1
|
Kama O, Shpigler HY. Social and nutritional factors controlling the growth of honey bee (Apis mellifera) queens. PLoS One 2025; 20:e0310608. [PMID: 39999059 PMCID: PMC11856481 DOI: 10.1371/journal.pone.0310608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
The honey bee queen is essential for colony function, laying hundreds of eggs daily and determining the colony's genetic composition. Beekeepers cultivate and trade queens to enhance colony health and productivity. Despite its significance, artificial queen rearing in foster queenless colonies has remained largely unchanged for over a century, offering limited control over the environmental conditions influencing larval development. In this study, we developed a laboratory-based method for queen bee rearing, establishing a protocol for rearing queens in cages by nurse bees in the lab under controlled environmental conditions. We first investigated the minimal number of worker bees required to rear a single queen and found that groups of 200 workers raise queens with comparable success and weight to those reared in foster colony. As a proof of concept, we examined the impact of larval age on rearing success in our new system. We found that younger larvae developed into heavier and larger queens than older larvae, as recorded in the past using the traditional rearing method. Additionally, we assessed the influence of pollen nutrition on queen-rearing success, finding that a high pollen concentration is crucial for optimal queen development. These findings and the new method provide a foundation for studying queen bee-rearing behavior and development in the lab. We expect that it will be used to uncover factors that impact this important process in honey bee biology.
Collapse
Affiliation(s)
- Omer Kama
- Department of Entomology, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University in Jerusalem, Rehovot, Israel
| | - Hagai Yehoshua Shpigler
- Department of Entomology, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
2
|
Zumkhawala-Cook A, Gallagher P, Raymann K. Diet affects reproductive development and microbiota composition in honey bees. Anim Microbiome 2024; 6:64. [PMID: 39501371 PMCID: PMC11539837 DOI: 10.1186/s42523-024-00350-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Gut microbes are important to the health and fitness of many animals. Many factors have been shown to affect gut microbial communities including diet, lifestyle, and age. Most animals have very complex physiologies, lifestyles, and microbiomes, making it virtually impossible to disentangle what factors have the largest impact on microbiota composition. Honeybees are an excellent model to study host-microbe interactions due to their relatively simple gut microbiota, experimental tractability, and eusociality. Worker honey bees have distinct gut microbiota from their queen mothers despite being close genetic relatives and living in the same environment. Queens and workers differ in numerous ways including development, physiology, pheromone production, diet, and behavior. In the prolonged absence of a queen or Queen Mandibular Pheromones (QMP), some but not all workers will develop ovaries and become "queen-like". Using this inducible developmental change, we aimed to determine if diet and/or reproductive development impacts the gut microbiota of honey bee workers. RESULTS Microbiota-depleted newly emerged workers were inoculated with a mixture of queen and worker gut homogenates and reared under four conditions varying in diet and pheromone exposure. Three weeks post-emergence, workers were evaluated for ovary development and their gut microbiota communities were characterized. The proportion of workers with developed ovaries was increased in the absence of QMP but also when fed a queen diet (royal jelly). Overall, we found that diet, rather than reproductive development or pheromone exposure, led to more "queen-like" microbiota in workers. However, we revealed that diet alone cannot explain the microbiota composition of workers. CONCLUSION The hypothesis that reproductive development explains microbiota differences between queens and workers was rejected. We found evidence that diet is one of the main drivers of differences between the gut microbial community compositions of queens and workers but cannot fully explain the distinct microbiota of queens. Thus, we predict that behavioral and other physiological differences dictate microbiota composition in workers and queens. Our findings not only contribute to our understanding of the factors affecting the honey bee microbiota, which is important for bee health, but also illustrate the versatility and benefits of utilizing honeybees as a model system to study host-microbe interactions.
Collapse
Affiliation(s)
- Anjali Zumkhawala-Cook
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
- Department of Biochemistry and Molecular Biology, Kenyon College, Gambier, Ohio, USA
| | - Patrick Gallagher
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Kasie Raymann
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
3
|
Vázquez DE, Verellen F, Farina WM. Early exposure to glyphosate during larval development induces late behavioural effects on adult honey bees. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124674. [PMID: 39111532 DOI: 10.1016/j.envpol.2024.124674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/12/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
As the most abundant pollinator insect in crops, Apis mellifera is a sentinel species of the pollinator communities. In these ecosystems, honey bees of different ages and developmental stages are exposed to diverse agrochemicals. However, most toxicological studies analyse the immediate effects during exposure. Late effects during adulthood after early exposure to pollutants during larval development are poorly studied in bees. The herbicide glyphosate (GLY) is the most applied pesticide worldwide. GLY has been detected in honey and beebread from hives near treated crops. Alterations in growth, morphogenesis or organogenesis during pre-imaginal development could induce late adverse effects after the emergence. Previous studies have demonstrated that GLY alters honey bee development, immediately affecting survival, growth and metabolism, followed by late teratogenic effects. The present study aims to determine the late impact on the behaviour and physiology of adult bees after pre-imaginal exposure to GLY. For that, we reared brood in vitro or in the hive with sub-chronic exposure to the herbicide with the average detected concentration in hives. Then, all newly emerged bees were reared in an incubator until maturity and tested when they became nurse-aged bees. Three behavioural responses were assessed as markers of cognitive and physiological impairment. Our results show i) decreased sensitivity to sucrose regardless of the rearing procedure, ii) increased choice latency and locomotor alterations during chemotaxis and iii) impaired associative learning. These late toxicity signs could indicate adverse effects on task performance and colony efficiency.
Collapse
Affiliation(s)
- Diego E Vázquez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Insectos Sociales, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Facundo Verellen
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Insectos Sociales, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Walter M Farina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Insectos Sociales, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina.
| |
Collapse
|
4
|
The Head of Fannia pusio (Fanniidae: Diptera) as A Novel Source of Morphometric Data for Assessing of Variation Along Geographic and Biological Lines. Zool Stud 2021; 60:e16. [PMID: 34853607 DOI: 10.6620/zs.2021.60-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/14/2021] [Indexed: 11/18/2022]
Abstract
Fannia Robineau-Desvoidy, 1830 is the most diverse genus in the family Fanniidae (Diptera), with 288 species, many of which are include many of sanitary, economic and legal interest. The morphological homogeneity within the genus often makes species determination difficult. The best option for correct identification is to combine molecular and morphological analyses. The variation in the shape of a selection of body characters can be assessed by Geometric Morphometrics using the head as an innovative structure. Sex must be accounted for as a key covariate in this kind of study, since Fannia, as many other Diptera, has a sexually dimorphic head structure, with holoptic males and dicoptic females. Firstly, we analysed a set of Fannia sp. specimens sampled across the Iberian Peninsula (2012-2015), of which Fannia pusio (Wiedemann, 1830) was found to be the most abundant species. Our analyses provide significant morphological information. Fannia pusio exhibits clear intraspecific morphometric variation along an Iberian-wide East-West axis. A similar pattern emerged when comparing a laboratory-bred colony and wild samples.
Collapse
|
5
|
Monchanin C, Blanc-Brude A, Drujont E, Negahi MM, Pasquaretta C, Silvestre J, Baqué D, Elger A, Barron AB, Devaud JM, Lihoreau M. Chronic exposure to trace lead impairs honey bee learning. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:112008. [PMID: 33578129 DOI: 10.1016/j.ecoenv.2021.112008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Pollutants can have severe detrimental effects on insects, even at sublethal doses, damaging developmental and cognitive processes involved in crucial behaviours. Agrochemicals have been identified as important causes of pollinator declines, but the impacts of other anthropogenic compounds, such as metallic trace elements in soils and waters, have received considerably less attention. Here, we exposed colonies of the European honey bee Apis mellifera to chronic field-realistic concentrations of lead in food and demonstrated that consumption of this trace element impaired bee cognition and morphological development. Honey bees exposed to the highest of these low concentrations had reduced olfactory learning performances. These honey bees also developed smaller heads, which may have constrained their cognitive functions as we show a general relationship between head size and learning performance. Our results demonstrate that lead pollutants, even at trace levels, can have dramatic effects on honey bee cognitive abilities, potentially altering key colony functions and the pollination service.
Collapse
Affiliation(s)
- Coline Monchanin
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier - Toulouse III, France; Department of Biological Sciences, Macquarie University, NSW, Australia.
| | - Amaury Blanc-Brude
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier - Toulouse III, France
| | - Erwann Drujont
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier - Toulouse III, France
| | - Mohammed Mustafa Negahi
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier - Toulouse III, France
| | - Cristian Pasquaretta
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier - Toulouse III, France
| | - Jérôme Silvestre
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - David Baqué
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Arnaud Elger
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, NSW, Australia
| | - Jean-Marc Devaud
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier - Toulouse III, France
| | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier - Toulouse III, France.
| |
Collapse
|
6
|
Introduction of Varroa destructor has not altered honey bee queen mating success in the Hawaiian archipelago. Sci Rep 2021; 11:1366. [PMID: 33446846 PMCID: PMC7809478 DOI: 10.1038/s41598-020-80525-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/22/2020] [Indexed: 11/08/2022] Open
Abstract
Beekeepers struggle to minimize the mortality of their colonies as a consequence of the parasitic mite Varroa destructor in order to maintain a sustainable managed pollinator population. However, little is known about how varroa mites might diminish local populations of honey bee males (drones) that might affect the mating success of queens. As one of the world's last localities invaded by varroa mites, the Hawaiian Islands offer a unique opportunity to examine this question by comparing queens mated on mite-infested and mite-free islands. We raised queen bees on four Hawaiian Islands (Kaua'i, O'ahu, Maui, and Hawai'i) and subsequently collected their offspring to determine queen mating frequency and insemination success. No significant difference for mating success was found between the islands with and without varroa mites, and relatively high levels of polyandry was detected overall. We also found a significant association between the number of sperm stored in the queens' spermathecae and the number of managed colonies within the localities of the queens mated. Our findings suggest that varroa mites, as they currently occur in Hawai'i, may not significantly reduce mating success of honey bee queens, which provides insight for both the reproductive biology of honey bees as well as the apiculture industry in Hawai'i.
Collapse
|
7
|
Sasaki K, Harada M. Dopamine production in the brain is associated with caste-specific morphology and behavior in an artificial intermediate honey bee caste. PLoS One 2020; 15:e0244140. [PMID: 33332426 PMCID: PMC7746283 DOI: 10.1371/journal.pone.0244140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/03/2020] [Indexed: 11/24/2022] Open
Abstract
Caste polymorphism in eusocial insects is based on morphological plasticity and linked to physiological and behavioral characteristics. To test the possibility that dopamine production in the brain is associated with the caste-specific morphology and behavior in female honey bees, an intermediate caste was produced via artificial rearing using different amounts of diet, before quantifying the dopamine levels and conducting behavioral tests. In field colonies, individual traits such as mandibular shape, number of ovarioles, diameter of spermatheca, and dopamine levels in the brain differed significantly between workers and queens. Females given 1.5 times the amount of artificial diet that control worker receives during the larval stage in the laboratory had characteristics intermediate between castes. The dopamine levels in the brain were positively correlated with the mandibular shape indexes, number of ovarioles, and spermatheca diameter among artificially reared females. The dopamine levels were significantly higher in females with mandibular notches than those without. In fighting experiments with the intermediate caste females, the winners had significantly higher dopamine levels in the brain than the losers. Brain levels of tyrosine were positively correlated with those of catecholamines but not phenolamines, thereby suggesting a strong metabolic relationship between tyrosine and dopamine. Thus, the caste-specific characteristics of the honey bee are potentially continuous in the same manner as those in primitively eusocial species. Dopamine production in the brain is associated with the continuous caste-specific morphology, as well as being linked to the amount of tyrosine taken from food, and it supports the aggressive behavior of queen-type females.
Collapse
Affiliation(s)
- Ken Sasaki
- Department of Bioresource Science, Tamagawa University, Machida, Tokyo, Japan
- Honeybee Science Research Center, Tamagawa University, Machida, Tokyo, Japan
- * E-mail:
| | - Mariko Harada
- Department of Bioresource Science, Tamagawa University, Machida, Tokyo, Japan
| |
Collapse
|
8
|
Slater GP, Yocum GD, Bowsher JH. Diet quantity influences caste determination in honeybees ( Apis mellifera). Proc Biol Sci 2020; 287:20200614. [PMID: 32453984 PMCID: PMC7287363 DOI: 10.1098/rspb.2020.0614] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/27/2020] [Indexed: 11/28/2022] Open
Abstract
In species that care for their young, provisioning has profound effects on offspring fitness. Provisioning is important in honeybees because nutritional cues determine whether a female becomes a reproductive queen or sterile worker. A qualitative difference between the larval diets of queens and workers is thought to drive this divergence; however, no single compound seems to be responsible. Diet quantity may have a role during honeybee caste determination yet has never been formally studied. Our goal was to determine the relative contributions of diet quantity and quality to queen development. Larvae were reared in vitro on nine diets varying in the amount of royal jelly and sugars, which were fed to larvae in eight different quantities. For the middle diet, an ad libitum quantity treatment was included. Once adults eclosed, the queenliness was determined using principal component analysis on seven morphological measurements. We found that larvae fed an ad libitum quantity of diet were indistinguishable from commercially reared queens, and that queenliness was independent of the proportion of protein and carbohydrate in the diet. Neither protein nor carbohydrate content had a significant influence on the first principle component 1 (PC1), which explained 64.4% of the difference between queens and workers. Instead, the total quantity of diet explained a significant amount of the variation in PC1. Large amounts of diet in the final instar were capable of inducing queen traits, contrary to the received wisdom that queen determination can only occur in the third instar. These results indicate that total diet quantity fed to larvae may regulate the difference between queen and worker castes in honeybees.
Collapse
Affiliation(s)
- Garett P. Slater
- Department of Biological Sciences, North Dakota State University, PO Box 6050, Fargo, ND 58108, USA
| | - George D. Yocum
- Biosciences Research Laboratory, USDA-ARS Edward T. Schafer Agricultural Research Center, 1605 Albrecht Boulevard, Fargo, ND 58102-2765, USA
| | - Julia H. Bowsher
- Department of Biological Sciences, North Dakota State University, PO Box 6050, Fargo, ND 58108, USA
| |
Collapse
|
9
|
De Souza DA, Hartfelder KH, Tarpy DR. Effects of larval Age at Grafting and Juvenile Hormone on Morphometry and Reproductive Quality Parameters of in Vitro Reared Honey Bees (Hymenoptera: Apidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2030-2039. [PMID: 31145456 DOI: 10.1093/jee/toz148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 06/09/2023]
Abstract
The honey bee queen plays a central role in the Apis mellifera L. (Hymenoptera: Apidae) colony, and her high reproductive capacity is fundamental for building up the workforce of a colony. Caste development in honey bee females involves elaborate physiological pathways unleashed at the beginning of the first larval instars, with juvenile hormone (JH) playing a crucial role. Here we took advantage of established in vitro rearing techniques to conduct a 2 × 2 experimental design and test initial rearing age (young vs old) and JH treatment (JH III vs solvent control) to enlighten the role of nutrient quality and JH in shaping honey bee female fertility, morphological features related to queenliness, and key physiological parameters (hemolymph vitellogenin/Vg, sugar levels, and Vg transcript levels). Our results show that while the age at initial larval rearing had major impacts on external morphology development, where younger larvae exhibited a higher probability to develop into queen-like adults morphotypes, the JH application during the larval stage improved physiological pathways related to ovary development and metabolism during the ontogenic development. We detected that the supplementation of queen larvae with JH promoted important benefits regarding queen fertility as the increase of ovariole number and vg levels at hemolymph, both crucial factors at eggs production. The data presented here provide guidance in efforts to improve honey bee queen quality, especially in light of frequent episodes of queen failures in the beekeeping industry.
Collapse
Affiliation(s)
- Daiana A De Souza
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP
- Department of Entomology & Plant Pathology, North Carolina State University, Campus, Raleigh, NC
| | - Klaus H Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP
| | - David R Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Campus, Raleigh, NC
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC
| |
Collapse
|
10
|
De Souza DA, Kaftanoglu O, De Jong D, Page RE, Amdam GV, Wang Y. Differences in the morphology, physiology and gene expression of honey bee queens and workers reared in vitro versus in situ. Biol Open 2018; 7:bio036616. [PMID: 30341101 PMCID: PMC6262861 DOI: 10.1242/bio.036616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/26/2018] [Indexed: 11/26/2022] Open
Abstract
The effect of larval nutrition on female fertility in honey bees is a focus for both scientific studies and for practical applications in beekeeping. In general, morphological traits are standards for classifying queens and workers and for evaluating their quality. In recent years, in vitro rearing techniques have been improved and used in many studies; they can produce queen-like and worker-like bees. Here, we questioned whether queens and workers reared in vitro are the same as queens and workers reared in a natural hive environment. We reared workers and queens both in vitro and naturally in beehives to test how these different environments affect metabolic physiology and candidate genes in newly emerged queens and workers. We found that sugar (glucose and trehalose) levels differed between queens and workers in both in vitro and in-hive-reared bees. The in vitro-reared bees had significantly higher levels of lipids in the abdomen. Moreover, hive reared queens had almost 20 times higher levels of vitellogenin than in vitro-reared queens, despite similar morphologies. In addition, hive-reared bees had significantly higher levels of expression of mrjp1 In conclusion, in vitro rearing produces queens and workers that differ from those reared in the hive environment at physiological and gene expression levels.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Daiana A De Souza
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA
| | - Osman Kaftanoglu
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - David De Jong
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Robert E Page
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, USA
| | - Gro V Amdam
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas 1432 Ås, Norway
| | - Ying Wang
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
11
|
Chaiphongpachara T. Comparison of Landmark- and Outline-Based Geometric Morphometrics for Discriminating Mosquito Vectors in Ratchaburi Province, Thailand. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6170502. [PMID: 30533435 PMCID: PMC6247772 DOI: 10.1155/2018/6170502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/25/2018] [Indexed: 11/17/2022]
Abstract
It is often challenging to identify mosquito vectors in the field based on morphological features due to their similar morphologies and difficulties in obtaining undamaged samples but is required for their successful control. Geometric morphometrics (GM) overcomes this issue by analyzing a suite of traits simultaneously and has the added advantages of being easy to use, low cost, and quick. Therefore, this research compared the efficiency and precision of landmark- and outline-based GM techniques for separating species of mosquitoes in Huay Nam Nak village, Ratchaburi Province, Thailand. This research collected 273 individuals belonging to seven species: Anopheles barbirostris, An. subpictus, Culex quinquefasciatus, Cx. vishnui, Cx. whitmorei, Aedes aegypti, and Ae. albopictus. Both landmark-based and outline-based GM techniques could identify malaria vectors in this area to the genus level successfully and were also very effective for identifying the malaria vectors Anopheles spp. and the dengue vectors Aedes spp. to the species level. However, they were less effective for distinguishing between species of Culex. Therefore, GM represents a valuable tool for the identification of mosquito vectors in the field, which will facilitate their successful control.
Collapse
Affiliation(s)
- Tanawat Chaiphongpachara
- College of Allied Health Science, Suan Sunandha Rajabhat University, Samut Songkhram 75000, Thailand
| |
Collapse
|
12
|
Beyond Royalactin and a master inducer explanation of phenotypic plasticity in honey bees. Commun Biol 2018; 1:8. [PMID: 30271895 PMCID: PMC6123742 DOI: 10.1038/s42003-017-0004-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/06/2017] [Indexed: 12/26/2022] Open
Abstract
Distinct female castes produced from one genotype are the trademark of a successful evolutionary invention in eusocial insects known as reproductive division of labour. In honey bees, fertile queens develop from larvae fed a complex diet called royal jelly. Recently, one protein in royal jelly, dubbed Royalactin, was deemed to be the exclusive driver of queen bee determination. However, this notion has not been universally accepted. Here I critically evaluate this line of research and argue that the sheer complexity of creating alternate phenotypes from one genotype cannot be reduced to a single dietary component. An acceptable model of environmentally driven caste differentiation should include the facets of dynamic thinking, such as the concepts of attractor states and genetic hierarchical networks. In honeybees, genotypically identical females develop into queens or sterile workers, depending on their diets. In this review, Ryszard Maleszka discusses the controversial role of the royal jelly protein Royalactin in caste determination and provides a framework for moving beyond the master inducer concept.
Collapse
|
13
|
Steijven K, Spaethe J, Steffan-Dewenter I, Härtel S. Learning performance and brain structure of artificially-reared honey bees fed with different quantities of food. PeerJ 2017; 5:e3858. [PMID: 29085743 PMCID: PMC5657415 DOI: 10.7717/peerj.3858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/06/2017] [Indexed: 11/24/2022] Open
Abstract
Background Artificial rearing of honey bee larvae is an established method which enables to fully standardize the rearing environment and to manipulate the supplied diet to the brood. However, there are no studies which compare learning performance or neuroanatomic differences of artificially-reared (in-lab) bees in comparison with their in-hive reared counterparts. Methods Here we tested how different quantities of food during larval development affect body size, brain morphology and learning ability of adult honey bees. We used in-lab rearing to be able to manipulate the total quantity of food consumed during larval development. After hatching, a subset of the bees was taken for which we made 3D reconstructions of the brains using confocal laser-scanning microscopy. Learning ability and memory formation of the remaining bees was tested in a differential olfactory conditioning experiment. Finally, we evaluated how bees reared with different quantities of artificial diet compared to in-hive reared bees. Results Thorax and head size of in-lab reared honey bees, when fed the standard diet of 160 µl or less, were slightly smaller than hive bees. The brain structure analyses showed that artificially reared bees had smaller mushroom body (MB) lateral calyces than their in-hive counterparts, independently of the quantity of food they received. However, they showed the same total brain size and the same associative learning ability as in-hive reared bees. In terms of mid-term memory, but not early long-term memory, they performed even better than the in-hive control. Discussion We have demonstrated that bees that are reared artificially (according to the Aupinel protocol) and kept in lab-conditions perform the same or even better than their in-hive sisters in an olfactory conditioning experiment even though their lateral calyces were consistently smaller at emergence. The applied combination of experimental manipulation during the larval phase plus subsequent behavioral and neuro-anatomic analyses is a powerful tool for basic and applied honey bee research.
Collapse
Affiliation(s)
- Karin Steijven
- Department of Animal Ecology & Tropical Biology, University of Würzburg, Würzburg, Germany.,Lectorat Bee Health-Domain Animals and Business, Van Hall Larenstein, University of Applied Sciences, Leeuwarden, Netherlands
| | - Johannes Spaethe
- Department of Behavioral Physiology & Sociobiology, University of Würzburg, Würzburg, Germany
| | | | - Stephan Härtel
- Department of Animal Ecology & Tropical Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Zhu K, Liu M, Fu Z, Zhou Z, Kong Y, Liang H, Lin Z, Luo J, Zheng H, Wan P, Zhang J, Zen K, Chen J, Hu F, Zhang CY, Ren J, Chen X. Plant microRNAs in larval food regulate honeybee caste development. PLoS Genet 2017; 13:e1006946. [PMID: 28859085 PMCID: PMC5578494 DOI: 10.1371/journal.pgen.1006946] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/27/2017] [Indexed: 11/18/2022] Open
Abstract
The major environmental determinants of honeybee caste development come from larval nutrients: royal jelly stimulates the differentiation of larvae into queens, whereas beebread leads to worker bee fate. However, these determinants are not fully characterized. Here we report that plant RNAs, particularly miRNAs, which are more enriched in beebread than in royal jelly, delay development and decrease body and ovary size in honeybees, thereby preventing larval differentiation into queens and inducing development into worker bees. Mechanistic studies reveal that amTOR, a stimulatory gene in caste differentiation, is the direct target of miR162a. Interestingly, the same effect also exists in non-social Drosophila. When such plant RNAs and miRNAs are fed to Drosophila larvae, they cause extended developmental times and reductions in body weight and length, ovary size and fecundity. This study identifies an uncharacterized function of plant miRNAs that fine-tunes honeybee caste development, offering hints for understanding cross-kingdom interaction and co-evolution. How caste has formed in honeybees is an enduring puzzle. The prevailing view is that royal jelly stimulates the differentiation of larvae into queen. Here, we uncover a new mechanism that plant miRNAs in worker bee’s food postpone larval development, thereby inducing sterile worker bees. Thus, the theories about honeybee caste formation need to be re-examined from a new angle besides the traditional focus on royal jelly and its components. Furthermore, since miRNAs are transmitted between species of different kingdoms and can contribute to the phenotype regulation, this new model of horizontal miRNA transfer may open up a new avenue to further study the molecular mechanisms underlying cross-kingdom interaction and co-evolution.
Collapse
Affiliation(s)
- Kegan Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, China
| | - Minghui Liu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, China
| | - Zheng Fu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, China
| | - Zhen Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, China
| | - Yan Kong
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, China
| | - Hongwei Liang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, China
| | - Zheguang Lin
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Jun Luo
- Model Animal Research Center and MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, China
| | - Huoqing Zheng
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Ping Wan
- Model Animal Research Center and MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, China
| | - Jiong Chen
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, China
- Model Animal Research Center and MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, China
- * E-mail: (XC); (JR); (CZ); (FH); (JC)
| | - Fuliang Hu
- College of Animal Science, Zhejiang University, Hangzhou, China
- * E-mail: (XC); (JR); (CZ); (FH); (JC)
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, China
- * E-mail: (XC); (JR); (CZ); (FH); (JC)
| | - Jie Ren
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
- * E-mail: (XC); (JR); (CZ); (FH); (JC)
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, China
- * E-mail: (XC); (JR); (CZ); (FH); (JC)
| |
Collapse
|
15
|
Helm BR, Slater GP, Rajamohan A, Yocum GD, Greenlee KJ, Bowsher JH. The geometric framework for nutrition reveals interactions between protein and carbohydrate during larval growth in honey bees. Biol Open 2017; 6:872-880. [PMID: 28396492 PMCID: PMC5483014 DOI: 10.1242/bio.022582] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/29/2017] [Indexed: 01/24/2023] Open
Abstract
In holometabolous insects, larval nutrition affects adult body size, a life history trait with a profound influence on performance and fitness. Individual nutritional components of larval diets are often complex and may interact with one another, necessitating the use of a geometric framework for elucidating nutritional effects. In the honey bee, Apis mellifera, nurse bees provision food to developing larvae, directly moderating growth rates and caste development. However, the eusocial nature of honey bees makes nutritional studies challenging, because diet components cannot be systematically manipulated in the hive. Using in vitro rearing, we investigated the roles and interactions between carbohydrate and protein content on larval survival, growth, and development in A. mellifera We applied a geometric framework to determine how these two nutritional components interact across nine artificial diets. Honey bees successfully completed larval development under a wide range of protein and carbohydrate contents, with the medium protein (∼5%) diet having the highest survival. Protein and carbohydrate both had significant and non-linear effects on growth rate, with the highest growth rates observed on a medium-protein, low-carbohydrate diet. Diet composition did not have a statistically significant effect on development time. These results confirm previous findings that protein and carbohydrate content affect the growth of A. mellifera larvae. However, this study identified an interaction between carbohydrate and protein content that indicates a low-protein, high-carb diet has a negative effect on larval growth and survival. These results imply that worker recruitment in the hive would decline under low protein conditions, even when nectar abundance or honey stores are sufficient.
Collapse
Affiliation(s)
- Bryan R Helm
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Garett P Slater
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Arun Rajamohan
- Agricultural Research Service - Insect Genetics and Biochemistry, Red River Valley Agricultural Research Center, United States Department of Agriculture, Fargo, ND 58102, USA
| | - George D Yocum
- Agricultural Research Service - Insect Genetics and Biochemistry, Red River Valley Agricultural Research Center, United States Department of Agriculture, Fargo, ND 58102, USA
| | - Kendra J Greenlee
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Julia H Bowsher
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|