1
|
Li WT, Teng XF, He L, Guan B, He CL, Liu JJ, Chen KL, Zheng Z, He J. Analysis of the Distribution Pattern and Prophage Types in Candidatus Liberibacter Asiaticus 'Cuimi' Kumquat. PLANTS (BASEL, SWITZERLAND) 2024; 14:94. [PMID: 39795354 PMCID: PMC11722820 DOI: 10.3390/plants14010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
The 'Cuimi' kumquat is a unique citrus cultivar known for its thin, crisp pulp and sweet, aromatic flavor. In addition to its use in fresh consumption and processing, this variety exhibits certain medicinal properties. This study aims to investigate the genetic diversity of the Huanglongbing (HLB) bacterium across different tissues of the 'Cuimi' kumquat, offering a theoretical basis for understanding the HLB epidemic in Dechang County, Sichuan. The research focuses on the absolute quantification of the HLB bacterium in seven specific tissues of the 'Cuimi' kumquat, including new leaves, upper phloem of branches, fruit peduncle, pith, fruit axis, old leaves, and lower phloem of branches. Additionally, the types and contents of prophages were identified in these tissues. In the same diseased branch group, Candidatus Liberibacter asiaticus (CLas) exhibited an uneven distribution, with the highest concentration detected in the pith, significantly surpassing levels found in the stem and leaf tissues (new leaves, upper phloem of branches, old leaves, lower phloem of branches). Infected fruit peduncles and pith slices showed noticeable shrinkage and collapse in the phloem. Prophage analysis indicated that multiple types of prophages could be simultaneously detected within the same infected 'Cuimi' kumquat branch. New shoot tissues contained both Type 2 and Type 4 prophages, with a relatively higher abundance of Type 4 and a lower abundance of Type 2. The relative abundance of Type 1 prophage in the fruit tissues was generally higher than in other tissues. CLas primarily accumulates in the fruit tissues of the 'Cuimi' kumquat, and the situation in Dechang County suggests that individual trees may be infected with multiple prophage strains simultaneously.
Collapse
Affiliation(s)
- Wen-Ting Li
- National-Local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (W.-T.L.); (K.-L.C.)
| | - Xiao-Feng Teng
- Agricultural Bureau of Dechang County, Liangshan Yi Autonomous Prefecture, Dechang 615500, China
| | - Li He
- National-Local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (W.-T.L.); (K.-L.C.)
| | - Bin Guan
- National-Local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (W.-T.L.); (K.-L.C.)
| | - Cui-Ling He
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China;
| | - Jian-Jun Liu
- National-Local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (W.-T.L.); (K.-L.C.)
| | - Ke-Ling Chen
- National-Local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (W.-T.L.); (K.-L.C.)
| | - Zheng Zheng
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China;
| | - Jian He
- National-Local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (W.-T.L.); (K.-L.C.)
| |
Collapse
|
2
|
Chang HC, Chen JC. An efficient grafting method for phytoplasma transmission in Catharanthus roseus. PLANT METHODS 2024; 20:13. [PMID: 38245775 PMCID: PMC10799486 DOI: 10.1186/s13007-024-01139-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Phytoplasmas are parasitic plant pathogens that reside intracellularly within the sieve tube cells. Phytoplasmas induce various symptoms, including floral virescence, phyllody, leaf yellowing, and witches'-broom. Currently, it is challenging to culture phytoplasma in vitro. In the laboratory, phytoplasmas are generally maintained in alternative host plants, such as Catharanthus roseus. Grafting is used to transmit phytoplasmas among the alternative hosts. During the experiment, scions from infected plants are grafted onto healthy plants using a side grafting method. However, the practice has certain limitations, including its inability to be applied to small plants and its irregular disease incidence. RESULTS Here, we demonstrate a new approach, penetration grafting, to overcome the limitations of side grafting. This grafting method allows phytoplasma to be efficiently and uniformly transmitted into the inoculated plants. No significant difference was observed in phytoplasma accumulation between both grafting techniques. However, penetration grafting allows rapid symptom development, saving waiting time and reducing space usage. CONCLUSIONS This study provides a reliable and stable method for experiments that require grafting transmission.
Collapse
Affiliation(s)
- Ho-Chun Chang
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Jen-Chih Chen
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC.
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 106, Taiwan, ROC.
| |
Collapse
|
3
|
Makam SN, Setamou M, Alabi OJ, Day W, Cromey D, Nwugo C. Mitigation of Huanglongbing: Implications of a Biologically Enhanced Nutritional Program on Yield, Pathogen Localization, and Host Gene Expression Profiles. PLANT DISEASE 2023; 107:3996-4009. [PMID: 37415358 DOI: 10.1094/pdis-10-22-2336-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Huanglongbing (HLB, citrus greening disease), the most destructive disease affecting citrus production, is primarily linked to the gram-negative, insect-vectored, phloem-inhabiting α-proteobacterium 'Candidatus Liberibacter asiaticus' (CLas). With no effective treatment available, management strategies have largely focused on the use of insecticides in addition to the destruction of infected trees, which are environmentally hazardous and cost-prohibitive for growers, respectively. A major limitation to combating HLB is the inability to isolate CLas in axenic culture, which hinders in vitro studies and creates a need for robust in situ CLas detection and visualization methods. The aim of this study was to investigate the efficacy of a nutritional program-based approach for HLB treatment, and to explore the effectiveness of an enhanced immunodetection method to detect CLas-infected tissues. To achieve this, four different biologically enhanced nutritional programs (bENPs; P1, P2, P3, and P4) were tested on CLas-infected citrus trees. Structured illumination microscopy preceded by a modified immunolabeling process and transmission electron microscopy were used to show treatment-dependent reduction of CLas cells in phloem tissues. No sieve pore plugging was seen in the leaves of P2 trees. This was accompanied by an 80% annual increase in fruit number per tree and 1,503 (611 upregulated and 892 downregulated) differentially expressed genes. These included an MLRQ subunit gene, UDP-glucose transferase, and genes associated with the alpha-amino linolenic acid metabolism pathway in P2 trees. Taken together, the results highlight a major role for bENPs as a viable, sustainable, and cost effective option for HLB management.
Collapse
Affiliation(s)
- Srinivas N Makam
- Integrated Life Science Research Center (ILSRC), Goodyear, AZ 85338
| | - Mamoudou Setamou
- Texas A&M University-Kingsville Citrus Center, Weslaco, TX 78599
| | - Olufemi J Alabi
- Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX 78596
| | - William Day
- The Imaging Cores Life Sciences North, Research, Innovation and Impact Department, University of Arizona, Tucson, AZ 85719
| | - Douglas Cromey
- The Imaging Cores Life Sciences North, Research, Innovation and Impact Department, University of Arizona, Tucson, AZ 85719
| | - Chika Nwugo
- Integrated Life Science Research Center (ILSRC), Goodyear, AZ 85338
| |
Collapse
|
4
|
Luo X, Zhang Y, Liu X, Zou Y, Song H, Wang S, Chen J. Screening Method and Antibacterial Activity of 1,3,4-Oxadiazole Sulfone Compounds against Citrus Huanglongbing. Int J Mol Sci 2023; 24:10515. [PMID: 37445692 DOI: 10.3390/ijms241310515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Citrus Huanglongbing (HLB) is one of the most destructive diseases in the citrus industry. At present, Candidatus Liberibacter asiaticus (CLas) cannot be cultured in vitro, and there is a lack of rapid methods to test antibacterial activity, which greatly hinders the discovery of new antibacterial agents against HLB. To establish a rapid screening method for antibacterial agents against HLB with simple operation, a short cycle, and a large number of tests, the CLas contents in leaves from different citrus branches, different leaves from the same citrus branch, and two halves of the same citrus leaf were detected. Compared with the leaves on different branches and different leaves on the same branch, the difference in CLas content of the left and right halves of the same leaf was small; the difference was basically between 0.7 and 1.3. A rapid and efficient method for primary screening agents against HLB termed the "half-leaf method" was established through our long-term optimization and improvement. To verify the stability and reliability of the activity data measured using this method, 6-chloropurine riboside, which is highly soluble in water, was used as the test agent, and its antibacterial activity against HLB was tested 45 times. The results of the antibacterial activity test showed little difference in the mean values of each data group, indicating that this method could be used as a rapid method for screening agents against HLB. We used this method to test the antibacterial activity of compounds synthesized by our research group against HLB and found that some of the compounds showed good activity.
Collapse
Affiliation(s)
- Xin Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xing Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yue Zou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hongyi Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Sheng Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jixiang Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Integrated Transcriptome and Metabolome Analysis Reveals Phenylpropanoid Biosynthesis and Phytohormone Signaling Contribute to " Candidatus Liberibacter asiaticus" Accumulation in Citrus Fruit Piths (Fluffy Albedo). Int J Mol Sci 2022; 23:ijms232415648. [PMID: 36555287 PMCID: PMC9779719 DOI: 10.3390/ijms232415648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
"Candidatus Liberibacter asiaticus" (CLas) is a phloem-restricted α-proteobacterium that is associated with citrus huanglongbing (HLB), which is the most destructive disease that affects all varieties of citrus. Although midrib is usually used as a material for CLas detection, we recently found that the bacterium was enriched in fruits, especially in the fruit pith. However, no study has revealed the molecular basis of these two parts in responding to CLas infection. Therefore, we performed transcriptome and UHPLC-MS-based targeted and untargeted metabolomics analyses in order to organize the essential genes and metabolites that are involved. Transcriptome and metabolome characterized 4834 differentially expressed genes (DEGs) and 383 differentially accumulated metabolites (DAMs) between the two materials, wherein 179 DEGs and 44 DAMs were affected by HLB in both of the tissues, involving the pathways of phenylpropanoid biosynthesis, phytohormone signaling transduction, starch and sucrose metabolism, and photosynthesis. Notably, we discovered that the gene expression that is related to beta-glucosidase and endoglucanase was up-regulated in fruits. In addition, defense-related gene expression and metabolite accumulation were significantly down-regulated in infected fruits. Taken together, the decreased amount of jasmonic acid, coupled with the reduced accumulation of phenylpropanoid and the increased proliferation of indole-3-acetic acid, salicylic acid, and abscisic acid, compared to leaf midribs, may contribute largely to the enrichment of CLas in fruit piths, resulting in disorders of photosynthesis and starch and sucrose metabolism.
Collapse
|
6
|
Abstract
Although the phloem is a highly specialized tissue, certain pathogens, including phytoplasmas, spiroplasmas, and viruses, have evolved to access and live in this sequestered and protected environment, causing substantial economic harm. In particular, Candidatus Liberibacter spp. are devastating citrus in many parts of the world. Given that most phloem pathogens are vectored, they are not exposed to applied chemicals and are therefore difficult to control. Furthermore, pathogens use the phloem network to escape mounted defenses. Our review summarizes the current knowledge of phloem anatomy, physiology, and biochemistry relevant to phloem/pathogen interactions. We focus on aspects of anatomy specific to pathogen movement, including sieve plate structure and phloem-specific proteins. Phloem sampling techniques are discussed. Finally, pathogens that cause particular harm to the phloem of crop species are considered in detail.
Collapse
Affiliation(s)
- Jennifer D Lewis
- Plant Gene Expression Center, USDA-ARS, Albany, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Robert Turgeon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
7
|
Chen Q, Li Z, Liu S, Chi Y, Jia D, Wei T. Infection and distribution of Candidatus Liberibacter asiaticus in citrus plants and psyllid vectors at the cellular level. Microb Biotechnol 2022; 15:1221-1234. [PMID: 34469634 PMCID: PMC8966020 DOI: 10.1111/1751-7915.13914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/19/2021] [Indexed: 12/01/2022] Open
Abstract
Huanglongbing (HLB) is currently considered the most destructive disease of citrus worldwide. In the major citrus-growing areas in Asia and the US, the major causal agent of HLB is the bacterial pathogen Candidatus Liberibacter asiaticus (CLas). CLas is vectored by the Asian citrus psyllid, Diaphorina citri, in a persistent propagative manner. CLas cannot be cultured in vitro because of its unclear growth factors, leading to uncertainty in the infection mechanism of CLas at the cellular level in citrus and in D. citri. To characterize the detailed infection of CLas in the host and vector, the incidence of HLB was first investigated in citrus-growing fields in Fujian Province, China. It was found that the positive association of the level of CLas infection in the leaves correlated with the symptoms. Then antibodies against peptides of the outer membrane protein (OMP) of CLas were prepared and tested. The antibodies OMP-225, OMP-333 and OMP724 showed specificity to citrus plants in western blot analyses, whereas the antibodies OMP-47 and OMP-225 displayed specificity to the D. citri vector. The application of OMP-225 in the immunofluorescence assay indicated that CLas was located in and distributed throughout the phloem sieve cells of the leaf midribs and axile placenta of the fruit. CLas also infected the epithelial cells and visceral muscles of the alimentary canal of D. citri. The application of OMP-333 in immunoelectron microscopy indicated the round or oval CLas in the sieve cells of leaf midribs and axile placenta of fruit as well as in the epithelial cells and reticular tissue of D. citri alimentary canal. These results provide a reliable means for HLB detection, and enlighten a strategy via neutralizing OMP to control HLB. These findings also provide insight for the further investigation on CLas infection and pathogenesis, as well as CLas-vector interaction.
Collapse
Affiliation(s)
- Qian Chen
- Vector‐borne Virus Research CenterFujian Province Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhou, Fujian350002China
| | - Zhiqiang Li
- Vector‐borne Virus Research CenterFujian Province Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhou, Fujian350002China
| | - Shulin Liu
- Vector‐borne Virus Research CenterFujian Province Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhou, Fujian350002China
| | - Yunhua Chi
- Vector‐borne Virus Research CenterFujian Province Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhou, Fujian350002China
| | - Dongsheng Jia
- Vector‐borne Virus Research CenterFujian Province Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhou, Fujian350002China
| | - Taiyun Wei
- Vector‐borne Virus Research CenterFujian Province Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhou, Fujian350002China
| |
Collapse
|
8
|
Merfa MV, Naranjo E, Shantharaj D, De La Fuente L. Growth of ' Candidatus Liberibacter asiaticus' in Commercial Grapefruit Juice-Based Media Formulations Reveals Common Cell Density-Dependent Transient Behaviors. PHYTOPATHOLOGY 2022; 112:131-144. [PMID: 34340531 DOI: 10.1094/phyto-06-21-0228-fi] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The phloem-restricted, insect-transmitted bacterium 'Candidatus Liberibacter asiaticus' (CLas) is associated with huanglongbing (HLB), the most devastating disease of citrus worldwide. The inability to culture CLas impairs the understanding of its virulence mechanisms and the development of effective management strategies to control this incurable disease. Previously, our research group used commercial grapefruit juice (GJ) to prolong the viability of CLas in vitro. In the present study, GJ was amended with a wide range of compounds and incubated under different conditions to optimize CLas growth. Remarkably, results showed that CLas growth ratios were inversely proportional to the initial inoculum concentration. This correlation is probably regulated by a cell density-dependent mechanism, because diluting samples between subcultures allowed CLas to resume growth. Moreover, strategies to reduce the cell density of CLas, such as subculturing at short intervals and incubating samples under flow conditions, allowed this bacterium to multiply and reach maximum growth as early as 3 days after inoculation, although no sustained exponential growth was observed under any tested condition. Unfortunately, cultures were only transient, because CLas lost viability over time; nevertheless, we obtained populations of about 105 genome equivalents/ml repeatedly. Finally, we established an ex vivo system to grow CLas within periwinkle calli that could be used to propagate bacterial inoculum in the lab. In this study we determined the influence of a comprehensive set of conditions and compounds on CLas growth in culture. We hope our results will help guide future efforts toward the long-sought goal of culturing CLas axenically.
Collapse
Affiliation(s)
- Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Eber Naranjo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Deepak Shantharaj
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | | |
Collapse
|
9
|
De Francesco A, Lovelace AH, Shaw D, Qiu M, Wang Y, Gurung F, Ancona V, Wang C, Levy A, Jiang T, Ma W. Transcriptome Profiling of ' Candidatus Liberibacter asiaticus' in Citrus and Psyllids. PHYTOPATHOLOGY 2022; 112:116-130. [PMID: 35025694 DOI: 10.1094/phyto-08-21-0327-fi] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
'Candidatus Liberibacter asiaticus' (Las) is an emergent bacterial pathogen that is associated with the devastating citrus huanglongbing (HLB). Vectored by the Asian citrus psyllid, Las colonizes the phloem tissue of citrus, causing severe damage to infected trees. So far, cultivating pure Las culture in axenic media has not been successful, and dual-transcriptome analyses aiming to profile gene expression in both Las and its hosts have a low coverage of the Las genome because of the low abundance of bacterial RNA in total RNA extracts from infected tissues. Therefore, a lack of understanding of the Las transcriptome remains a significant knowledge gap. Here, we used a bacterial cell enrichment procedure and confidently determined the expression profiles of approximately 84% of the Las genes. Genes that exhibited high expression in citrus include transporters, ferritin, outer membrane porins, specific pilins, and genes involved in phage-related functions, cell wall modification, and stress responses. We also found 106 genes to be differentially expressed in citrus versus Asian citrus psyllids. Genes related to transcription or translation and resilience to host defense response were upregulated in citrus, whereas genes involved in energy generation and the flagella system were expressed to higher levels in psyllids. Finally, we determined the relative expression levels of potential Sec-dependent effectors, which are considered as key virulence factors of Las. This work advances our understanding of HLB biology and offers novel insight into the interactions of Las with its plant host and insect vector.
Collapse
Affiliation(s)
- Agustina De Francesco
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Amelia H Lovelace
- The Sainsbury Laboratory, Norwich Research Park, NR4 7UH, United Kingdom
| | - Dipan Shaw
- Department of Computer Science and Engineering, University of California, Riverside, CA 92521, U.S.A
| | - Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fatta Gurung
- Citrus Center, Department of Agriculture, Agribusiness and Environmental Sciences, Texas A&M University-Kingsville, Weslaco, TX 78599, U.S.A
| | - Veronica Ancona
- Citrus Center, Department of Agriculture, Agribusiness and Environmental Sciences, Texas A&M University-Kingsville, Weslaco, TX 78599, U.S.A
| | - Chunxia Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Tao Jiang
- Department of Computer Science and Engineering, University of California, Riverside, CA 92521, U.S.A
| | - Wenbo Ma
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
- The Sainsbury Laboratory, Norwich Research Park, NR4 7UH, United Kingdom
| |
Collapse
|
10
|
Ferreira JRM, Sierra-Garcia IN, Guieu S, Silva AMS, da Silva RN, Cunha Â. Photodynamic control of citrus crop diseases. World J Microbiol Biotechnol 2021; 37:199. [PMID: 34664127 DOI: 10.1007/s11274-021-03171-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/07/2021] [Indexed: 11/21/2022]
Abstract
Citrus are economically important fruit crops to which infectious diseases like citrus canker caused by Xanthomonas citri subs. citri, citrus variegated chlorosis caused by Xylella fastidiosa, "huanglongbing" associated with the presence of Candidatus liberibacter species, anthracnose caused by Colletotrichum gloeosporioides and citrus black spot caused by Phyllosticta citricarpa, impose significant losses. Control measures involve chemical treatment of orchards but often, eradication of infected plants is unavoidable. To circumvent the environmental impacts of pesticides and the socio-economic impacts of eradication, innovative antimicrobial approaches like photodynamic inactivation are being tested. There is evidence of the susceptibility of Xanthomonas citri subs. citri and C. gloeosporioides to photodynamic damage. However, the realistic assessment of perspectives for widespread application of photodynamic inactivation in the control of citrus diseases, necessarily implies that other microorganisms are also considered. This review intends to provide a critical summary of the current state of research on photodynamic inactivation of citrus pathogens and to identify some of the current limitations to the widespread use of photodynamic treatments in citrus crops.
Collapse
Affiliation(s)
- Joana R M Ferreira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.,CESAM and Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Isabel N Sierra-Garcia
- CESAM and Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Samuel Guieu
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.,CICECO Aveiro-Institute of Materials, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Artur M S Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Raquel Nunes da Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.,IBiMED, Department of Medical Sciences, University of Aveiro, Campus do Crasto, 3810-193, Aveiro, Portugal
| | - Ângela Cunha
- CESAM and Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
11
|
Widmer TL, Costa JM. Impact of the United States Department of Agriculture, Agricultural Research Service on Plant Pathology: 2015-2020. PHYTOPATHOLOGY 2021; 111:1265-1276. [PMID: 33507089 DOI: 10.1094/phyto-09-20-0393-ia] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There is an increasing need to supply the world with more food as the population continues to grow. Research on mitigating the effects of plant diseases to improve crop yield and quality can help provide more food without increasing the land area devoted to farming. National Program 303 (NP 303) within the U.S. Department of Agriculture, Agricultural Research Service is dedicated to research across multiple fields in plant pathology. This review article highlights the research impact within NP 303 between 2015 and 2020, including case studies on wheat and citrus diseases and the National Plant Disease Recovery System, which provide specific examples of this impact.
Collapse
Affiliation(s)
- Timothy L Widmer
- United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705
| | - José M Costa
- United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705
| |
Collapse
|
12
|
Fang F, Guo H, Zhao A, Li T, Liao H, Deng X, Xu M, Zheng Z. A Significantly High Abundance of " Candidatus Liberibacter asiaticus" in Citrus Fruit Pith: in planta Transcriptome and Anatomical Analyses. Front Microbiol 2021; 12:681251. [PMID: 34177866 PMCID: PMC8225937 DOI: 10.3389/fmicb.2021.681251] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/10/2021] [Indexed: 11/20/2022] Open
Abstract
Huanglongbing, a highly destructive disease of citrus, is associated with the non-culturable phloem-limited α-proteobacterium "Candidatus Liberibacter asiaticus" (CLas). The distribution patterns of CLas in infected plant are variable and not consistent, which make the CLas detection and characterization more challenging. Here, we performed a systemic analysis of CLas distribution in citrus branches and fruits of 14 cultivars. A significantly high concentration of CLas was detected in fruit pith (dorsal vascular bundle) of 14 citrus cultivars collected at fruit maturity season. A 2-year monitoring assay of CLas population in citrus branches of "Shatangju" mandarin (Citrus reticulata Blanco "Shatangju") revealed that CLas population already exhibited a high level even before the appearance of visual symptoms in the fruit rind. Quantitative analyses of CLas in serial 1.5-cm segments of fruit piths showed the CLas was unevenly distributed within fruit pith and tended to colonize in the middle or distal (stylar end) regions of pith. The use of CLas-abundant fruit pith for dual RNA-seq generated higher-resolution CLas transcriptome data compared with the leaf samples. CLas genes involved in transport system, flagellar assembly, lipopolysaccharide biosynthesis, virulence, stress response, and cell surface structure, as well as host genes involved in biosynthesis of antimicrobial-associated secondary metabolites, was up-regulated in leaf midribs compared with fruit pith. In addition, CLas infection caused the severe collapse in phloem and callose deposition in the plasmodesmata of fruit pith. The ability of fruit pith to support multiplication of CLas to high levels makes it an ideal host tissue for morphological studies and in planta transcriptome analyses of CLas-host interactions.
Collapse
Affiliation(s)
- Fang Fang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Hengyu Guo
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Anmin Zhao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Tao Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Huihong Liao
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiaoling Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Meirong Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zheng Zheng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Zhou Y, Wei X, Li Y, Liu Z, Duan Y, Zou H. ' Candidatus Liberibacter Asiaticus' SDE1 Effector Induces Huanglongbing Chlorosis by Downregulating Host DDX3 Gene. Int J Mol Sci 2020; 21:E7996. [PMID: 33121168 PMCID: PMC7662370 DOI: 10.3390/ijms21217996] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 10/25/2020] [Indexed: 11/21/2022] Open
Abstract
'Candidatus Liberibacter asiaticus' (CLas) is the pathogenic bacterium that causes the disease Huanglongbing (HLB) in citrus and some model plants, such as Nicotiana benthamiana. After infection, CLas releases a set of effectors to modulate host responses. One of these critical effectors is Sec-delivered effector 1 (SDE1), which induces chlorosis and cell death in N. benthamiana. In this study, we revealed the DEAD-box RNA helicase (DDX3) interacts with SDE1. Gene silencing study revealed that knockdown of the NbDDX3 gene triggers leaf chlorosis, mimicking the primary symptom of CLas infection in N. benthamiana. The interactions between SDE1 and NbDDX3 were localized in the cell membrane. Overexpression of SDE1 resulted in suppression of NbDDX3 gene expression in N. benthamiana, which suggests a critical role of SDE1 in modulating NbDDX3 expression. Furthermore, we verified the interaction of SDE1 with citrus DDX3 (CsDDX3), and demonstrated that the expression of the CsDDX3 gene was significantly reduced in HLB-affected yellowing and mottled leaves of citrus. Thus, we provide molecular evidence that the downregulation of the host DDX3 gene is a crucial mechanism of leaf chlorosis in HLB-affected plants. The identification of CsDDX3 as a critical target of SDE1 and its association with HLB symptom development indicates that the DDX3 gene is an important target for gene editing, to interrupt the interaction between DDX3 and SDE1, and therefore interfere host susceptibility.
Collapse
Affiliation(s)
- Yinghui Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Y.L.); (Z.L.)
| | - Xiangying Wei
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- U.S. Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Fort Pierce, FL 34945, USA;
| | - Yanjiao Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Y.L.); (Z.L.)
| | - Zhiqin Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Y.L.); (Z.L.)
| | - Yongping Duan
- U.S. Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Fort Pierce, FL 34945, USA;
| | - Huasong Zou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Y.L.); (Z.L.)
| |
Collapse
|
14
|
Coates LC, Mahoney J, Ramsey JS, Warwick E, Johnson R, MacCoss MJ, Krasnoff SB, Howe KJ, Moulton K, Saha S, Mueller LA, Hall DG, Shatters RG, Heck ML, Slupsky CM. Development on Citrus medica infected with 'Candidatus Liberibacter asiaticus' has sex-specific and -nonspecific impacts on adult Diaphorina citri and its endosymbionts. PLoS One 2020; 15:e0239771. [PMID: 33022020 PMCID: PMC7537882 DOI: 10.1371/journal.pone.0239771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Huanglongbing (HLB) is a deadly, incurable citrus disease putatively caused by the unculturable bacterium, 'Candidatus Liberibacter asiaticus' (CLas), and transmitted by Diaphorina citri. Prior studies suggest D. citri transmits CLas in a circulative and propagative manner; however, the precise interactions necessary for CLas transmission remain unknown, and the impact of insect sex on D. citri-CLas interactions is poorly understood despite reports of sex-dependent susceptibilities to CLas. We analyzed the transcriptome, proteome, metabolome, and microbiome of male and female adult D. citri reared on healthy or CLas-infected Citrus medica to determine shared and sex-specific responses of D. citri and its endosymbionts to CLas exposure. More sex-specific than shared D. citri responses to CLas were observed, despite there being no difference between males and females in CLas density or relative abundance. CLas exposure altered the abundance of proteins involved in immunity and cellular and oxidative stress in a sex-dependent manner. CLas exposure impacted cuticular proteins and enzymes involved in chitin degradation, as well as energy metabolism and abundance of the endosymbiont 'Candidatus Profftella armatura' in both sexes similarly. Notably, diaphorin, a toxic Profftella-derived metabolite, was more abundant in both sexes with CLas exposure. The responses reported here resulted from a combination of CLas colonization of D. citri as well as the effect of CLas infection on C. medica. Elucidating these impacts on D. citri and their endosymbionts contributes to our understanding of the HLB pathosystem and identifies the responses potentially critical to limiting or promoting CLas acquisition and propagation in both sexes.
Collapse
Affiliation(s)
- Laurynne C. Coates
- Department of Food Science and Technology, University of California, Davis, California, United States of America
| | - Jaclyn Mahoney
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - John S. Ramsey
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
- Robert W. Holley Center for Agriculture and Health, Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, New York, United States of America
| | - EricaRose Warwick
- Plant Pathology, University of Florida Citrus Research and Education Center, Lake Alfred, Florida, United States of America
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Stuart B. Krasnoff
- Robert W. Holley Center for Agriculture and Health, Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, New York, United States of America
| | - Kevin J. Howe
- Robert W. Holley Center for Agriculture and Health, Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, New York, United States of America
| | - Kathy Moulton
- U.S. Horticultural Research Laboratory, Unit of Subtropical Insects and Horticulture, USDA Agricultural Research Service, Fort Pierce, Florida, United States of America
| | - Surya Saha
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Lukas A. Mueller
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - David G. Hall
- U.S. Horticultural Research Laboratory, Unit of Subtropical Insects and Horticulture, USDA Agricultural Research Service, Fort Pierce, Florida, United States of America
| | - Robert G. Shatters
- U.S. Horticultural Research Laboratory, Unit of Subtropical Insects and Horticulture, USDA Agricultural Research Service, Fort Pierce, Florida, United States of America
| | - Michelle L. Heck
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
- Robert W. Holley Center for Agriculture and Health, Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, New York, United States of America
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
| | - Carolyn M. Slupsky
- Department of Food Science and Technology, University of California, Davis, California, United States of America
| |
Collapse
|
15
|
Ding F, Peng SA, Hartung JS. Enhanced Serologically Based Detection of Liberibacters Associated with Citrus Huanglongbing. PLANT DISEASE 2020; 104:1584-1588. [PMID: 32357120 DOI: 10.1094/pdis-12-19-2679-sc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
'Candidatus Liberibacter spp.' are associated with the most devastating disease of citrus Huanglongbing (HLB). In previous work, we established an in situ tissue print method for the detection of 'Ca. L. asiaticus' (CLas) in sweet orange. We optimized the protocol by preincubation of the anti-Omp antibody with 5% (w/v) extract of healthy rough lemon. This simple process eliminated cross reactions between citrus and the antibody. The optimized protocol enhanced the application of the polyclonal antibody, and we demonstrate detection of CLas from all parts of the world, including isolates from Japan, Thailand, Vietnam, Pakistan, Saudi Arabia, Brazil, the United States, and a selection of strains from China representative of the diversity extant there. The assay also was used to detect four isolates of 'Ca. L. africanus' (CLaf) representative of the diversity present in South Africa. The corresponding outer membrane genes of representative isolates were cloned and sequenced. The coding sequences were highly conserved, and isolates of CLas and CLaf shared 53.8 to 55.9% identity between species at the amino acid level. The optimized protocol is efficient for recognition of both CLas and CLaf in phloem cells of different citrus tissues regardless of geographic origin of the HLB samples. The method is simple and scales well to match the urgent need for accurate, sensitive, and high-throughput screening of HLB bacteria, and may play an important role especially for plant inspection and quarantine programs.
Collapse
Affiliation(s)
- Fang Ding
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 P.R. China
- Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070 P.R. China
- United States Department of Agriculture, Agricultural Research Service Molecular Plant Pathology Laboratory, Beltsville, MD 20705, U.S.A
| | - Shu-Ang Peng
- Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070 P.R. China
| | - John S Hartung
- United States Department of Agriculture, Agricultural Research Service Molecular Plant Pathology Laboratory, Beltsville, MD 20705, U.S.A
| |
Collapse
|
16
|
Attaran E, Berim A, Killiny N, Beyenal H, Gang DR, Omsland A. Controlled replication of 'Candidatus Liberibacter asiaticus' DNA in citrus leaf discs. Microb Biotechnol 2020; 13:747-759. [PMID: 31958876 PMCID: PMC7111093 DOI: 10.1111/1751-7915.13531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 12/13/2022] Open
Abstract
'Candidatus Liberibacter asiaticus' is a fastidious bacterium and a putative agent of citrus greening disease (a.k.a., huanglongbing, HLB), a significant agricultural disease that affects citrus fruit quality and tree health. In citrus, 'Ca. L. asiaticus' is phloem limited. Lack of culture tools to study 'Ca. L. asiaticus' complicates analysis of this important organism. To improve understanding of 'Ca. L. asiaticus'-host interactions including parameters that affect 'Ca. L. asiaticus' replication, methods suitable for screening pathogen responses to physicochemical and nutritional variables are needed. We describe a leaf disc-based culture assay that allows highly selective measurement of changes in 'Ca. L. asiaticus' DNA within plant tissue incubated under specific physicochemical and nutritional conditions. qPCR analysis targeting the hypothetical gene CD16-00155 (strain A4) allowed selective quantification of 'Ca. L. asiaticus' DNA content within infected tissue. 'Ca. L. asiaticus' DNA replication was observed in response to glucose exclusively under microaerobic conditions, and the antibiotic amikacin further enhanced 'Ca. L. asiaticus' DNA replication. Metabolite profiling revealed a moderate impact of 'Ca. L. asiaticus' on the ability of leaf tissue to metabolize and respond to glucose.
Collapse
Affiliation(s)
- Elham Attaran
- Paul G. Allen School for Global Animal HealthWashington State UniversityPullmanWAUSA
| | - Anna Berim
- Institute of Biological ChemistryWashington State UniversityPullmanWAUSA
| | - Nabil Killiny
- Plant Pathology DepartmentCitrus Research and Education CenterUniversity of FloridaLake AlfredFLUSA
| | - Haluk Beyenal
- Gene and Linda Voiland School of Chemical Engineering and BioengineeringWashington State UniversityPullmanWAUSA
| | - David R. Gang
- Institute of Biological ChemistryWashington State UniversityPullmanWAUSA
| | - Anders Omsland
- Paul G. Allen School for Global Animal HealthWashington State UniversityPullmanWAUSA
| |
Collapse
|
17
|
Zuo R, Oliveira A, Bullita E, Torino MI, Padgett‐Pagliai KA, Gardner CL, Harrison NA, da Silva D, Merli ML, Gonzalez CF, Lorca GL. Identification of flavonoids as regulators of YbeY activity in
Liberibacter asiaticus. Environ Microbiol 2019; 21:4822-4835. [DOI: 10.1111/1462-2920.14831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Ran Zuo
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural ScienceUniversity of Florida Gainesville Florida USA
| | - Aline Oliveira
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural ScienceUniversity of Florida Gainesville Florida USA
| | - Enrica Bullita
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural ScienceUniversity of Florida Gainesville Florida USA
| | - Maria Ines Torino
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural ScienceUniversity of Florida Gainesville Florida USA
| | - Kaylie A. Padgett‐Pagliai
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural ScienceUniversity of Florida Gainesville Florida USA
| | - Christopher L. Gardner
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural ScienceUniversity of Florida Gainesville Florida USA
| | - Natalie A. Harrison
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural ScienceUniversity of Florida Gainesville Florida USA
| | - Danilo da Silva
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural ScienceUniversity of Florida Gainesville Florida USA
| | - Marcelo L. Merli
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural ScienceUniversity of Florida Gainesville Florida USA
| | - Claudio F. Gonzalez
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural ScienceUniversity of Florida Gainesville Florida USA
| | - Graciela L. Lorca
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural ScienceUniversity of Florida Gainesville Florida USA
| |
Collapse
|
18
|
Localized expression of antimicrobial proteins mitigates huanglongbing symptoms in Mexican lime. J Biotechnol 2018; 285:74-83. [DOI: 10.1016/j.jbiotec.2018.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/16/2018] [Accepted: 08/24/2018] [Indexed: 11/19/2022]
|
19
|
George J, Ammar ED, Hall DG, Shatters RG, Lapointe SL. Prolonged phloem ingestion by Diaphorina citri nymphs compared to adults is correlated with increased acquisition of citrus greening pathogen. Sci Rep 2018; 8:10352. [PMID: 29985396 PMCID: PMC6037740 DOI: 10.1038/s41598-018-28442-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/22/2018] [Indexed: 11/09/2022] Open
Abstract
Citrus greening disease (huanglongbing), currently the most destructive citrus disease worldwide, is putatively caused by Candidatus Liberibacter asiaticus (CLas), a phloem-limited bacterium transmitted by the Asian citrus psyllid Diaphorina citri. Electrical penetration graph (EPG) recordings over 42 h were performed to compare the feeding behavior of D. citri adults and 4th or 5th instar nymphs feeding on CLas-infected or healthy citron plants. Nymphs performed more individual bouts of phloem ingestion (E2) and recorded longer phloem ingestion total time compared with adults, whereas adults performed more bouts of xylem ingestion (G) and recorded greater total time of xylem ingestion compared with nymphs. Quantitative polymerase chain reaction tests indicated that 58% of nymphs and 6% of adults acquired CLas during the 42 h EPG-recorded feeding on infected plants. In a histological study, a greater proportion of salivary sheaths produced by nymphs were branched compared to those of the adults. Our results strongly suggest that more bouts and longer feeding time in the phloem by nymphs may explain their more efficient CLas acquisition from infected plants compared to adults. This is the first EPG study comparing nymphs and adults of D. citri on healthy and infected citrus plants in relation to CLas acquisition.
Collapse
Affiliation(s)
- Justin George
- USDA-ARS, Subtropical Insects and Horticultural Research Unit, United States Horticultural Research Laboratory, Fort Pierce, Florida, USA.,University of Florida, IFAS, Lake Alfred, Florida, USA
| | - El-Desouky Ammar
- USDA-ARS, Subtropical Insects and Horticultural Research Unit, United States Horticultural Research Laboratory, Fort Pierce, Florida, USA.,University of Florida, IFAS, Lake Alfred, Florida, USA
| | - David G Hall
- USDA-ARS, Subtropical Insects and Horticultural Research Unit, United States Horticultural Research Laboratory, Fort Pierce, Florida, USA
| | - Robert G Shatters
- USDA-ARS, Subtropical Insects and Horticultural Research Unit, United States Horticultural Research Laboratory, Fort Pierce, Florida, USA
| | - Stephen L Lapointe
- USDA-ARS, Subtropical Insects and Horticultural Research Unit, United States Horticultural Research Laboratory, Fort Pierce, Florida, USA.
| |
Collapse
|
20
|
Ghanim M, Achor D, Ghosh S, Kontsedalov S, Lebedev G, Levy A. 'Candidatus Liberibacter asiaticus' Accumulates inside Endoplasmic Reticulum Associated Vacuoles in the Gut Cells of Diaphorina citri. Sci Rep 2017; 7:16945. [PMID: 29208900 PMCID: PMC5717136 DOI: 10.1038/s41598-017-16095-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/06/2017] [Indexed: 01/10/2023] Open
Abstract
Citrus greening disease known also as Huanglongbing (HLB) caused by the phloem-limited bacterium 'Candidatus Liberibacter asiaticus' (CLas) has resulted in tremendous losses and the death of millions of trees worldwide. CLas is transmitted by the Asian citrus psyllid Diaphorina citri. The closely-related bacteria 'Candidatus Liberibacter solanacearum' (CLso), associated with vegetative disorders in carrots, is transmitted by the carrot psyllid Bactericera trigonica. A promising approach to prevent the transmission of these pathogens is to interfere with the vector-pathogen interactions, but our understanding of these processes is limited. It was recently reported that CLas induced changes in the nuclear architecture, and activated programmed cell death, in D. citri midgut cells. Here, we used electron and fluorescent microscopy and show that CLas induces the formation of endoplasmic reticulum (ER)-associated bodies. The bacterium recruits those ER structures into Liberibacter containing vacuoles (LCVs), in which bacterial cells seem to propagate. ER- associated LCV formation was unique to CLas, as we could not detect these bodies in B. trigonica infected with CLso. ER recruitment is hypothesized to generate a safe replicative body to escape cellular immune responses in the insect gut. Understanding the molecular interactions that undelay these responses will open new opportunities for controlling CLas.
Collapse
Affiliation(s)
- Murad Ghanim
- Department of Entomology, Volcani Center, Rishon LeZion, Israel.
| | - Diann Achor
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Saptarshi Ghosh
- Department of Entomology, Volcani Center, Rishon LeZion, Israel
| | | | - Galina Lebedev
- Department of Entomology, Volcani Center, Rishon LeZion, Israel
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA.
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
21
|
Liu H, Atta S, Hartung JS. Characterization and purification of proteins suitable for the production of antibodies against ‘ Ca . Liberibacter asiaticus’. Protein Expr Purif 2017; 139:36-42. [DOI: 10.1016/j.pep.2017.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 03/24/2017] [Accepted: 07/14/2017] [Indexed: 11/26/2022]
|
22
|
Pagliaccia D, Shi J, Pang Z, Hawara E, Clark K, Thapa SP, De Francesco AD, Liu J, Tran TT, Bodaghi S, Folimonova SY, Ancona V, Mulchandani A, Coaker G, Wang N, Vidalakis G, Ma W. A Pathogen Secreted Protein as a Detection Marker for Citrus Huanglongbing. Front Microbiol 2017; 8:2041. [PMID: 29403441 PMCID: PMC5776943 DOI: 10.3389/fmicb.2017.02041] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/06/2017] [Indexed: 11/26/2022] Open
Abstract
The citrus industry is facing an unprecedented crisis due to Huanglongbing (HLB, aka citrus greening disease), a bacterial disease associated with the pathogen Candidatus Liberibacter asiaticus (CLas) that affects all commercial varieties. Transmitted by the Asian citrus psyllid (ACP), CLas colonizes citrus phloem, leading to reduced yield and fruit quality, and eventually tree decline and death. Since adequate curative measures are not available, a key step in HLB management is to restrict the spread of the disease by identifying infected trees and removing them in a timely manner. However, uneven distribution of CLas cells in infected trees and the long latency for disease symptom development makes sampling of trees for CLas detection challenging. Here, we report that a CLas secreted protein can be used as a biomarker for detecting HLB infected citrus. Proteins secreted from CLas cells can presumably move along the phloem, beyond the site of ACP inoculation and CLas colonized plant cells, thereby increasing the chance of detecting infected trees. We generated a polyclonal antibody that effectively binds to the secreted protein and developed serological assays that can successfully detect CLas infection. This work demonstrates that antibody-based diagnosis using a CLas secreted protein as the detection marker for infected trees offers a high-throughput and economic approach that complements the approved quantitative polymerase chain reaction-based methods to enhance HLB management programs.
Collapse
Affiliation(s)
- Deborah Pagliaccia
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Jinxia Shi
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
- Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Zhiqian Pang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Eva Hawara
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Kelley Clark
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Shree P. Thapa
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Agustina D. De Francesco
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Jianfeng Liu
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Thien-Toan Tran
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, United States
| | - Sohrab Bodaghi
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | | | - Veronica Ancona
- Texas A&M University – Kingsville Citrus Center, Weslaco, TX, United States
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, United States
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Nian Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Georgios Vidalakis
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Wenbo Ma
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
- Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
23
|
Ding F, Paul C, Brlansky R, Hartung JS. Immune Tissue Print and Immune Capture-PCR for Diagnosis and Detection of Candidatus Liberibacter Asiaticus. Sci Rep 2017; 7:46467. [PMID: 28418002 PMCID: PMC5394477 DOI: 10.1038/srep46467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/16/2017] [Indexed: 11/17/2022] Open
Abstract
'Candidatus Liberibacter asiaticus' (CaLas), associated with citrus Huanglongbing (HLB), is a non culturable member of the α-proteobacteria. In this study serologically based methods for the detection of CaLas were developed. An anti-outer membrane protein A (OmpA) polyclonal antibody previously produced (in our laboratory) was highly effective for the detection of CaLas from citrus tissues in a simple tissue printing format. The antibody was also used to capture bacteria from periwinkle extracts. About 80% of all field samples analyzed tested positive with both immune tissue printing and qPCR; whereas 95% were positive with at least one of these two methods. When asymptomatic citrus tissues were tested, the tissue printing method gave a higher rate of detection (83%) than the qPCR method (64%). This is consistent with a lower concentration of CaLas DNA, but a higher proportion of viable cells, in the asymptomatic tissues. The immune tissue printing method also highlights the detail of the spatial distribution of 'Ca. Liberibacter asiaticus' in diseased citrus tissues. Both the immune capture PCR and immune tissue printing methods offer the advantages of low cost, high throughput, ease of scaling for multiple samples and simplicity over current PCR-based methods for the detection of 'Ca. Liberibacter asiaticus'.
Collapse
Affiliation(s)
- Fang Ding
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
- USDA ARS Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| | - Cristina Paul
- USDA ARS Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| | - Ron Brlansky
- University of Florida, Citrus Research and Education Center, Lake Alfred, Florida, United States of America
| | - John S. Hartung
- USDA ARS Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| |
Collapse
|
24
|
Loto F, Coyle JF, Padgett KA, Pagliai FA, Gardner CL, Lorca GL, Gonzalez CF. Functional characterization of LotP from Liberibacter asiaticus. Microb Biotechnol 2017; 10:642-656. [PMID: 28378385 PMCID: PMC5404198 DOI: 10.1111/1751-7915.12706] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 01/08/2023] Open
Abstract
Liberibacter asiaticus is an unculturable parasitic bacterium of the alphaproteobacteria group hosted by both citrus plants and a psyllid insect vector (Diaphorina citri). In the citrus tree, the bacteria thrive only inside the phloem, causing a systemically incurable and deadly plant disease named citrus greening or Huanglongbing. Currently, all commercial citrus cultivars in production are susceptible to L. asiaticus, representing a serious threat to the citrus industry worldwide. The technical inability to isolate and culture L. asiaticus has hindered progress in understanding the biology of this bacterium directly. Consequently, a deep understanding of the biological pathways involved in the regulation of host–pathogen interactions becomes critical to rationally design future and necessary strategies of control. In this work, we used surrogate strains to evaluate the biochemical characteristics and biological significance of CLIBASIA_03135. This gene, highly induced during early stages of plant infection, encodes a 23 kDa protein and was renamed in this work as LotP. This protein belongs to an uncharacterized family of proteins with an overall structure resembling the LON protease N‐terminus. Co‐immunoprecipitation assays allowed us to identify the Liberibacter chaperonin GroEL as the main LotP‐interacting protein. The specific interaction between LotP and GroEL was reconstructed and confirmed using a two‐hybrid system in Escherichia coli. Furthermore, it was demonstrated that LotP has a native molecular weight of 44 kDa, corresponding to a dimer in solution with ATPase activity in vitro. In Liberibacter crescens, LotP is strongly induced in response to conditions with high osmolarity but repressed at high temperatures. Electrophoretic mobility shift assay (EMSA) results suggest that LotP is a member of the LdtR regulon and could play an important role in tolerance to osmotic stress.
Collapse
Affiliation(s)
- Flavia Loto
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA.,PROIMI Planta Piloto de Procesos Industriales Microbiológicos, CONICET, Tucumán, Argentina
| | - Janelle F Coyle
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA
| | - Kaylie A Padgett
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA.,Department of Microbiology and Cell Science, Undergraduate Research Program, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Fernando A Pagliai
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA
| | - Christopher L Gardner
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA
| |
Collapse
|
25
|
Ding F, Duan Y, Yuan Q, Shao J, Hartung JS. Serological detection of 'Candidatus Liberibacter asiaticus' in citrus, and identification by GeLC-MS/MS of a chaperone protein responding to cellular pathogens. Sci Rep 2016; 6:29272. [PMID: 27381064 PMCID: PMC4933950 DOI: 10.1038/srep29272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/15/2016] [Indexed: 11/09/2022] Open
Abstract
We describe experiments with antibodies against 'Candidatus Liberibacter asiaticus used to detect the pathogen in infected plants. We used scFv selected to bind epitopes exposed on the surface of the bacterium in tissue prints, with secondary monoclonal antibodies directed at a FLAG epitope included at the carboxyl end of the scFv. Unexpectedly, the anti-FLAG secondary antibody produced positive results with CaLas diseased samples when the primary scFv were not used. The anti-FLAG monoclonal antibody (Mab) also identified plants infected with other vascular pathogens. We then identified a paralogous group of secreted chaperone proteins in the HSP-90 family that contained the amino acid sequence DDDDK identical to the carboxy-terminal sequence of the FLAG epitope. A rabbit polyclonal antibody against one of the same epitopes combined with a goat anti-rabbit secondary antibody produced very strong purple color in individual phloem cells, as expected for this pathogen. These results were entirely specific for CaLas-infected citrus. The simplicity, cost and ability to scale the tissue print assay makes this an attractive assay to complement PCR-based assays currently in use. The partial FLAG epitope may itself be useful as a molecular marker for the rapid screening of citrus plants for the presence of vascular pathogens.
Collapse
Affiliation(s)
- Fang Ding
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070 P. R. China
- USDA ARS MPPL 10300 Baltimore Ave., Beltsville, MD 20705 USA
| | - Yongping Duan
- USDA ARS USHRL 2001 South Rock Road, Fort Pierce, FL 34945 USA
| | - Qing Yuan
- Sichuan Medical University, Luzhou, Sichuan, 646000 P. R. China
| | - Jonathan Shao
- USDA ARS MPPL 10300 Baltimore Ave., Beltsville, MD 20705 USA
| | - John S. Hartung
- USDA ARS MPPL 10300 Baltimore Ave., Beltsville, MD 20705 USA
| |
Collapse
|
26
|
Yuan Q, Jordan R, Brlansky RH, Minenkova O, Hartung J. Development of single chain variable fragment (scFv) antibodies against surface proteins of 'Ca. Liberibacter asiaticus'. J Microbiol Methods 2015; 122:1-7. [PMID: 26744234 DOI: 10.1016/j.mimet.2015.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
Abstract
'Candidatus Liberibacter asiaticus' is the causal agent of citrus huanglongbing, the most serious disease of citrus worldwide. We have developed and applied immunization and affinity screening methods to develop a primary library of recombinant single chain variable fragment (scFv) antibodies in an M13 vector, pKM19. The antibody population is enriched for antibodies that bind antigens of 'Ca. Liberibacter asiaticus'. The primary library has more than 10(7) unique antibodies and the genes that encode them. We have screened this library for antibodies that bind to specifically-chosen proteins that are present on the surface of 'Ca. Liberibacter asiaticus'. These proteins were used as targets for affinity-based selection of scFvs that bind to the major outer membrane protein, OmpA; the polysaccharide capsule protein KpsF; a protein component of the type IV pilus (CapF); and, two flagellar proteins FlhA and FlgI. These scFvs have been used in ELISA and dot blot assays against purified protein antigens and 'Ca. Liberibacter asiaticus' infected plant extracts. We have also recloned many of these scFvs into a plasmid expression vector designed for the production of scFvs. Screening of these scFvs was more efficient when phage-bound, rather than soluble scFvs, were used. We have demonstrated a technology to produce antibodies at will and against any protein target encoded by 'Ca. Liberibacter asiaticus'. Applications could include advanced diagnostic methods for huanglongbing and the development of immune labeling reagents for in planta applications.
Collapse
Affiliation(s)
- Qing Yuan
- Molecular Plant Pathology Lab, USDA-ARS, Beltsville, MD 20705, United States
| | - Ramon Jordan
- United States National Arboretum, USDA-ARS, Beltsville, MD 20705, United States
| | - Ronald H Brlansky
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, United States
| | | | - John Hartung
- Molecular Plant Pathology Lab, USDA-ARS, Beltsville, MD 20705, United States
| |
Collapse
|