1
|
Makri N, Ring N, Shaw DJ, Athinodorou A, Robinson V, Paterson GK, Richardson J, Gow D, Nuttall T. Cytological evaluation, culture and genomics to evaluate the microbiome in healthy rabbit external ear canals. Vet Dermatol 2024; 35:479-491. [PMID: 38742484 PMCID: PMC11656672 DOI: 10.1111/vde.13256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/27/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Lop-eared rabbits may be predisposed to otitis externa (OE) as a consequence of their ear conformation. Although otoscopy, otic cytological evaluation and culture are valuable tools in dogs and cats, published data on rabbits remain lacking. HYPOTHESIS/OBJECTIVES This study aimed to assess the utility of otoscopy and cytological results in evaluating healthy rabbit external ear canals (EECs) and to characterise ear cytological and microbiological findings through culture techniques and metagenomic sequencing. ANIMALS Sixty-three otitis-free client-owned rabbits. MATERIALS AND METHODS All rabbits underwent otoscopy and ear cytological evaluation. In a subset of 12 rabbits, further bacterial and fungal culture, fungal DNA assessment and metagenomic sequencing were performed. RESULTS Otic cytological results revealed yeast in 73%, cocci in 42.9% and rods in 28.6% of healthy rabbit EECs. Compared to upright-eared rabbits, lop-eared rabbits had more discharge and more bacteria per oil immersion field. Culture isolated eight different species yet metagenomic sequencing identified 36, belonging to the Bacillota (Firmicutes), Pseudomonadota and Actinomycetota phyla. Staphylococcus were the most commonly observed species with both methods. Ten of 12 rabbits were yeast-positive on cytological evaluation with only three yielding fungal growth identified as Yarrowia (Candida) lipolytica, Eurotium echinulatum and Cystofilobasidium infirmominiatum. CONCLUSIONS AND CLINICAL RELEVANCE Healthy rabbit EECs lack inflammatory cells yet can host yeast and bacteria, emphasising the need to evaluate cytological results alongside the clinical signs. Lop-ear anatomy may predispose to bacterial overgrowth and OE. Notably, yeasts may be present despite a negative culture.
Collapse
Affiliation(s)
- Nikoleta Makri
- Royal (Dick) School of Veterinary Studies and the Roslin InstituteUniversity of EdinburghMidlothianUK
| | - Natalie Ring
- Royal (Dick) School of Veterinary Studies and the Roslin InstituteUniversity of EdinburghMidlothianUK
| | - Darren J. Shaw
- Royal (Dick) School of Veterinary Studies and the Roslin InstituteUniversity of EdinburghMidlothianUK
| | - Athinodoros Athinodorou
- Royal (Dick) School of Veterinary Studies and the Roslin InstituteUniversity of EdinburghMidlothianUK
| | - Victoria Robinson
- Royal (Dick) School of Veterinary Studies and the Roslin InstituteUniversity of EdinburghMidlothianUK
| | - Gavin K. Paterson
- Royal (Dick) School of Veterinary Studies and the Roslin InstituteUniversity of EdinburghMidlothianUK
| | - Jenna Richardson
- Royal (Dick) School of Veterinary Studies and the Roslin InstituteUniversity of EdinburghMidlothianUK
| | - Debbie Gow
- Royal (Dick) School of Veterinary Studies and the Roslin InstituteUniversity of EdinburghMidlothianUK
- Present address:
Veterinary Specialists ScotlandLivingstonUK
| | - Tim Nuttall
- Royal (Dick) School of Veterinary Studies and the Roslin InstituteUniversity of EdinburghMidlothianUK
| |
Collapse
|
2
|
de Deus DR, Siqueira JAM, Maués MAC, de Fátima Mesquita de Figueiredo MJ, Júnior ECS, da Silva Bandeira R, da Costa Pinheiro K, Teixeira DM, da Silva LD, de Fátima Dos Santos Guerra S, da Silva Soares L, Gabbay YB. Analysis of viral diversity in dogs with acute gastroenteritis from Brazilian Amazon. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105637. [PMID: 38986824 DOI: 10.1016/j.meegid.2024.105637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/22/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Viral gastroenteritis is commonly reported in dogs and involves a great diversity of enteric viruses. In this research, viral diversity was investigated in dogs with diarrhea in Northern Brazil using shotgun metagenomics. Furthermore, the presence of norovirus (NoV) was investigated in 282 stool/rectal swabs of young/adult dogs with or without diarrhea from two public kennels, based on one-step reverse transcription polymerase chain reaction (RT-PCR) for genogroup VI and VII (GVI and GVII) and real-time RT-PCR for GI, GII, and GIV. Thirty-one viral families were identified, including bacteriophages. Phylogenetic analyses showed twelve complete or nearly complete genomes belonging to the species of Protoparvovirus carnivoran1, Mamastrovirus 5, Aichivirus A2, Alphacoronavirus 1, and Chipapillomavirus 1. This is the first description of the intestinal virome of dogs in Northern Brazil and the first detection of canine norovirus GVII in the country. These results are important for helping to understand the viral groups that circulate in the canine population.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kenny da Costa Pinheiro
- Section of Virology, Evandro Chagas Institute, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Dielle Monteiro Teixeira
- Section of Virology, Evandro Chagas Institute, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | | | | | - Luana da Silva Soares
- Section of Virology, Evandro Chagas Institute, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Yvone Benchimol Gabbay
- Section of Virology, Evandro Chagas Institute, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| |
Collapse
|
3
|
Simon SA, Schmidt K, Griesdorn L, Soares AR, Bornemann TLV, Probst AJ. Dancing the Nanopore limbo - Nanopore metagenomics from small DNA quantities for bacterial genome reconstruction. BMC Genomics 2023; 24:727. [PMID: 38041056 PMCID: PMC10693096 DOI: 10.1186/s12864-023-09853-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND While genome-resolved metagenomics has revolutionized our understanding of microbial and genetic diversity in environmental samples, assemblies of short-reads often result in incomplete and/or highly fragmented metagenome-assembled genomes (MAGs), hampering in-depth genomics. Although Nanopore sequencing has increasingly been used in microbial metagenomics as long reads greatly improve the assembly quality of MAGs, the recommended DNA quantity usually exceeds the recoverable amount of DNA of environmental samples. Here, we evaluated lower-than-recommended DNA quantities for Nanopore library preparation by determining sequencing quality, community composition, assembly quality and recovery of MAGs. RESULTS We generated 27 Nanopore metagenomes using the commercially available ZYMO mock community and varied the amount of input DNA from 1000 ng (the recommended minimum) down to 1 ng in eight steps. The quality of the generated reads remained stable across all input levels. The read mapping accuracy, which reflects how well the reads match a known reference genome, was consistently high across all libraries. The relative abundance of the species in the metagenomes was stable down to input levels of 50 ng. High-quality MAGs (> 95% completeness, ≤ 5% contamination) could be recovered from metagenomes down to 35 ng of input material. When combined with publicly available Illumina reads for the mock community, Nanopore reads from input quantities as low as 1 ng improved the quality of hybrid assemblies. CONCLUSION Our results show that the recommended DNA amount for Nanopore library preparation can be substantially reduced without any adverse effects to genome recovery and still bolster hybrid assemblies when combined with short-read data. We posit that the results presented herein will enable studies to improve genome recovery from low-biomass environments, enhancing microbiome understanding.
Collapse
Affiliation(s)
- Sophie A Simon
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany.
| | - Katharina Schmidt
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
| | - Lea Griesdorn
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
| | - André R Soares
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Till L V Bornemann
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Alexander J Probst
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany.
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
4
|
Ho SFS, Wheeler NE, Millard AD, van Schaik W. Gauge your phage: benchmarking of bacteriophage identification tools in metagenomic sequencing data. MICROBIOME 2023; 11:84. [PMID: 37085924 PMCID: PMC10120246 DOI: 10.1186/s40168-023-01533-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The prediction of bacteriophage sequences in metagenomic datasets has become a topic of considerable interest, leading to the development of many novel bioinformatic tools. A comparative analysis of ten state-of-the-art phage identification tools was performed to inform their usage in microbiome research. METHODS Artificial contigs generated from complete RefSeq genomes representing phages, plasmids, and chromosomes, and a previously sequenced mock community containing four phage species, were used to evaluate the precision, recall, and F1 scores of the tools. We also generated a dataset of randomly shuffled sequences to quantify false-positive calls. In addition, a set of previously simulated viromes was used to assess diversity bias in each tool's output. RESULTS VIBRANT and VirSorter2 achieved the highest F1 scores (0.93) in the RefSeq artificial contigs dataset, with several other tools also performing well. Kraken2 had the highest F1 score (0.86) in the mock community benchmark by a large margin (0.3 higher than DeepVirFinder in second place), mainly due to its high precision (0.96). Generally, k-mer-based tools performed better than reference similarity tools and gene-based methods. Several tools, most notably PPR-Meta, called a high number of false positives in the randomly shuffled sequences. When analysing the diversity of the genomes that each tool predicted from a virome set, most tools produced a viral genome set that had similar alpha- and beta-diversity patterns to the original population, with Seeker being a notable exception. CONCLUSIONS This study provides key metrics used to assess performance of phage detection tools, offers a framework for further comparison of additional viral discovery tools, and discusses optimal strategies for using these tools. We highlight that the choice of tool for identification of phages in metagenomic datasets, as well as their parameters, can bias the results and provide pointers for different use case scenarios. We have also made our benchmarking dataset available for download in order to facilitate future comparisons of phage identification tools. Video Abstract.
Collapse
Affiliation(s)
- Siu Fung Stanley Ho
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Nicole E. Wheeler
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrew D. Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Conservation of Genomic Information in Multiple Displacement Amplified Low-Quantity Metagenomic Material from Marine Invertebrates. Mar Drugs 2023; 21:md21030165. [PMID: 36976214 PMCID: PMC10054348 DOI: 10.3390/md21030165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Marine invertebrate microbiomes have been a rich source of bioactive compounds and interesting genomic features. In cases where the achievable amounts of metagenomic DNA are too low for direct sequencing, multiple displacement amplification (MDA) can be used for whole genome amplification. However, MDA has known limitations which can affect the quality of the resulting genomes and metagenomes. In this study, we evaluated the conservation of biosynthetic gene clusters (BGCs) and enzymes in MDA products from low numbers of prokaryotic cells (estimated 2–850). Marine invertebrate microbiomes collected from Arctic and sub-Arctic areas served as source material. The cells were separated from the host tissue, lysed, and directly subjected to MDA. The MDA products were sequenced by Illumina sequencing. Corresponding numbers of bacteria from a set of three reference strains were treated the same way. The study demonstrated that useful information on taxonomic, BGC, and enzyme diversities was obtainable from such marginal quantities of metagenomic material. Although high levels of assembly fragmentation resulted in most BGCs being incomplete, we conclude that this genome mining approach has the potential to reveal interesting BGCs and genes from hard-to-reach biological sources.
Collapse
|
6
|
Connor KL, Bloise E, DeSantis TZ, Lye SJ. Adaptation of the gut holobiont to malnutrition during mouse pregnancy depends on the type of nutritional adversity. J Nutr Biochem 2023; 111:109172. [PMID: 36195213 DOI: 10.1016/j.jnutbio.2022.109172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
Malnutrition can influence maternal physiology and programme offspring development. Yet, in pregnancy, little is known about how dietary challenges that influence maternal phenotype affect gut structure and function. Emerging evidence suggests that interactions between the environment, multidrug resistance (MDR) transporters and microbes may influence maternal adaptation to pregnancy and regulate fetoplacental development. We hypothesized that the gut holobiont (host and microbes) during pregnancy adapts differently to suboptimal maternal diets, evidenced by changes in the gut microenvironment, morphology, and expression of key protective MDR transporters during pregnancy. Mice were fed a control diet (CON) during pregnancy, or undernourished (UN) by 30% of control intake from gestational day (GD) 5.5-18.5, or fed 60% high fat diet (HF) for 8 weeks before and during pregnancy. At GD18.5, maternal small intestinal (SI) architecture (H&E), proliferation (Ki67), P-glycoprotein (P-gp - encoded by Abcb1a/b) and breast cancer resistance protein (BCRP/Abcg2) MDR transporter expression and levels of pro-inflammatory biomarkers were assessed. Circulating inflammatory biomarkers and maternal caecal microbiome composition (G3 PhyloChipTM) were measured. MDR transporter expression was also assessed in fetal gut. HF diet increased maternal SI crypt depth and proinflammatory load, and decreased SI expression of Abcb1a mRNA, whilst UN increased SI villi proliferation and Abcb1a, but decreased Abcg2, mRNA expression. There were significant associations between Abcb1a and Abcg2 mRNA levels with relative abundance of specific microbial taxa. Using a systems physiology approach we report that common nutritional adversities provoke adaptations in the pregnancy holobiont in mice, and reveal new mechanisms that could influence reproductive outcomes and fetal development.
Collapse
Affiliation(s)
- Kristin L Connor
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada; Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada.
| | - Enrrico Bloise
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Stephen J Lye
- Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Bassi C, Guerriero P, Pierantoni M, Callegari E, Sabbioni S. Novel Virus Identification through Metagenomics: A Systematic Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122048. [PMID: 36556413 PMCID: PMC9784588 DOI: 10.3390/life12122048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Metagenomic Next Generation Sequencing (mNGS) allows the evaluation of complex microbial communities, avoiding isolation and cultivation of each microbial species, and does not require prior knowledge of the microbial sequences present in the sample. Applications of mNGS include virome characterization, new virus discovery and full-length viral genome reconstruction, either from virus preparations enriched in culture or directly from clinical and environmental specimens. Here, we systematically reviewed studies that describe novel virus identification through mNGS from samples of different origin (plant, animal and environment). Without imposing time limits to the search, 379 publications were identified that met the search parameters. Sample types, geographical origin, enrichment and nucleic acid extraction methods, sequencing platforms, bioinformatic analytical steps and identified viral families were described. The review highlights mNGS as a feasible method for novel virus discovery from samples of different origins, describes which kind of heterogeneous experimental and analytical protocols are currently used and provides useful information such as the different commercial kits used for the purification of nucleic acids and bioinformatics analytical pipelines.
Collapse
Affiliation(s)
- Cristian Bassi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paola Guerriero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Marina Pierantoni
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Elisa Callegari
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Sabbioni
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-053-245-5319
| |
Collapse
|
8
|
Wang C, Zhang L, Jiang X, Ma W, Geng H, Wang X, Li M. Toward efficient and high-fidelity metagenomic data from sub-nanogram DNA: evaluation of library preparation and decontamination methods. BMC Biol 2022; 20:225. [PMID: 36209213 PMCID: PMC9548135 DOI: 10.1186/s12915-022-01418-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Shotgun metagenomic sequencing has greatly expanded the understanding of microbial communities in various biological niches. However, it is still challenging to efficiently convert sub-nanogram DNA to high-quality metagenomic libraries and obtain high-fidelity data, hindering the exploration of niches with low microbial biomass. RESULTS To cope with this challenge comprehensively, we evaluated the performance of various library preparation methods on 0.5 pg-5 ng synthetic microbial community DNA, characterized contaminants, and further applied different in silico decontamination methods. First, we discovered that whole genome amplification prior to library construction led to worse outcomes than preparing libraries directly. Among different non-WGA-based library preparation methods, we found the endonuclease-based method being generally good for different amounts of template and the tagmentation-based method showing specific advantages with 0.5 pg template, based on evaluation metrics including fidelity, proportion of designated reads, and reproducibility. The load of contaminating DNA introduced by library preparation varied from 0.01 to 15.59 pg for different kits and accounted for 0.05 to 45.97% of total reads. A considerable fraction of the contaminating reads were mapped to human commensal and pathogenic microbes, thus potentially leading to erroneous conclusions in human microbiome studies. Furthermore, the best performing in silico decontamination method in our evaluation, Decontam-either, was capable of recovering the real microbial community from libraries where contaminants accounted for less than 10% of total reads, but not from libraries with heavy and highly varied contaminants. CONCLUSIONS This study demonstrates that high-quality metagenomic data can be obtained from samples with sub-nanogram microbial DNA by combining appropriate library preparation and in silico decontamination methods and provides a general reference for method selection for samples with varying microbial biomass.
Collapse
Affiliation(s)
- Chun Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, 100101, China.
| | - Xuan Jiang
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wentai Ma
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Geng
- Department of Geriatrics, Peking University First Hospital, Beijing, 100034, China
| | - Xue Wang
- Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Mingkun Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
9
|
Billington C, Kingsbury JM, Rivas L. Metagenomics Approaches for Improving Food Safety: A Review. J Food Prot 2022; 85:448-464. [PMID: 34706052 DOI: 10.4315/jfp-21-301] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/21/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Advancements in next-generation sequencing technology have dramatically reduced the cost and increased the ease of microbial whole genome sequencing. This approach is revolutionizing the identification and analysis of foodborne microbial pathogens, facilitating expedited detection and mitigation of foodborne outbreaks, improving public health outcomes, and limiting costly recalls. However, next-generation sequencing is still anchored in the traditional laboratory practice of the selection and culture of a single isolate. Metagenomic-based approaches, including metabarcoding and shotgun and long-read metagenomics, are part of the next disruptive revolution in food safety diagnostics and offer the potential to directly identify entire microbial communities in a single food, ingredient, or environmental sample. In this review, metagenomic-based approaches are introduced and placed within the context of conventional detection and diagnostic techniques, and essential considerations for undertaking metagenomic assays and data analysis are described. Recent applications of the use of metagenomics for food safety are discussed alongside current limitations and knowledge gaps and new opportunities arising from the use of this technology. HIGHLIGHTS
Collapse
Affiliation(s)
- Craig Billington
- Institute of Environmental Science and Research, 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - Joanne M Kingsbury
- Institute of Environmental Science and Research, 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - Lucia Rivas
- Institute of Environmental Science and Research, 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| |
Collapse
|
10
|
Shi Y, Wang G, Lau HCH, Yu J. Metagenomic Sequencing for Microbial DNA in Human Samples: Emerging Technological Advances. Int J Mol Sci 2022; 23:ijms23042181. [PMID: 35216302 PMCID: PMC8877284 DOI: 10.3390/ijms23042181] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Whole genome metagenomic sequencing is a powerful platform enabling the simultaneous identification of all genes from entirely different kingdoms of organisms in a complex sample. This technology has revolutionised multiple areas from microbiome research to clinical diagnoses. However, one of the major challenges of a metagenomic study is the overwhelming non-microbial DNA present in most of the host-derived specimens, which can inundate the microbial signals and reduce the sensitivity of microorganism detection. Various host DNA depletion methods to facilitate metagenomic sequencing have been developed and have received considerable attention in this context. In this review, we present an overview of current host DNA depletion approaches along with explanations of their underlying principles, advantages and disadvantages. We also discuss their applications in laboratory microbiome research and clinical diagnoses and, finally, we envisage the direction of the further perfection of metagenomic sequencing in samples with overabundant host DNA.
Collapse
Affiliation(s)
| | | | | | - Jun Yu
- Correspondence: ; Tel.: +852-37636099; Fax:+852-21445330
| |
Collapse
|
11
|
Zhang L, Chen F, Zeng Z, Xu M, Sun F, Yang L, Bi X, Lin Y, Gao Y, Hao H, Yi W, Li M, Xie Y. Advances in Metagenomics and Its Application in Environmental Microorganisms. Front Microbiol 2022; 12:766364. [PMID: 34975791 PMCID: PMC8719654 DOI: 10.3389/fmicb.2021.766364] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/18/2021] [Indexed: 01/04/2023] Open
Abstract
Metagenomics is a new approach to study microorganisms obtained from a specific environment by functional gene screening or sequencing analysis. Metagenomics studies focus on microbial diversity, community constitute, genetic and evolutionary relationships, functional activities, and interactions and relationships with the environment. Sequencing technologies have evolved from shotgun sequencing to high-throughput, next-generation sequencing (NGS), and third-generation sequencing (TGS). NGS and TGS have shown the advantage of rapid detection of pathogenic microorganisms. With the help of new algorithms, we can better perform the taxonomic profiling and gene prediction of microbial species. Functional metagenomics is helpful to screen new bioactive substances and new functional genes from microorganisms and microbial metabolites. In this article, basic steps, classification, and applications of metagenomics are reviewed.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - FengXin Chen
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhan Zeng
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Mengjiao Xu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fangfang Sun
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Liu Yang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyue Bi
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lin
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - YuanJiao Gao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - HongXiao Hao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Yi
- Department of Gynecology and Obstetrics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
12
|
Adam PS, Bornemann TLV, Probst AJ. Progress and Challenges in Studying the Ecophysiology of Archaea. Methods Mol Biol 2022; 2522:469-486. [PMID: 36125771 DOI: 10.1007/978-1-0716-2445-6_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It has been less than two decades since the study of archaeal ecophysiology has become unshackled from the limitations of cultivation and amplicon sequencing through the advent of metagenomics. As a primer to the guide on producing archaeal genomes from metagenomes, we briefly summarize here how different meta'omics, imaging, and wet lab methods have contributed to progress in understanding the ecophysiology of Archaea. We then peer into the history of how our knowledge on two particularly important lineages was assembled: the anaerobic methane and alkane oxidizers, encountered primarily among Euryarchaeota, and the nanosized, mainly parasitic, members of the DPANN superphylum.
Collapse
Affiliation(s)
- Panagiotis S Adam
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany.
| | - Till L V Bornemann
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany
| | - Alexander J Probst
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany.
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany.
| |
Collapse
|
13
|
Dulanto Chiang A, Dekker JP. From the Pipeline to the Bedside: Advances and Challenges in Clinical Metagenomics. J Infect Dis 2021; 221:S331-S340. [PMID: 31538184 DOI: 10.1093/infdis/jiz151] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Indexed: 12/13/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have revolutionized multiple areas in the field of infectious diseases, from pathogen discovery to characterization of genes mediating drug resistance. Consequently, there is much anticipation that NGS technologies may be harnessed in the realm of diagnostic methods to complement or replace current culture-based and molecular microbiologic techniques. In this context, much consideration has been given to hypothesis-free, culture-independent tests that can be performed directly on primary clinical samples. The closest realizations of such universal diagnostic methods achieved to date are based on targeted amplicon and unbiased metagenomic shotgun NGS approaches. Depending on the exact details of implementation and analysis, these approaches have the potential to detect viruses, bacteria, fungi, parasites, and archaea, including organisms that were previously undiscovered and those that are uncultivatable. Shotgun metagenomics approaches additionally can provide information on the presence of virulence and resistance genetic elements. While many limitations to the use of NGS in clinical microbiology laboratories are being overcome with decreasing technology costs, expanding curated pathogen sequence databases, and better data analysis tools, there remain many challenges to the routine use and implementation of these methods. This review summarizes recent advances in applications of targeted amplicon and shotgun-based metagenomics approaches to infectious disease diagnostic methods. Technical and conceptual challenges are considered, along with expectations for future applications of these techniques.
Collapse
Affiliation(s)
- Augusto Dulanto Chiang
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - John P Dekker
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| |
Collapse
|
14
|
Godlewska U, Brzoza P, Kwiecień K, Kwitniewski M, Cichy J. Metagenomic Studies in Inflammatory Skin Diseases. Curr Microbiol 2020; 77:3201-3212. [PMID: 32813091 PMCID: PMC7536147 DOI: 10.1007/s00284-020-02163-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) technologies together with an improved access to compute performance led to a cost-effective genome sequencing over the past several years. This allowed researchers to fully unleash the potential of genomic and metagenomic analyses to better elucidate two-way interactions between host cells and microbiome, both in steady-state and in pathological conditions. Experimental research involving metagenomics shows that skin resident microbes can influence the cutaneous pathophysiology. Here, we review metagenome approaches to study microbiota at this barrier site. We also describe the consequences of changes in the skin microbiota burden and composition, mostly revealed by these technologies, in the development of common inflammatory skin diseases.
Collapse
Affiliation(s)
- Urszula Godlewska
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| | - Piotr Brzoza
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Kamila Kwiecień
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mateusz Kwitniewski
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Joanna Cichy
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
15
|
de Jonge PA, von Meijenfeldt FB, Costa AR, Nobrega FL, Brouns SJ, Dutilh BE. Adsorption Sequencing as a Rapid Method to Link Environmental Bacteriophages to Hosts. iScience 2020; 23:101439. [PMID: 32823052 PMCID: PMC7452251 DOI: 10.1016/j.isci.2020.101439] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 01/08/2023] Open
Abstract
An important viromics challenge is associating bacteriophages to hosts. To address this, we developed adsorption sequencing (AdsorpSeq), a readily implementable method to measure phages that are preferentially adsorbed to specific host cell envelopes. AdsorpSeq thus captures the key initial infection cycle step. Phages are added to cell envelopes, adsorbed phages are isolated through gel electrophoresis, after which adsorbed phage DNA is sequenced and compared with the full virome. Here, we show that AdsorpSeq allows for separation of phages based on receptor-adsorbing capabilities. Next, we applied AdsorpSeq to identify phages in a wastewater virome that adsorb to cell envelopes of nine bacteria, including important pathogens. We detected 26 adsorbed phages including common and rare members of the virome, a minority being related to previously characterized phages. We conclude that AdsorpSeq is an effective new tool for rapid characterization of environmental phage adsorption, with a proof-of-principle application to Gram-negative host cell envelopes.
Collapse
Affiliation(s)
- Patrick A. de Jonge
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, 3584 CH Utrecht, the Netherlands
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands
| | | | - Ana Rita Costa
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands
| | - Franklin L. Nobrega
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands
| | - Stan J.J. Brouns
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands
| | - Bas E. Dutilh
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
16
|
Sutton TDS, Hill C. Gut Bacteriophage: Current Understanding and Challenges. Front Endocrinol (Lausanne) 2019; 10:784. [PMID: 31849833 PMCID: PMC6895007 DOI: 10.3389/fendo.2019.00784] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
The gut microbiome is widely accepted to have a significant impact on human health yet, despite years of research on this complex ecosystem, the contributions of different forces driving microbial population structure remain to be fully elucidated. The viral component of the human gut microbiome is dominated by bacteriophage, which are known to play crucial roles in shaping microbial composition, driving bacterial diversity, and facilitating horizontal gene transfer. Bacteriophage are also one of the most poorly understood components of the human gut microbiome, with the vast majority of viral sequences sharing little to no homology to reference databases. If we are to understand the dynamics of bacteriophage populations, their interaction with the human microbiome and ultimately their influence on human health, we will depend heavily on sequence based approaches and in silico tools. This is complicated by the fact that, as with any research field in its infancy, methods of analyses vary and this can impede our ability to compare the outputs of different studies. Here, we discuss the major findings to date regarding the human virome and reflect on our current understanding of how gut bacteriophage shape the microbiome. We consider whether or not the virome field is built on unstable foundations and if so, how can we provide a solid basis for future experimentation. The virome is a challenging yet crucial piece of the human microbiome puzzle. In order to develop our understanding, we will discuss the need to underpin future studies with robust research methods and suggest some solutions to existing challenges.
Collapse
Affiliation(s)
| | - Colin Hill
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Connor KL, Chehoud C, Altrichter A, Chan L, DeSantis TZ, Lye SJ. Maternal metabolic, immune, and microbial systems in late pregnancy vary with malnutrition in mice. Biol Reprod 2019; 98:579-592. [PMID: 29324977 DOI: 10.1093/biolre/ioy002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 01/08/2018] [Indexed: 01/08/2023] Open
Abstract
Malnutrition is a global threat to pregnancy health and impacts offspring development. Establishing an optimal pregnancy environment requires the coordination of maternal metabolic and immune pathways, which converge at the gut. Diet, metabolic, and immune dysfunctions have been associated with gut dysbiosis in the nonpregnant individual. In pregnancy, these states are associated with poor pregnancy outcomes and offspring development. However, the impact of malnutrition on maternal gut microbes, and their relationships with maternal metabolic and immune status, has been largely underexplored. To determine the impact of undernutrition and overnutrition on maternal metabolic status, inflammation, and the microbiome, and whether relationships exist between these systems, pregnant mice were fed either a normal, calorically restricted (CR), or a high fat (HF) diet. In late pregnancy, maternal inflammatory and metabolic biomarkers were measured and the cecal microbiome was characterized. Microbial richness was reduced in HF mothers although they did not gain more weight than controls. First trimester weight gain was associated with differences in the microbiome. Microbial abundance was associated with altered plasma and gut inflammatory phenotypes and peripheral leptin levels. Taxa potentially protective against elevated maternal leptin, without the requirement of a CR diet, were identified. Suboptimal dietary conditions common during pregnancy adversely impact maternal metabolic and immune status and the microbiome. HF nutrition exerts the greatest pressures on maternal microbial dynamics and inflammation. Key gut bacteria may mediate local and peripheral inflammatory events in response to maternal nutrient and metabolic status, with implications for maternal and offspring health.
Collapse
Affiliation(s)
- Kristin L Connor
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | | | | | - Luisa Chan
- Second Genome, San Francisco, California, USA
| | | | - Stephen J Lye
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Plominsky AM, Henríquez-Castillo C, Delherbe N, Podell S, Ramirez-Flandes S, Ugalde JA, Santibañez JF, van den Engh G, Hanselmann K, Ulloa O, De la Iglesia R, Allen EE, Trefault N. Distinctive Archaeal Composition of an Artisanal Crystallizer Pond and Functional Insights Into Salt-Saturated Hypersaline Environment Adaptation. Front Microbiol 2018; 9:1800. [PMID: 30154761 PMCID: PMC6102401 DOI: 10.3389/fmicb.2018.01800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 07/17/2018] [Indexed: 11/23/2022] Open
Abstract
Hypersaline environments represent some of the most challenging settings for life on Earth. Extremely halophilic microorganisms have been selected to colonize and thrive in these extreme environments by virtue of a broad spectrum of adaptations to counter high salinity and osmotic stress. Although there is substantial data on microbial taxonomic diversity in these challenging ecosystems and their primary osmoadaptation mechanisms, less is known about how hypersaline environments shape the genomes of microbial inhabitants at the functional level. In this study, we analyzed the microbial communities in five ponds along the discontinuous salinity gradient from brackish to salt-saturated environments and sequenced the metagenome of the salt (halite) precipitation pond in the artisanal Cáhuil Solar Saltern system. We combined field measurements with spectrophotometric pigment analysis and flow cytometry to characterize the microbial ecology of the pond ecosystems, including primary producers and applied metagenomic sequencing for analysis of archaeal and bacterial taxonomic diversity of the salt crystallizer harvest pond. Comparative metagenomic analysis of the Cáhuil salt crystallizer pond against microbial communities from other salt-saturated aquatic environments revealed a dominance of the archaeal genus Halorubrum and showed an unexpectedly low abundance of Haloquadratum in the Cáhuil system. Functional comparison of 26 hypersaline microbial metagenomes revealed a high proportion of sequences associated with nucleotide excision repair, helicases, replication and restriction-methylation systems in all of them. Moreover, we found distinctive functional signatures between the microbial communities from salt-saturated (>30% [w/v] total salinity) compared to sub-saturated hypersaline environments mainly due to a higher representation of sequences related to replication, recombination and DNA repair in the former. The current study expands our understanding of the diversity and distribution of halophilic microbial populations inhabiting salt-saturated habitats and the functional attributes that sustain them.
Collapse
Affiliation(s)
- Alvaro M Plominsky
- Department of Oceanography, Faculty of Natural and Oceanographic Sciences, Universidad de Concepción, Concepción, Chile.,Instituto Milenio de Oceanografía, Concepción, Chile
| | - Carlos Henríquez-Castillo
- Department of Oceanography, Faculty of Natural and Oceanographic Sciences, Universidad de Concepción, Concepción, Chile.,Instituto Milenio de Oceanografía, Concepción, Chile
| | - Nathalie Delherbe
- Biology Department, Cell and Molecular Biology Joint Doctoral Program with UC San Diego, San Diego State University, San Diego, CA, United States
| | - Sheila Podell
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Salvador Ramirez-Flandes
- Instituto Milenio de Oceanografía, Concepción, Chile.,Programa de Doctorado en Ingeniería de Sistemas Complejos, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Juan A Ugalde
- uBiome, Inc., San Francisco, CA, United States.,Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Juan F Santibañez
- Department of Oceanography, Faculty of Natural and Oceanographic Sciences, Universidad de Concepción, Concepción, Chile
| | | | - Kurt Hanselmann
- Department of Earth Sciences, ETH Zürich, Zurich, Switzerland
| | - Osvaldo Ulloa
- Department of Oceanography, Faculty of Natural and Oceanographic Sciences, Universidad de Concepción, Concepción, Chile.,Instituto Milenio de Oceanografía, Concepción, Chile
| | - Rodrigo De la Iglesia
- Department of Molecular Genetics and Microbiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eric E Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Nicole Trefault
- GEMA Center for Genomics, Ecology and Environment, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| |
Collapse
|
19
|
Hirai M, Nishi S, Tsuda M, Sunamura M, Takaki Y, Nunoura T. Library Construction from Subnanogram DNA for Pelagic Sea Water and Deep-Sea Sediments. Microbes Environ 2017; 32:336-343. [PMID: 29187708 PMCID: PMC5745018 DOI: 10.1264/jsme2.me17132] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Shotgun metagenomics is a low biased technology for assessing environmental microbial diversity and function. However, the requirement for a sufficient amount of DNA and the contamination of inhibitors in environmental DNA leads to difficulties in constructing a shotgun metagenomic library. We herein examined metagenomic library construction from subnanogram amounts of input environmental DNA from subarctic surface water and deep-sea sediments using two library construction kits: the KAPA Hyper Prep Kit and Nextera XT DNA Library Preparation Kit, with several modifications. The influence of chemical contaminants associated with these environmental DNA samples on library construction was also investigated. Overall, shotgun metagenomic libraries were constructed from 1 pg to 1 ng of input DNA using both kits without harsh library microbial contamination. However, the libraries constructed from 1 pg of input DNA exhibited larger biases in GC contents, k-mers, or small subunit (SSU) rRNA gene compositions than those constructed from 10 pg to 1 ng DNA. The lower limit of input DNA for low biased library construction in this study was 10 pg. Moreover, we revealed that technology-dependent biases (physical fragmentation and linker ligation vs. tagmentation) were larger than those due to the amount of input DNA.
Collapse
Affiliation(s)
- Miho Hirai
- Research and Development (R&D) Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Shinro Nishi
- Research and Development (R&D) Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC).,Ecosystem Observation and Evaluation Methodology Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Miwako Tsuda
- Ecosystem Observation and Evaluation Methodology Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Michinari Sunamura
- Ecosystem Observation and Evaluation Methodology Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC).,Department of Earth and Planetary Science, The University of Tokyo
| | - Yoshihiro Takaki
- Research and Development (R&D) Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC).,Ecosystem Observation and Evaluation Methodology Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC).,Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Takuro Nunoura
- Research and Development (R&D) Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC).,Ecosystem Observation and Evaluation Methodology Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| |
Collapse
|
20
|
Rosenthal K, Oehling V, Dusny C, Schmid A. Beyond the bulk: disclosing the life of single microbial cells. FEMS Microbiol Rev 2017; 41:751-780. [PMID: 29029257 PMCID: PMC5812503 DOI: 10.1093/femsre/fux044] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 09/08/2017] [Indexed: 01/08/2023] Open
Abstract
Microbial single cell analysis has led to discoveries that are beyond what can be resolved with population-based studies. It provides a pristine view of the mechanisms that organize cellular physiology, unbiased by population heterogeneity or uncontrollable environmental impacts. A holistic description of cellular functions at the single cell level requires analytical concepts beyond the miniaturization of existing technologies, defined but uncontrolled by the biological system itself. This review provides an overview of the latest advances in single cell technologies and demonstrates their potential. Opportunities and limitations of single cell microbiology are discussed using selected application-related examples.
Collapse
Affiliation(s)
- Katrin Rosenthal
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Verena Oehling
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Christian Dusny
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Andreas Schmid
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| |
Collapse
|
21
|
Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 2017; 35:833-844. [PMID: 28898207 DOI: 10.1038/nbt.3935] [Citation(s) in RCA: 979] [Impact Index Per Article: 122.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 07/12/2017] [Indexed: 02/06/2023]
Abstract
Diverse microbial communities of bacteria, archaea, viruses and single-celled eukaryotes have crucial roles in the environment and in human health. However, microbes are frequently difficult to culture in the laboratory, which can confound cataloging of members and understanding of how communities function. High-throughput sequencing technologies and a suite of computational pipelines have been combined into shotgun metagenomics methods that have transformed microbiology. Still, computational approaches to overcome the challenges that affect both assembly-based and mapping-based metagenomic profiling, particularly of high-complexity samples or environments containing organisms with limited similarity to sequenced genomes, are needed. Understanding the functions and characterizing specific strains of these communities offers biotechnological promise in therapeutic discovery and innovative ways to synthesize products using microbial factories and can pinpoint the contributions of microorganisms to planetary, animal and human health.
Collapse
|
22
|
Impact of Contaminating DNA in Whole-Genome Amplification Kits Used for Metagenomic Shotgun Sequencing for Infection Diagnosis. J Clin Microbiol 2017; 55:1789-1801. [PMID: 28356418 DOI: 10.1128/jcm.02402-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/17/2017] [Indexed: 01/24/2023] Open
Abstract
Whole-genome amplification (WGA) is a useful tool for amplification of very small quantities of DNA for many uses, including metagenomic shotgun sequencing for infection diagnosis. Depending on the application, background DNA from WGA kits can be problematic. Three WGA kits were tested for their utility in a metagenomics approach to identify the pathogens in sonicate fluid comprised of biofilms and other materials dislodged from the surfaces of explanted prosthetic joints using sonication. The Illustra V2 Genomiphi, Illustra single cell Genomiphi, and Qiagen REPLI-g single cell kits were used to test identical sonicate fluid samples. Variations in the number of background reads, the genera identified in the background, and the number of reads from known pathogens known to be present in the samples were observed between kits. These results were then compared to those obtained with a library preparation without prior WGA using an NEBNext Ultra II paired-end kit, which requires a very small amount of input DNA. This approach also resulted in the presence of contaminant bacterial DNA and yielded fewer reads from the known pathogens. These findings highlight the impact that WGA kit selection can have on metagenomic analysis of low-biomass samples and the importance of the careful selection and consideration of the implications of using these tools.
Collapse
|
23
|
Dubinsky EA, Butkus SR, Andersen GL. Microbial source tracking in impaired watersheds using PhyloChip and machine-learning classification. WATER RESEARCH 2016; 105:56-64. [PMID: 27598696 DOI: 10.1016/j.watres.2016.08.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 06/06/2023]
Abstract
Sources of fecal indicator bacteria are difficult to identify in watersheds that are impacted by a variety of non-point sources. We developed a molecular source tracking test using the PhyloChip microarray that detects and distinguishes fecal bacteria from humans, birds, ruminants, horses, pigs and dogs with a single test. The multiplexed assay targets 9001 different 25-mer fragments of 16S rRNA genes that are common to the bacterial community of each source type. Both random forests and SourceTracker were tested as discrimination tools, with SourceTracker classification producing superior specificity and sensitivity for all source types. Validation with 12 different mammalian sources in mixtures found 100% correct identification of the dominant source and 84-100% specificity. The test was applied to identify sources of fecal indicator bacteria in the Russian River watershed in California. We found widespread contamination by human sources during the wet season proximal to settlements with antiquated septic infrastructure and during the dry season at beaches during intense recreational activity. The test was more sensitive than common fecal indicator tests that failed to identify potential risks at these sites. Conversely, upstream beaches and numerous creeks with less reliance on onsite wastewater treatment contained no fecal signal from humans or other animals; however these waters did contain high counts of fecal indicator bacteria after rain. Microbial community analysis revealed that increased E. coli and enterococci at these locations did not co-occur with common fecal bacteria, but rather co-varied with copiotrophic bacteria that are common in freshwaters with high nutrient and carbon loading, suggesting runoff likely promoted the growth of environmental strains of E. coli and enterococci. These results indicate that machine-learning classification of PhyloChip microarray data can outperform conventional single marker tests that are used to assess health risks, and is an effective tool for distinguishing numerous fecal and environmental sources of pathogen indicators.
Collapse
Affiliation(s)
- Eric A Dubinsky
- Ecology Department, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Steven R Butkus
- North Coast Regional Water Quality Control Board, Santa Rosa, CA 95403, USA
| | - Gary L Andersen
- Ecology Department, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
24
|
Hammond M, Homa F, Andersson-Svahn H, Ettema TJG, Joensson HN. Picodroplet partitioned whole genome amplification of low biomass samples preserves genomic diversity for metagenomic analysis. MICROBIOME 2016; 4:52. [PMID: 27716450 PMCID: PMC5054601 DOI: 10.1186/s40168-016-0197-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/22/2016] [Indexed: 05/31/2023]
Abstract
BACKGROUND Whole genome amplification (WGA) is a challenging, key step in metagenomic studies of samples containing minute amounts of DNA, such as samples from low biomass environments. It is well known that multiple displacement amplification (MDA), the most commonly used WGA method for microbial samples, skews the genomic representation in the sample. We have combined MDA with droplet microfluidics to perform the reaction in a homogeneous emulsion. Each droplet in this emulsion can be considered an individual reaction chamber, allowing partitioning of the MDA reaction into millions of parallel reactions with only one or very few template molecules per droplet. RESULTS As a proof-of-concept, we amplified genomic DNA from a synthetic metagenome by MDA either in one bulk reaction or in emulsion and found that after sequencing, the species distribution was better preserved and the coverage depth was more evenly distributed across the genomes when the MDA reaction had been performed in emulsion. CONCLUSIONS Partitioning MDA reactions into millions of reactions by droplet microfluidics is a straightforward way to improve the uniformity of MDA reactions for amplifying complex samples with limited amounts of DNA.
Collapse
Affiliation(s)
- Maria Hammond
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, Royal Institute of Technology (KTH), Stockholm, Sweden.
| | - Felix Homa
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Helene Andersson-Svahn
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Haakan N Joensson
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, Royal Institute of Technology (KTH), Stockholm, Sweden
| |
Collapse
|
25
|
Rinke C, Low S, Woodcroft BJ, Raina JB, Skarshewski A, Le XH, Butler MK, Stocker R, Seymour J, Tyson GW, Hugenholtz P. Validation of picogram- and femtogram-input DNA libraries for microscale metagenomics. PeerJ 2016; 4:e2486. [PMID: 27688978 PMCID: PMC5036114 DOI: 10.7717/peerj.2486] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/24/2016] [Indexed: 12/26/2022] Open
Abstract
High-throughput sequencing libraries are typically limited by the requirement for nanograms to micrograms of input DNA. This bottleneck impedes the microscale analysis of ecosystems and the exploration of low biomass samples. Current methods for amplifying environmental DNA to bypass this bottleneck introduce considerable bias into metagenomic profiles. Here we describe and validate a simple modification of the Illumina Nextera XT DNA library preparation kit which allows creation of shotgun libraries from sub-nanogram amounts of input DNA. Community composition was reproducible down to 100 fg of input DNA based on analysis of a mock community comprising 54 phylogenetically diverse Bacteria and Archaea. The main technical issues with the low input libraries were a greater potential for contamination, limited DNA complexity which has a direct effect on assembly and binning, and an associated higher percentage of read duplicates. We recommend a lower limit of 1 pg (∼100-1,000 microbial cells) to ensure community composition fidelity, and the inclusion of negative controls to identify reagent-specific contaminants. Applying the approach to marine surface water, pronounced differences were observed between bacterial community profiles of microliter volume samples, which we attribute to biological variation. This result is consistent with expected microscale patchiness in marine communities. We thus envision that our benchmarked, slightly modified low input DNA protocol will be beneficial for microscale and low biomass metagenomics.
Collapse
Affiliation(s)
- Christian Rinke
- Australian Centre for Ecogenomics/School of Chemistry and Molecular Biosciences, University of Queensland , Brisbane, QLD , Australia
| | - Serene Low
- Australian Centre for Ecogenomics/School of Chemistry and Molecular Biosciences, University of Queensland , Brisbane, QLD , Australia
| | - Ben J Woodcroft
- Australian Centre for Ecogenomics/School of Chemistry and Molecular Biosciences, University of Queensland , Brisbane, QLD , Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney , Sydney, New South Wales , Australia
| | - Adam Skarshewski
- Australian Centre for Ecogenomics/School of Chemistry and Molecular Biosciences, University of Queensland , Brisbane, QLD , Australia
| | - Xuyen H Le
- Australian Centre for Ecogenomics/School of Chemistry and Molecular Biosciences, University of Queensland , Brisbane, QLD , Australia
| | - Margaret K Butler
- Australian Centre for Ecogenomics/School of Chemistry and Molecular Biosciences, University of Queensland , Brisbane, QLD , Australia
| | - Roman Stocker
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich , Zurich , Switzerland
| | - Justin Seymour
- Climate Change Cluster, University of Technology Sydney , Sydney, New South Wales , Australia
| | - Gene W Tyson
- Australian Centre for Ecogenomics/School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia; Advanced Water Management Centre, University of Queensland, Brisbane, QLD, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics/School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
26
|
Thoendel M, Jeraldo PR, Greenwood-Quaintance KE, Yao JZ, Chia N, Hanssen AD, Abdel MP, Patel R. Comparison of microbial DNA enrichment tools for metagenomic whole genome sequencing. J Microbiol Methods 2016; 127:141-145. [PMID: 27237775 DOI: 10.1016/j.mimet.2016.05.022] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 02/07/2023]
Abstract
Metagenomic whole genome sequencing for detection of pathogens in clinical samples is an exciting new area for discovery and clinical testing. A major barrier to this approach is the overwhelming ratio of human to pathogen DNA in samples with low pathogen abundance, which is typical of most clinical specimens. Microbial DNA enrichment methods offer the potential to relieve this limitation by improving this ratio. Two commercially available enrichment kits, the NEBNext Microbiome DNA Enrichment Kit and the Molzym MolYsis Basic kit, were tested for their ability to enrich for microbial DNA from resected arthroplasty component sonicate fluids from prosthetic joint infections or uninfected sonicate fluids spiked with Staphylococcus aureus. Using spiked uninfected sonicate fluid there was a 6-fold enrichment of bacterial DNA with the NEBNext kit and 76-fold enrichment with the MolYsis kit. Metagenomic whole genome sequencing of sonicate fluid revealed 13- to 85-fold enrichment of bacterial DNA using the NEBNext enrichment kit. The MolYsis approach achieved 481- to 9580-fold enrichment, resulting in 7 to 59% of sequencing reads being from the pathogens known to be present in the samples. These results demonstrate the usefulness of these tools when testing clinical samples with low microbial burden using next generation sequencing.
Collapse
Affiliation(s)
- Matthew Thoendel
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Patricio R Jeraldo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA; Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Janet Z Yao
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nicholas Chia
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA; Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Arlen D Hanssen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Matthew P Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Robin Patel
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA; Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
27
|
Brooks JP. Challenges for case-control studies with microbiome data. Ann Epidemiol 2016; 26:336-341.e1. [PMID: 27255739 DOI: 10.1016/j.annepidem.2016.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/25/2016] [Accepted: 03/25/2016] [Indexed: 01/15/2023]
Abstract
PURPOSE In case-control studies of the human microbiome, the goal is to evaluate whether cases differ from controls in the microbiome composition of a particular body habitat and which taxa are responsible for the differences. These studies leverage sequencing technology and spectroscopy that provide new measurements of the microbiome. METHODS Three challenges in conducting reproducible microbiome research using a case-control design are compensating for differences in observed and actual microbial community composition, detecting "rare" taxa in microbial communities, and choosing properly powered analysis methods. The significance of each challenge, evaluation of commonly held views, analysis of unanswered questions, and suggestions of strategies for solutions are discussed. RESULTS Understanding the effects of these choices on case-control analyses has been underappreciated, with an implicit assumption that further advances in technology will address all the current shortcomings. CONCLUSIONS It is recommended that research on the human microbiome include positive and negative control experiments to provide insight into bias, contamination, and technical variation. Research protocols such as these may afford a better opportunity to make quantitative and qualitative adjustments to data, thereby reducing the risk of falsely positive results, increasing power to discover true disease determinants, and enhancing interpretation across studies.
Collapse
Affiliation(s)
- J Paul Brooks
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond; Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond; Department of Supply Chain Management and Analytics, Virginia Commonwealth University, Richmond.
| |
Collapse
|
28
|
Library preparation methodology can influence genomic and functional predictions in human microbiome research. Proc Natl Acad Sci U S A 2015; 112:14024-9. [PMID: 26512100 DOI: 10.1073/pnas.1519288112] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Observations from human microbiome studies are often conflicting or inconclusive. Many factors likely contribute to these issues including small cohort sizes, sample collection, and handling and processing differences. The field of microbiome research is moving from 16S rDNA gene sequencing to a more comprehensive genomic and functional representation through whole-genome sequencing (WGS) of complete communities. Here we performed quantitative and qualitative analyses comparing WGS metagenomic data from human stool specimens using the Illumina Nextera XT and Illumina TruSeq DNA PCR-free kits, and the KAPA Biosystems Hyper Prep PCR and PCR-free systems. Significant differences in taxonomy are observed among the four different next-generation sequencing library preparations using a DNA mock community and a cell control of known concentration. We also revealed biases in error profiles, duplication rates, and loss of reads representing organisms that have a high %G+C content that can significantly impact results. As with all methods, the use of benchmarking controls has revealed critical differences among methods that impact sequencing results and later would impact study interpretation. We recommend that the community adopt PCR-free-based approaches to reduce PCR bias that affects calculations of abundance and to improve assemblies for accurate taxonomic assignment. Furthermore, the inclusion of a known-input cell spike-in control provides accurate quantitation of organisms in clinical samples.
Collapse
|