouquet but also functions in insect development.
Collapse
Affiliation(s)
- Yu-Hsien Lin
- Green Life Sciences Research Cluster, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Juliette J M Silven
- Green Life Sciences Research Cluster, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Nicky Wybouw
- Terrestrial Ecology Unit, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Richard A Fandino
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, US
| | - Henk L Dekker
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Heiko Vogel
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yueh-Lung Wu
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Chris de Koster
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Ewald Große-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- EXTEMIT-K, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16500, Prague, Czech Republic
| | - Michel A Haring
- Green Life Sciences Research Cluster, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Robert C Schuurink
- Green Life Sciences Research Cluster, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Silke Allmann
- Green Life Sciences Research Cluster, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
11
|
Lu W, Zhang T, Zhang Q, Zhang N, Jia L, Ma S, Xia Q. FibH Gene Complete Sequences (FibHome) Revealed Silkworm Pedigree. INSECTS 2023; 14:244. [PMID: 36975929 PMCID: PMC10055898 DOI: 10.3390/insects14030244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The highly repetitive and variable fibroin heavy chain (FibH) gene can be used as a silkworm identification; however, only a few complete FibH sequences are known. In this study, we extracted and examined 264 FibH gene complete sequences (FibHome) from a high-resolution silkworm pan-genome. The average FibH lengths of the wild silkworm, local, and improved strains were 19,698 bp, 16,427 bp, and 15,795 bp, respectively. All FibH sequences had a conserved 5' and 3' terminal non-repetitive (5' and 3' TNR, 99.74% and 99.99% identity, respectively) sequence and a variable repetitive core (RC). The RCs differed greatly, but they all shared the same motif. During domestication or breeding, the FibH gene mutated with hexanucleotide (GGTGCT) as the core unit. Numerous variations existed that were not unique to wild and domesticated silkworms. However, the transcriptional factor binding sites, such as fibroin modulator-binding protein, were highly conserved and had 100% identity in the FibH gene's intron and upstream sequences. The local and improved strains with the same FibH gene were divided into four families using this gene as a marker. Family I contained a maximum of 62 strains with the optional FibH (Opti-FibH, 15,960 bp) gene. This study provides new insights into FibH variations and silkworm breeding.
Collapse
Affiliation(s)
- Wei Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Tong Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Quan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Na Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Ling Jia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Amino Acid Substitutions at P1 Position Change the Inhibitory Activity and Specificity of Protease Inhibitors BmSPI38 and BmSPI39 from Bombyx mori. Molecules 2023; 28:molecules28052073. [PMID: 36903318 PMCID: PMC10004685 DOI: 10.3390/molecules28052073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
It was found that silkworm serine protease inhibitors BmSPI38 and BmSPI39 were very different from typical TIL-type protease inhibitors in sequence, structure, and activity. BmSPI38 and BmSPI39 with unique structure and activity may be good models for studying the relationship between the structure and function of small-molecule TIL-type protease inhibitors. In this study, site-directed saturation mutagenesis at the P1 position was conducted to investigate the effect of P1 sites on the inhibitory activity and specificity of BmSPI38 and BmSPI39. In-gel activity staining and protease inhibition experiments confirmed that BmSPI38 and BmSPI39 could strongly inhibit elastase activity. Almost all mutant proteins of BmSPI38 and BmSPI39 retained the inhibitory activities against subtilisin and elastase, but the replacement of P1 residues greatly affected their intrinsic inhibitory activities. Overall, the substitution of Gly54 in BmSPI38 and Ala56 in BmSPI39 with Gln, Ser, or Thr was able to significantly enhance their inhibitory activities against subtilisin and elastase. However, replacing P1 residues in BmSPI38 and BmSPI39 with Ile, Trp, Pro, or Val could seriously weaken their inhibitory activity against subtilisin and elastase. The replacement of P1 residues with Arg or Lys not only reduced the intrinsic activities of BmSPI38 and BmSPI39, but also resulted in the acquisition of stronger trypsin inhibitory activities and weaker chymotrypsin inhibitory activities. The activity staining results showed that BmSPI38(G54K), BmSPI39(A56R), and BmSPI39(A56K) had extremely high acid-base and thermal stability. In conclusion, this study not only confirmed that BmSPI38 and BmSPI39 had strong elastase inhibitory activity, but also confirmed that P1 residue replacement could change their activity and inhibitory specificity. This not only provides a new perspective and idea for the exploitation and utilization of BmSPI38 and BmSPI39 in biomedicine and pest control, but also provides a basis or reference for the activity and specificity modification of TIL-type protease inhibitors.
Collapse
|
13
|
Sun Y, Shi W, Zhang Q, Guo H, Dong Z, Zhao P, Xia Q. Multi-Omics Integration to Reveal the Mechanism of Sericin Inhibiting LPS-Induced Inflammation. Int J Mol Sci 2022; 24:ijms24010259. [PMID: 36613700 PMCID: PMC9820220 DOI: 10.3390/ijms24010259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Sericin is a natural protein with high application potential, but the research on its efficacy is very limited. In this study, the anti-inflammatory mechanism of sericin protein was investigated. Firstly, the protein composition of sericin extracts was determined by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). This was then combined with Enzyme-linked Immunosorbent Assay (ELISA) and Quantitative Real-time PCR (qRT-PCR), and it was confirmed that the anti-inflammation ability of sericin was positively correlated with the purity of sericin 1 protein. Finally, RNA-seq was performed to quantify the inhibitory capacity of sericin sample SS2 in LPS-stimulated macrophages. The gene functional annotation showed that SS2 suppressed almost all PRRs signaling pathways activated by lipopolysaccharides (LPS), such as the Toll-like receptors (TLRs) and NOD-like receptors (NLRs) signaling pathways. The expression level of adaptor gene MyD88 and receptor gene NOD1 was significantly down-regulated after SS2 treatment. SS2 also reduced the phosphorylation levels of NF-κB P65, P38, and JNK, thereby reducing the expressions of IL-1β, IL-6, INOS, and other inflammatory cytokines. It was confirmed that sericin inhibited LPS-induced inflammation through MyD88/NF-κB pathway. This finding provides necessary theoretical support for sericin development and application.
Collapse
Affiliation(s)
- Yueting Sun
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing 400715, China
| | - Wenyu Shi
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Quan Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing 400715, China
| | - Haiqiong Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Zhaoming Dong
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing 400715, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing 400715, China
| | - Qingyou Xia
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing 400715, China
- Correspondence:
| |
Collapse
|
14
|
Genome sequence and silkomics of the spindle ermine moth, Yponomeuta cagnagella, representing the early diverging lineage of the ditrysian Lepidoptera. Commun Biol 2022; 5:1281. [PMID: 36418465 PMCID: PMC9684489 DOI: 10.1038/s42003-022-04240-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
Many lepidopteran species produce silk, cocoons, feeding tubes, or nests for protection from predators and parasites for caterpillars and pupae. Yet, the number of lepidopteran species whose silk composition has been studied in detail is very small, because the genes encoding the major structural silk proteins tend to be large and repetitive, making their assembly and sequence analysis difficult. Here we have analyzed the silk of Yponomeuta cagnagella, which represents one of the early diverging lineages of the ditrysian Lepidoptera thus improving the coverage of the order. To obtain a comprehensive list of the Y. cagnagella silk genes, we sequenced and assembled a draft genome using Oxford Nanopore and Illumina technologies. We used a silk-gland transcriptome and a silk proteome to identify major silk components and verified the tissue specificity of expression of individual genes. A detailed annotation of the major genes and their putative products, including their complete sequences and exon-intron structures is provided. The morphology of silk glands and fibers are also shown. This study fills an important gap in our growing understanding of the structure, evolution, and function of silk genes and provides genomic resources for future studies of the chemical ecology of Yponomeuta species.
Collapse
|
15
|
Rouhová L, Sehadová H, Pauchová L, Hradilová M, Žurovcová M, Šerý M, Rindoš M, Žurovec M. Using the multi-omics approach to reveal the silk composition in Plectrocnemia conspersa. Front Mol Biosci 2022; 9:945239. [PMID: 36060257 PMCID: PMC9432349 DOI: 10.3389/fmolb.2022.945239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Similar to Lepidoptera, the larvae of Trichoptera are also capable of producing silk. Plectrocnemia conspersa, a predatory species belonging to the suborder Annulipalpia, builds massive silken retreats with preycapturing nets. In this study, we describe the silk glands of P. conspersa and use the multi-omics methods to obtain a complete picture of the fiber composition. A combination of silk gland-specific transcriptome and proteomic analyses of the spun-out fibers yielded 27 significant candidates whose full-length sequences and gene structures were retrieved from the publicly available genome database. About one-third of the candidates were completely novel proteins for which there are no described homologs, including a group of five pseudofibroins, proteins with a composition similar to fibroin heavy chain. The rest were homologs of lepidopteran silk proteins, although some had a larger number of paralogs. On the other hand, P. conspersa fibers lacked some proteins that are regular components in moth silk. In summary, the multi-omics approach provides an opportunity to compare the overall composition of silk with other insect species. A sufficient number of such studies will make it possible to distinguish between the basic components of all silks and the proteins that represent the adaptation of the fibers for specific purposes or environments.
Collapse
Affiliation(s)
- Lenka Rouhová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Hana Sehadová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Lucie Pauchová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
| | - Miluše Hradilová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Praha, Czechia
| | - Martina Žurovcová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
| | - Michal Šerý
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
| | - Michal Rindoš
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Michal Žurovec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| |
Collapse
|
16
|
The Role of Filippi's Glands in the Silk Moths Cocoon Construction. Int J Mol Sci 2021; 22:ijms222413523. [PMID: 34948319 PMCID: PMC8708004 DOI: 10.3390/ijms222413523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022] Open
Abstract
Filippi’s glands (FGs), formerly also called Lyonet’s glands, are accessory secretory structures of the labial (silk) glands of lepidopteran caterpillars, which were implicated to play an important role in the maturation of the silk material and the construction of the cocoon. In our previous study, we have identified several species of giant silk moths that completely lack the FGs. Interestingly, the absence of FGs in these species correlates with the construction of a loose cocoon architecture. We investigated the functions of FGs by their surgical extirpation in the last instar larvae of the silkworm, Bombyx mori. We found that the absence of FGs altered the structure of the resulting cocoon, in which the different layers of silk were separated. In further experiments, we found no effects of the absence of FGs on larval cocoon formation behavior or on changes in cocoon mass or lipid content. Differential proteomic analysis revealed no significant contribution of structural proteins from FGs to silk cocoon material, but we identified several low abundance proteins that may play a role in posttranslational modifications of some silk proteins. Proteomic analysis also revealed a difference in phosphorylation of the N-terminal sequence of fibroin-heavy chain molecule. Thus, FGs appear to affect silk stickiness during spinning by regulating posttranslational modifications. This could also explain the link that exists between the absence of these glands and the formation of loose cocoons in some giant silk moth species.
Collapse
|
17
|
Tsubota T, Yoshioka T, Jouraku A, Suzuki TK, Yonemura N, Yukuhiro K, Kameda T, Sezutsu H. Transcriptomic analysis of the bagworm moth silk gland reveals a number of silk genes conserved within Lepidoptera. INSECT SCIENCE 2021; 28:885-900. [PMID: 32589338 DOI: 10.1111/1744-7917.12846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/25/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Lepidopteran insects produce cocoons with unique properties. The cocoons are made of silk produced in the larval tissue silk gland and our understanding of the silk genes is still very limited. Here, we investigated silk genes in the bagworm moth Eumeta variegata, a species that has recently been found to produce extraordinarily strong and tough silk. Using short-read transcriptomic analysis, we identified a partial sequence of the fibroin heavy chain gene and its product was found to have a C-terminal structure that is conserved within nonsaturniid species. This is in accordance with the presence of fibroin light chain/fibrohexamerin genes and it is suggested that the bagworm moth is producing silk composed of fibroin ternary complex. This indicates that the fibroin structure has been evolutionarily conserved longer than previously thought. Other than fibroins we identified candidates for sericin genes, expressed strongly in the middle region of the silk gland and encoding serine-rich proteins, and other silk genes, that are structurally conserved with other lepidopteran homologues. The bagworm moth is thus considered to be producing conventional lepidopteran type of silk. We further found a number of genes expressed in a specific region of the silk gland and some genes showed conserved expression with Bombyx mori counterparts. This is the first study allowing comprehensive silk gene identification and expression analysis in the lepidopteran Psychidae family and should contribute to the understanding of silk gene evolution as well as to the development of novel types of silk.
Collapse
Affiliation(s)
- Takuya Tsubota
- Institute of Agrobiological Sciences, Transgenic Silkworm Research Unit, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Taiyo Yoshioka
- Institute of Agrobiological Sciences, Silk Materials Research Unit, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Akiya Jouraku
- Insect Genome Research and Engineering Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Takao K Suzuki
- Institute of Agrobiological Sciences, Transgenic Silkworm Research Unit, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Naoyuki Yonemura
- Institute of Agrobiological Sciences, Transgenic Silkworm Research Unit, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Kenji Yukuhiro
- Institute of Agrobiological Sciences, Silk Materials Research Unit, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Tsunenori Kameda
- Institute of Agrobiological Sciences, Silk Materials Research Unit, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Hideki Sezutsu
- Institute of Agrobiological Sciences, Transgenic Silkworm Research Unit, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
18
|
Ye X, Zhao S, Wu M, Ruan J, Tang X, Wang X, Zhong B. Role of sericin 1 in the immune system of silkworms revealed by transcriptomic and proteomic analyses after gene knockout. FEBS Open Bio 2021. [PMID: 34185388 PMCID: PMC8329953 DOI: 10.1002/2211-5463.13239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/01/2022] Open
Abstract
The domestic silkworm is a type of lepidopteran insect that feeds on mulberry leaves and has high economic value because of its ability to spin cocoons. Sericin 1 is an important component of silkworm cocoons, accounting for approximately 25% of the material. In this study, CRISPR/Cas9‐mediated gene editing was successfully used to destroy the sericin 1 gene, and homozygous mutants were obtained after continuous screening. Homozygous mutation resulted in premature termination of the translation of sericin 1 protein at 323 amino acids. Comparative transcriptomic and proteomic analyses of middle silk gland cells from wild‐type individuals and mutants were performed on the fourth day of the fifth instar, and the results suggest that sericin 1 plays an important role in the cellular immune system. In addition, the results suggest that sericin 1 has a synergistic effect with some protease inhibitors and that the secretion of these proteins is strictly regulated. These results will provide new insights into the function and expression pattern of sericin 1 and the mechanism of silk secretion.
Collapse
Affiliation(s)
- Xiaogang Ye
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuo Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Meiyu Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jinghua Ruan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoli Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Boxiong Zhong
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Wu M, Huang S, Ye X, Ruan J, Zhao S, Ye J, Zhong B. Human epidermal growth factor-functionalized cocoon silk with improved cell proliferation activity for the fabrication of wound dressings. J Biomater Appl 2021; 36:722-730. [PMID: 33663262 DOI: 10.1177/0885328221997981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Human epidermal growth factor (hEGF) is a key factor involved in wound healing owing to its powerful ability to stimulate cell proliferation. In this study, we used piggyBac transposon technology to produce transgenic silkworms expressing the hEGF protein fused to truncated heavy chain (FibH-hEGF). The FibH-hEGF fusion protein was successfully expressed and secreted into silkworm cocoons. Compared to wild-type silk, the transgenic silkworm silk had the similar morphology about silks fiber surface and cocoon nets, while the secondary structure between the transgenic silk and wild-type silk was different. Most importantly, transgenic silkworm cocoon silk powder extract significantly increased human fibroblast FIB cell proliferation for a long duration with no apparent cytotoxicity. Our study provides a promising method for obtaining cost-effective and functional biomaterials for the fabrication of wound dressings.
Collapse
Affiliation(s)
- Meiyu Wu
- College of Animal Science, 12377Zhejiang University, Hangzhou, Zhejiang, China
| | - Shenyu Huang
- College of Animal Science, 12377Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaogang Ye
- College of Animal Science, 12377Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinghua Ruan
- College of Animal Science, 12377Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuo Zhao
- College of Animal Science, 12377Zhejiang University, Hangzhou, Zhejiang, China
| | - Juan Ye
- College of Animal Science, 12377Zhejiang University, Hangzhou, Zhejiang, China
| | - Boxiong Zhong
- College of Animal Science, 12377Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Davey PA, Power AM, Santos R, Bertemes P, Ladurner P, Palmowski P, Clarke J, Flammang P, Lengerer B, Hennebert E, Rothbächer U, Pjeta R, Wunderer J, Zurovec M, Aldred N. Omics-based molecular analyses of adhesion by aquatic invertebrates. Biol Rev Camb Philos Soc 2021; 96:1051-1075. [PMID: 33594824 DOI: 10.1111/brv.12691] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Many aquatic invertebrates are associated with surfaces, using adhesives to attach to the substratum for locomotion, prey capture, reproduction, building or defence. Their intriguing and sophisticated biological glues have been the focus of study for decades. In all but a couple of specific taxa, however, the precise mechanisms by which the bioadhesives stick to surfaces underwater and (in many cases) harden have proved to be elusive. Since the bulk components are known to be based on proteins in most organisms, the opportunities provided by advancing 'omics technologies have revolutionised bioadhesion research. Time-consuming isolation and analysis of single molecules has been either replaced or augmented by the generation of massive data sets that describe the organism's translated genes and proteins. While these new approaches have provided resources and opportunities that have enabled physiological insights and taxonomic comparisons that were not previously possible, they do not provide the complete picture and continued multi-disciplinarity is essential. This review covers the various ways in which 'omics have contributed to our understanding of adhesion by aquatic invertebrates, with new data to illustrate key points. The associated challenges are highlighted and priorities are suggested for future research.
Collapse
Affiliation(s)
- Peter A Davey
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Anne Marie Power
- Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Room 226, Galway, H91 TK33, Ireland
| | - Romana Santos
- Departamento de Biologia Animal, Faculdade de Ciências, Centro de Ciências do Mar e do Ambiente (MARE), Universidade de Lisboa, Lisbon, 1749-016, Portugal
| | - Philip Bertemes
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Pawel Palmowski
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Jessica Clarke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons, 7000, Belgium
| | - Birgit Lengerer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons, 7000, Belgium
| | - Ute Rothbächer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Robert Pjeta
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Julia Wunderer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Michal Zurovec
- Biology Centre of the Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Nick Aldred
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, U.K
| |
Collapse
|
21
|
Antibacterial Mechanism of Silkworm Seroins. Polymers (Basel) 2020; 12:polym12122985. [PMID: 33327635 PMCID: PMC7765120 DOI: 10.3390/polym12122985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
Seroin 1 and seroin 2 are abundant in silkworm cocoon silk and show strong antibacterial activities, and thus are thought to protect cocoon silk from damage by bacteria. In this study, we characterized the expression pattern of silkworm seroin 3, and found that seroin 3 is synthesized in the female ovary and secreted into egg to play its roles. After being infected, seroin 1, 2, and 3 were significantly up-regulated in the silkworm. We synthesized the full-length protein of seroin 1, 2, and 3 and their N/C-terminal domain (seroin-N/C), and compared the antimicrobial activities in vitro. All three seroins showed higher antibacterial activity against Gram-positive bacteria than against Gram-negative bacteria. Seroin 2 showed better antibacterial effect than seroin 1 and 3, whereas seroin 1/2/3-N was better than seroin 1/2/3-C. We found that seroin 2-C has stronger peptidoglycan binding ability than seroin 2-N per the ELISA test. The binding sites of seroin 2 with bacteria were blocked by peptidoglycan, which resulted in the loss of the antibacterial activity of seroin 2. Collectively, these findings suggest that seroin 1 and 2 play antibacterial roles in cocoon silk, whereas seroin 3 functions in the eggs. The three silkworm seroins have the same antibacterial mechanism, that is, binding to bacterial peptidoglycan by the C-terminal domain and inhibiting bacterial growth by the N-terminal domain.
Collapse
|
22
|
Zhang Y, Tang M, Dong Z, Zhao D, An L, Zhu H, Xia Q, Zhao P. Synthesis, secretion, and antifungal mechanism of a phosphatidylethanolamine-binding protein from the silk gland of the silkworm Bombyx mori. Int J Biol Macromol 2020; 149:1000-1007. [PMID: 32018011 DOI: 10.1016/j.ijbiomac.2020.01.310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/29/2022]
Abstract
A silkworm cocoon contains several antimicrobial proteins such as protease inhibitors and seroins to provide protection for the enclosed pupa. In this study, we identified a new Bombyx mori phosphatidylethanolamine-binding protein (BmPEBP) with antimicrobial activity in the cocoon silk using semi-quantitative and quantitative RT-PCR, western blotting, and immunofluorescence. The results indicated that BmPEBP was synthesized in the middle silk gland and secreted into the sericin layer of the cocoon silk. Functional analysis showed that BmPEBP could inhibit the spore growth of four types of fungi, Candida albicans, Saccharomyces cerevisiae, Beauveriabassiana, and Aspergillus fumigates, by binding to the fungal cell membrane. Investigation of the interaction of BmPEBP with membrane phospholipids revealed that the protein showed a strong binding affinity to phosphatidylethanolamine, weak affinity to phosphatidylinositol, and no affinity to phosphatidylserine or phosphatidylcholine. Circular dichroism spectroscopy showed that binding to phosphatidylethanolamine caused conformational changes in the BmPEBP molecule by reducing β-sheet formation and inducing the appearance of an α-helix motif. We speculate that BmPEBP performs antifungal function in the cocoon silk through interaction with phosphatidylethanolamine in the fungal membrane.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Muya Tang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Dongchao Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Lingna An
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Hongtao Zhu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
| |
Collapse
|
23
|
Chen Q, Zhao H, Wen M, Li J, Zhou H, Wang J, Zhou Y, Liu Y, Du L, Kang H, Zhang J, Cao R, Xu X, Zhou JJ, Ren B, Wang Y. Genome of the webworm Hyphantria cunea unveils genetic adaptations supporting its rapid invasion and spread. BMC Genomics 2020; 21:242. [PMID: 32183717 PMCID: PMC7079503 DOI: 10.1186/s12864-020-6629-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The fall webworm Hyphantria cunea is an invasive and polyphagous defoliator pest that feeds on nearly any type of deciduous tree worldwide. The silk web of H. cunea aids its aggregating behavior, provides thermal regulation and is regarded as one of causes for its rapid spread. In addition, both chemosensory and detoxification genes are vital for host adaptation in insects. RESULTS Here, a high-quality genome of H. cunea was obtained. Silk-web-related genes were identified from the genome, and successful silencing of the silk protein gene HcunFib-H resulted in a significant decrease in silk web shelter production. The CAFE analysis showed that some chemosensory and detoxification gene families, such as CSPs, CCEs, GSTs and UGTs, were expanded. A transcriptome analysis using the newly sequenced H. cunea genome showed that most chemosensory genes were specifically expressed in the antennae, while most detoxification genes were highly expressed during the feeding peak. Moreover, we found that many nutrient-related genes and one detoxification gene, HcunP450 (CYP306A1), were under significant positive selection, suggesting a crucial role of these genes in host adaptation in H. cunea. At the metagenomic level, several microbial communities in H. cunea gut and their metabolic pathways might be beneficial to H. cunea for nutrient metabolism and detoxification, and might also contribute to its host adaptation. CONCLUSIONS These findings explain the host and environmental adaptations of H. cunea at the genetic level and provide partial evidence for the cause of its rapid invasion and potential gene targets for innovative pest management strategies.
Collapse
Affiliation(s)
- Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Hanbo Zhao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Ming Wen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Jiaxin Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Haifeng Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Jiatong Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Yuxin Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Yulin Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Lixin Du
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Hui Kang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Jian Zhang
- School of Life Sciences, Changchun Normal University, Changchun, Jilin, China
| | - Rui Cao
- Meihekou Forest Pest Control Station, Changchun, Jilin, China
| | - Xiaoming Xu
- Garden and Plant Protection Station of Changchun, Changchun, Jilin, China
| | - Jing-Jiang Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
- Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Yinliang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China.
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China.
| |
Collapse
|
24
|
Wong FC, Ong JH, Chai TT. Identification of Putative Cell-entry-inhibitory Peptides against SARS-CoV-2 from Edible Insects: An in silico Study. EFOOD 2020. [DOI: 10.2991/efood.k.200918.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
25
|
Deep Insight into the Transcriptome of the Single Silk Gland of Bombyx mori. Int J Mol Sci 2019; 20:ijms20102491. [PMID: 31137550 PMCID: PMC6567255 DOI: 10.3390/ijms20102491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 12/04/2022] Open
Abstract
The silk gland synthesizes and secretes a large amount of protein and stores liquid silk protein at an extremely high concentration. Interestingly, silk proteins and serine protease inhibitors are orderly arranged in the silk gland lumen and cocoon shells. Silk fiber formation and the spinning mechanism have not been fully elucidated. Therefore, we conducted a comparative transcriptome analysis of seven segments of the single silk gland to characterize internal changes in the silk gland during the 5th instar of mature larvae. In total, 3121 differentially expressed genes were identified in the seven segments. Genes highly expressed in the middle silk gland (MSG) were mainly involved in unsaturated fatty acid biosynthesis, fatty acid metabolism, apoptosis—fly, and lysosome pathways, whereas genes highly expressed in the posterior silk gland (PSG) were mainly involved in ribosome, proteasome, citrate cycle, and glycolysis/gluconeogenesis pathways. Thus, the MSG and PSG differ greatly in energy source use and function. Further, 773 gradually upregulated genes (from PSG to MSG) were involved in energy metabolism, silk protein synthesis, and secretion, suggesting that these genes play an important role in silk fiber formation. Our findings provide insights into the mechanism of silk protein synthesis and transport and silk fiber formation.
Collapse
|
26
|
Kludkiewicz B, Kucerova L, Konikova T, Strnad H, Hradilova M, Zaloudikova A, Sehadova H, Konik P, Sehnal F, Zurovec M. The expansion of genes encoding soluble silk components in the greater wax moth, Galleria mellonella. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 106:28-38. [PMID: 30448349 DOI: 10.1016/j.ibmb.2018.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Lepidopteran silk is a complex assembly of proteins produced by a pair of highly specialized labial glands called silk glands. Silk composition has been examined only in a handful of species. Here we report on the analysis of silk gland-specific transcriptomes from three developmental stages of the greater wax moth, Galleria mellonella, combined with proteomics, Edman microsequencing and northern blot analysis. In addition to the genes known earlier, we identified twenty seven candidate cDNAs predicted to encode secretory proteins, which may represent novel silk components. Eight were verified by proteomic analysis or microsequencing, and several others were confirmed by similarity with known silk genes and their expression patterns. Our results revealed that most candidates encode abundant secreted proteins produced by middle silk glands including ten sericins, two seroins, one or more mucins, and several sequences without apparent similarity to known proteins. We did not detect any novel PSG-specific protein, confirming that there are only three fibroin subunits. Our data not only show that the number of sericin genes in the greater wax moth is higher than in other species thus far examined, but also the total content of soluble proteins in silk is twice as high in G. mellonella than in B. mori or A. yamamai. Our data will serve as a foundation for future identification and evolutionary analysis of silk proteins in the Lepidoptera.
Collapse
Affiliation(s)
- Barbara Kludkiewicz
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
| | - Lucie Kucerova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
| | - Tereza Konikova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
| | - Hynek Strnad
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20, Praha 4, Czech Republic
| | - Miluse Hradilova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20, Praha 4, Czech Republic
| | - Anna Zaloudikova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
| | - Hana Sehadova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
| | - Peter Konik
- Faculty of Science, University of South Bohemia, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
| | - Frantisek Sehnal
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic.
| | - Michal Zurovec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic.
| |
Collapse
|
27
|
Li Y, Dong Z, Liu H, Zhu R, Bai Y, Xia Q, Zhao P. The fungal-resistance factors BmSPI38 and BmSPI39 predominantly exist as tetramers, not monomers, in Bombyx mori. INSECT MOLECULAR BIOLOGY 2018; 27:686-697. [PMID: 29845671 DOI: 10.1111/imb.12504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Previous studies have indicated that trypsin inhibitor-like cysteine-rich domain (TIL)-type protease inhibitors, BmSPI38 and BmSPI39, suppress conidial germination and integument penetration of entomopathogenic fungi by inhibiting their cuticle-degrading proteases and might functions as fungal-resistance factors in the silkworm. To date, the physiological forms and functional significance of multimerization of BmSPI38 and BmSPI39 remain unknown. In this study, we investigated the physiological forms of BmSPI38 and BmSPI39 in Bombyx mori silkworms using multiple complementary methods, including activity staining, reducing and nonreducing sodium dodecyl sulfate polyacrylamide gel electrophoresis, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, western blotting and immunofluorescence. We found that recombinant BmSPI38 and BmSPI39 tend to form homologous multimers, and their dimers, trimers and tetramers possessed intense inhibitory activity against subtilisin A from Bacillus licheniformis. In contrast, their monomers showed no detectable inhibitory activity. Both BmSPI38 and BmSPI39 also exist mainly as stable tetramers in silkworm tissues, and they also predominantly function as a tetramer in these tissues. This study is the first to demonstrate this preferred quaternary form of a TIL-type protease inhibitor and will likely help to elucidate the mechanisms of BmSPI38 and BmSPI39 in the innate immune response of the silkworm.
Collapse
Affiliation(s)
- Y Li
- Vitamin D Research Institute, Shaanxi University of Technology, Hanzhong, Shaanxi Province, China
- Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, Hanzhong, Shaanxi Province, China
| | - Z Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - H Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - R Zhu
- Mental Health Education Center, Shaanxi University of Technology, Hanzhong, Shaanxi Province, China
| | - Y Bai
- Vitamin D Research Institute, Shaanxi University of Technology, Hanzhong, Shaanxi Province, China
| | - Q Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - P Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
28
|
Zhang X, Chang H, Dong Z, Zhang Y, Zhao D, Ye L, Xia Q, Zhao P. Comparative Proteome Analysis Reveals that Cuticular Proteins Analogous to Peritrophin-Motif Proteins are Involved in the Regeneration of Chitin Layer in the Silk Gland of Bombyx mori at the Molting Stage. Proteomics 2018; 18:e1700389. [PMID: 29687606 DOI: 10.1002/pmic.201700389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/20/2018] [Indexed: 11/07/2022]
Abstract
The silk gland of silkworm produces silk proteins during larval development. Many studies have long focused on the silk gland of the fifth instar larvae, but few have investigated this gland at other larval stages. In the present study, the silk gland proteomes of the fourth instar and fourth molt are analyzed using liquid chromatography-tandem mass spectrometry. In total, 2654 proteins are identified from the silk gland. A high abundance of ribosomal proteins and RR-motif chitin-binding proteins is identified during day 2 of the fourth instar (IV-2) larval developmental stage, and the expression of cuticular proteins analogous to peritrophin (CPAP)-motif chitin-binding proteins is higher during the fourth molt (IV-M). In all, nine enzymes are found to be involved in the chitin regeneration pathway in the silk gland. Among them, two chitinase and two chitin deacetylases are identified as CPAP-motif proteins. Furthermore, the expression of CPAP3-G, the most abundant CPAP-motif cuticular protein in the silk gland during the IV-M stage, is investigated using western blot and immunofluorescence analyses; CPAP3-G shows a reverse changing trend with chitin in the silk gland. The findings of this study suggest that CPAP-motif chitin-binding proteins are involved in the degradation of the chitin layer in the silk gland. The data have been deposited to the ProteomeXchange with identifier PXD008677.
Collapse
Affiliation(s)
- Xiaolu Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China
| | - Huaipu Chang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, P. R. China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, P. R. China.,College of Biotechnology, Southwest University, Chongqing, 400716, China
| | - Dongchao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China
| | - Lin Ye
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, P. R. China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, P. R. China
| |
Collapse
|
29
|
Abstract
Silk derived from the silkworm is known for its excellent biological and mechanical properties. It has been used in various fields as a biomaterial, especially in bone tissue engineering scaffolding. Recently, silk protein-based biomaterial has been used as a barrier membrane scaffolding for guided bone regeneration (GBR). GBR promotes bone regeneration in bone defect areas using special barrier membranes. GBR membranes should have biocompatibility, biodegradability, cell occlusion, the mechanical properties of space-making, and easy clinical handling. Silk-based biomaterial has excellent biologic and mechanical properties that make it a good candidate to be used as GBR membranes. Recently, various forms of silk protein-based membranes have been introduced, demonstrating excellent bone regeneration ability, including osteogenic cell proliferation and osteogenic gene expression, and promoting new bone regeneration in vivo. In this article, we introduced the characteristics of silk protein as bone tissue engineering scaffolding and the recent application of such silk material as a GBR membrane. We also suggested future studies exploring additional uses of silk-based materials as GBR membranes.
Collapse
|
30
|
Kim JW, Jo YY, Kweon HY, Kim DW, Kim SG. The effects of proteins released from silk mat layers on macrophages. Maxillofac Plast Reconstr Surg 2018; 40:10. [PMID: 29872647 PMCID: PMC5968019 DOI: 10.1186/s40902-018-0149-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/09/2018] [Indexed: 12/28/2022] Open
Abstract
Background The objective of this study was to evaluate the changes in gene expression after incubation of cells with proteins released from different silk mat layers. Methods A silk cocoon from Bombyx mori was separated into four layers of equal thickness. The layers were numbered from 1 to 4 (from the inner to the outer layer). The proteins were released by sonication of a silk mat layer in normal saline. The concentration of proteins was determined by spectrophotometry. They were incubated with RAW264.7 cells, and changes in the expression of genes were evaluated by cDNA microarray analysis and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Results Layer 1 and 4 groups had higher protein concentrations compared to those in layer 2 and 3 groups. The genes associated with inflammation and angiogenesis showed significantly higher expression in layer 1 and 4 groups. The results of qRT-PCR were in agreement with those of the cDNA microarray analysis. Conclusions The silk mat from the middle portion of the silkworm cocoon yielded a lower protein release and caused an insignificant change in the expression of genes that are associated with inflammation and angiogenesis.
Collapse
Affiliation(s)
- Ju-Won Kim
- 1Department of Oral and Maxillofacial Surgery, Sacred Heart Hospital, Hallym University, Jukheon gil 7, Gangneung, Gangwondo 25457 Republic of Korea
| | - You-Young Jo
- 2Sericultural and Apicultural Materials Division, National Academy of Agricultural Science, Wanju-gun, 55365 Republic of Korea
| | - Hae Yong Kweon
- 2Sericultural and Apicultural Materials Division, National Academy of Agricultural Science, Wanju-gun, 55365 Republic of Korea
| | - Dae-Won Kim
- 3Department of Oral Biochemistry, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457 Republic of Korea
| | - Seong-Gon Kim
- 4Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457 Republic of Korea
| |
Collapse
|
31
|
Jo YY, Kweon H, Kim DW, Baek K, Kim MK, Kim SG, Chae WS, Choi JY, Rotaru H. Bone regeneration is associated with the concentration of tumour necrosis factor-α induced by sericin released from a silk mat. Sci Rep 2017; 7:15589. [PMID: 29138464 PMCID: PMC5686134 DOI: 10.1038/s41598-017-15687-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/31/2017] [Indexed: 01/04/2023] Open
Abstract
To understand the osteogenic effect of the middle layer of the silk cocoon, sericin was examined for its cellular effects associated with tumor necrosis factor-α (TNF-α) signaling in this study. The fragmented sericin proteins in the silk mat were evaluated for the TNF-α expression level in murine macrophages. The concentration of protein released from silk mats was higher in the outermost and the innermost layers than in the middle layers, and the protein released from the silk mat was identified as sericin. The level of TNF-α in murine macrophages was dependent on the applied concentration of sericin, and the expression of genes associated with osteogenesis in osteoblast-like cells was dependent on the applied concentration of TNF-α. In animal experiments, silk mats from the middle layers led to a higher regenerated bone volume than silk mats from the innermost layer or the outermost layer. If TNF-α protein was incorporated into the silk mats from the middle layers, bone regeneration was suppressed compared with unloaded silk mats from the middle layers. Accordingly, silk mats from the silk cocoon can be considered to be a fragmented sericin-secreting carrier, and the level of sericin secretion is associated with TNF-α induction and bone regeneration.
Collapse
Affiliation(s)
- You-Young Jo
- Sericultural and Apicultural Division, National Institute of Agricultural Science, RDA, Wanju, 55365, Republic of Korea
| | - HaeYong Kweon
- Sericultural and Apicultural Division, National Institute of Agricultural Science, RDA, Wanju, 55365, Republic of Korea
| | - Dae-Won Kim
- Department of Oral Biochemistry, College of Dentistry, Gangneung-Wonju National University, Gangneung, 28644, Republic of Korea
| | - Kyunghwa Baek
- Department of Oral Pharmacology, College of Dentistry, Gangneung-Wonju National University, Gangneung, 28644, Republic of Korea
| | - Min-Keun Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung, 28644, Republic of Korea
| | - Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung, 28644, Republic of Korea.
| | - Weon-Sik Chae
- Analysis Research Division, Daegu Center, Korea Basic Science Institute, Daegu, 41566, Republic of Korea
| | - Je-Yong Choi
- School of Biochemistry and Cell Biology, BK21 Plus KNU Biomedical Convergence Program, Skeletal Diseases Analysis Center, Korea Mouse Phenotyping Center (KMPC), Kyungpook National University, Daegu, 41944, Korea.
| | - Horatiu Rotaru
- Department of Cranio-Maxillofacial Surgery, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, 400001, Romania
| |
Collapse
|
32
|
Zhang Y, Zhao D, Meng Z, Dong Z, Lin Y, Chen S, Xia Q, Zhao P. Wild Silkworm Cocoon Contains More Metabolites Than Domestic Silkworm Cocoon to Improve Its Protection. JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:4560634. [PMID: 29117380 PMCID: PMC5717709 DOI: 10.1093/jisesa/iex069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Indexed: 05/11/2023]
Abstract
The silk of silkworm consists of fibroin fiber coated by sericins. In addition, some nonprotein components were also identified in the sericin fraction. The presence of nonprotein components in the silk has not been well explained. In the present study, methods based on gas chromatography-mass spectrometry were used to identify the metabolites in the cocoon silk from a wild silkworm and two domestic silkworm strains. In total, 45 metabolites were in the cocoon silk, including organic acids, fatty acids, carbohydrates, amino acids, and hydrocarbons. Comparative analyses revealed that 17 metabolites were significant more in the wild silkworm cocoon than in the domestic silkworm cocoon, including three organic acids, three fatty acids, three aldoses, four sugar alcohols, three hydrocarbons, and pyridine. Of them, citric acid in the wild silkworm cocoon is more than 40 times that in the domestic silkworm cocoon, which may have protective value against microbes. The carbohydrate, lipid, and the long-chain hydrocarbons may act as water repellent to make the pupa survive longer in the dry environment. Many metabolites in the cocoon silk may play roles to improve the silk resistance. Lots of nonprotein components were identified in the silk for the first time, providing useful data for understanding the biological function of the cocoon silk.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, China
| | - Dongchao Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, China
| | - Zhu Meng
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, China
| | - Ying Lin
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, China
| | - Shiyi Chen
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, China
- Corresponding author, e-mail:
| |
Collapse
|
33
|
Protein composition analysis of polyhedra matrix of Bombyx mori nucleopolyhedrovirus (BmNPV) showed powerful capacity of polyhedra to encapsulate foreign proteins. Sci Rep 2017; 7:8768. [PMID: 28821766 PMCID: PMC5562830 DOI: 10.1038/s41598-017-08987-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/14/2017] [Indexed: 11/23/2022] Open
Abstract
Polyhedra can encapsulate other proteins and have potential applications as protein stabilizers. The extremely stable polyhedra matrix may provide a platform for future engineered micro-crystal devices. However, the protein composition of the polyhedra matrix remains largely unknown. In this study, the occlusion-derived virus (ODV)-removed BmNPV polyhedra matrix fraction was subjected to SDS-PAGE and then an LC-ESI-MS/MS analysis using a Thermo Scientific Q Exactive mass spectrometer. In total, 28 host and 91 viral proteins were identified. The host components were grouped into one of six categories, i.e., chaperones, ubiquitin and related proteins, host helicases, cytoskeleton-related proteins, RNA-binding proteins and others, according to their predicted Pfam domain(s). Most viral proteins may not be essential for polyhedra assembly, as evidenced by studies in the literature showing that polyhedra formation occurs in the nucleus upon the disruption of individual genes. The structural role of these proteins in baculovirus replication will be of significant interest in future studies. The immobilization of enhanced green fluorescent protein (eGFP) into the polyhedra by fusing with the C-terminus of BM134 that is encoded by open reading frame (ORF) 134 suggested that the polyhedra had a powerful capacity to trap foreign proteins, and BM134 was a potential carrier for incorporating proteins of interest into the polyhedra.
Collapse
|
34
|
Takiya S, Tsubota T, Kimoto M. Regulation of Silk Genes by Hox and Homeodomain Proteins in the Terminal Differentiated Silk Gland of the Silkworm Bombyx mori. J Dev Biol 2016; 4:E19. [PMID: 29615585 PMCID: PMC5831788 DOI: 10.3390/jdb4020019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/08/2016] [Accepted: 05/17/2016] [Indexed: 12/15/2022] Open
Abstract
The silk gland of the silkworm Bombyx mori is a long tubular organ that is divided into several subparts along its anteroposterior (AP) axis. As a trait of terminal differentiation of the silk gland, several silk protein genes are expressed with unique regional specificities. Most of the Hox and some of the homeobox genes are also expressed in the differentiated silk gland with regional specificities. The expression patterns of Hox genes in the silk gland roughly correspond to those in embryogenesis showing "colinearity". The central Hox class protein Antennapedia (Antp) directly regulates the expression of several middle silk gland-specific silk genes, whereas the Lin-1/Isl-1/Mec3 (LIM)-homeodomain transcriptional factor Arrowhead (Awh) regulates the expression of posterior silk gland-specific genes for silk fiber proteins. We summarize our results and discuss the usefulness of the silk gland of Bombyx mori for analyzing the function of Hox genes. Further analyses of the regulatory mechanisms underlying the region-specific expression of silk genes will provide novel insights into the molecular bases for target-gene selection and regulation by Hox and homeodomain proteins.
Collapse
Affiliation(s)
- Shigeharu Takiya
- Shigeharu Takiya, Division of Biological Sciences and Center for Genome Dynamics, Faculty of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.
- Graduate School of Life Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo 060-0810, Japan.
| | - Takuya Tsubota
- Transgenic Silkworm Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan.
| | - Mai Kimoto
- Graduate School of Life Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo 060-0810, Japan.
| |
Collapse
|
35
|
Dong Z, Zhao P, Zhang Y, Song Q, Zhang X, Guo P, Wang D, Xia Q. Analysis of proteome dynamics inside the silk gland lumen of Bombyx mori. Sci Rep 2016; 6:21158. [PMID: 27102218 PMCID: PMC4840313 DOI: 10.1038/srep21158] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/05/2016] [Indexed: 12/14/2022] Open
Abstract
The silk gland is the only organ where silk proteins are synthesized and secreted in the silkworm, Bombyx mori. Silk proteins are stored in the lumen of the silk gland for around eight days during the fifth instar. Determining their dynamic changes is helpful for clarifying the secretion mechanism of silk proteins. Here, we identified the proteome in the silk gland lumen using liquid chromatography-tandem mass spectrometry, and demonstrated its changes during two key stages. From day 5 of the fifth instar to day 1 of wandering, the abundances of fibroins, sericins, seroins, and proteins of unknown functions increased significantly in different compartments of the silk gland lumen. As a result, these accumulated proteins constituted the major cocoon components. In contrast, the abundances of enzymes and extracellular matrix proteins decreased in the silk gland lumen, suggesting that they were not the structural constituents of silk. Twenty-five enzymes may be involved in the regulation of hormone metabolism for proper silk gland function. In addition, the metabolism of other non-proteinous components such as chitin and pigment were also discussed in this study.
Collapse
Affiliation(s)
- Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Qianru Song
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Xiaolu Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Pengchao Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Dandan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China
| |
Collapse
|
36
|
Guo X, Dong Z, Zhang Y, Li Y, Liu H, Xia Q, Zhao P. Proteins in the Cocoon of Silkworm Inhibit the Growth of Beauveria bassiana. PLoS One 2016; 11:e0151764. [PMID: 27032085 PMCID: PMC4816445 DOI: 10.1371/journal.pone.0151764] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/03/2016] [Indexed: 12/31/2022] Open
Abstract
Silk cocoons are composed of fiber proteins (fibroins) and adhesive glue proteins (sericins), which provide a physical barrier to protect the inside pupa. Moreover, other proteins were identified in the cocoon silk, many of which are immune related proteins. In this study, we extracted proteins from the silkworm cocoon by Tris-HCl buffer (pH7.5), and found that they had a strong inhibitory activity against fungal proteases and they had higher abundance in the outer cocoon layers than in the inner cocoon layers. Moreover, we found that extracted cocoon proteins can inhibit the germination of Beauveria bassiana spores. Consistent with the distribution of protease inhibitors, we found that proteins from the outer cocoon layers showed better inhibitory effects against B. bassiana spores than proteins from the inner layers. Liquid chromatography-tandem mass spectrometry was used to reveal the extracted components in the scaffold silk, the outermost cocoon layer. A total of 129 proteins were identified, 30 of which were annotated as protease inhibitors. Protease inhibitors accounted for 89.1% in abundance among extracted proteins. These protease inhibitors have many intramolecular disulfide bonds to maintain their stable structure, and remained active after being boiled. This study added a new understanding to the antimicrobial function of the cocoon.
Collapse
Affiliation(s)
- Xiaomeng Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Youshan Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Huawei Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
37
|
Tsubota T, Tomita S, Uchino K, Kimoto M, Takiya S, Kajiwara H, Yamazaki T, Sezutsu H. A Hox Gene, Antennapedia, Regulates Expression of Multiple Major Silk Protein Genes in the Silkworm Bombyx mori. J Biol Chem 2016; 291:7087-96. [PMID: 26814126 DOI: 10.1074/jbc.m115.699819] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Indexed: 01/31/2023] Open
Abstract
Hoxgenes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hoxgenes can also function in terminally differentiated tissue of the lepidopteranBombyx mori In this species,Antennapedia(Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antpcan regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antpin the posterior silk gland induced ectopic expression of major silk protein genes such assericin-3,fhxh4, and fhxh5 These genes are normally expressed specifically in the middle silk gland as is Antp Therefore, the evidence strongly suggests that Antpactivates these silk protein genes in the middle silk gland. The putativesericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antpdirectly activates their expression. We also found that the pattern of gene expression was well conserved between B. moriand the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori We suggest that Hoxgenes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes.
Collapse
Affiliation(s)
- Takuya Tsubota
- From the Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan,
| | - Shuichiro Tomita
- From the Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Keiro Uchino
- From the Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | | | - Shigeharu Takiya
- Graduate School of Life Science and Division of Biological Science and Center for Genome Dynamics, Faculty of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan, and
| | - Hideyuki Kajiwara
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Toshimasa Yamazaki
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Hideki Sezutsu
- From the Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan,
| |
Collapse
|