1
|
Lehmann P, Katoh-Kurasawa M, Kundert P, Shaulsky G. Going against the family: Perturbation of a greenbeard pathway leads to falsebeard cheating. iScience 2024; 27:111125. [PMID: 39502291 PMCID: PMC11536038 DOI: 10.1016/j.isci.2024.111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Greenbeards facilitate cooperation by encoding a perceptible signal, the ability to detect it, and a tendency to help others that display it. Falsebeards are hypothetical cheaters that display the signal without being altruistic. Despite many examples of greenbeards, evidence for falsebeards is scarce. The Dictyostelium discoideum tgrB1-tgrC1 allorecognition pathway encodes a greenbeard. It allows development, which yields fruiting bodies with altruistic stalks that increase spore dispersal. Here we show that cells lacking rapgapB, a tgrB1-tgrC1 signaling element, cheat by avoiding the stalk fate and generating more spores in chimeras than in pure populations. rapgapB - cells cheat only on partners with compatible tgrB1-tgrC1 allotypes, suggesting that beard display and recognition are intact but decoupled from altruism. The rapgapB - falsebeard provides a model to study greenbeard maintenance and subversion.
Collapse
Affiliation(s)
- Peter Lehmann
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate program in Genetics and Genomics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mariko Katoh-Kurasawa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter Kundert
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate program in Genetics and Genomics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Katoh-Kurasawa M, Lehmann P, Shaulsky G. The greenbeard gene tgrB1 regulates altruism and cheating in Dictyostelium discoideum. Nat Commun 2024; 15:3984. [PMID: 38734736 PMCID: PMC11088635 DOI: 10.1038/s41467-024-48380-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Greenbeard genetic elements encode rare perceptible signals, signal recognition ability, and altruism towards others that display the same signal. Putative greenbeards have been described in various organisms but direct evidence for all the properties in one system is scarce. The tgrB1-tgrC1 allorecognition system of Dictyostelium discoideum encodes two polymorphic membrane proteins which protect cells from chimerism-associated perils. During development, TgrC1 functions as a ligand-signal and TgrB1 as its receptor, but evidence for altruism has been indirect. Here, we show that mixing wild-type and activated tgrB1 cells increases wild-type spore production and relegates the mutants to the altruistic stalk, whereas mixing wild-type and tgrB1-null cells increases mutant spore production and wild-type stalk production. The tgrB1-null cells cheat only on partners that carry the same tgrC1-allotype. Therefore, TgrB1 activation confers altruism whereas TgrB1 inactivation causes allotype-specific cheating, supporting the greenbeard concept and providing insight into the relationship between allorecognition, altruism, and exploitation.
Collapse
Affiliation(s)
- Mariko Katoh-Kurasawa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Peter Lehmann
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Graduate program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Ogasawara T, Watanabe J, Adachi R, Ono Y, Kamimura Y, Muramoto T. CRISPR/Cas9-based genome-wide screening of Dictyostelium. Sci Rep 2022; 12:11215. [PMID: 35780186 PMCID: PMC9250498 DOI: 10.1038/s41598-022-15500-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Genome-wide screening is powerful method used to identify genes and pathways associated with a phenotype of interest. The simple eukaryote Dictyostelium discoideum has a unique life cycle and is often used as a crucial research model for a wide range of biological processes and rare metabolites. To address the inadequacies of conventional genetic screening approaches, we developed a highly efficient CRISPR/Cas9-based genome-wide screening system for Dictyostelium. A genome-wide library of 27,405 gRNAs and a kinase library of 4,582 gRNAs were compiled and mutant pools were generated. The resulting mutants were screened for defects in cell growth and more than 10 candidate genes were identified. Six of these were validated and five recreated mutants presented with growth abnormalities. Finally, the genes implicated in developmental defects were screened to identify the unknown genes associated with a phenotype of interest. These findings demonstrate the potential of the CRISPR/Cas9 system as an efficient genome-wide screening method.
Collapse
Affiliation(s)
- Takanori Ogasawara
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Jun Watanabe
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Remi Adachi
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Yusuke Ono
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, RIKEN, Center for Biosystems Dynamics Research (BDR), Suita, Osaka, 565-0874, Japan
| | - Tetsuya Muramoto
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
| |
Collapse
|
4
|
Kundert P, Shaulsky G. Cellular allorecognition and its roles in Dictyostelium development and social evolution. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2019; 63:383-393. [PMID: 31840777 PMCID: PMC6919275 DOI: 10.1387/ijdb.190239gs] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The social amoeba Dictyostelium discoideum is a tractable model organism to study cellular allorecognition, which is the ability of a cell to distinguish itself and its genetically similar relatives from more distantly related organisms. Cellular allorecognition is ubiquitous across the tree of life and affects many biological processes. Depending on the biological context, these versatile systems operate both within and between individual organisms, and both promote and constrain functional heterogeneity. Some of the most notable allorecognition systems mediate neural self-avoidance in flies and adaptive immunity in vertebrates. D. discoideum's allorecognition system shares several structures and functions with other allorecognition systems. Structurally, its key regulators reside at a single genomic locus that encodes two highly polymorphic proteins, a transmembrane ligand called TgrC1 and its receptor TgrB1. These proteins exhibit isoform-specific, heterophilic binding across cells. Functionally, this interaction determines the extent to which co-developing D. discoideum strains co-aggregate or segregate during the aggregation phase of multicellular development. The allorecognition system thus affects both development and social evolution, as available evidence suggests that the threat of developmental cheating represents a primary selective force acting on it. Other significant characteristics that may inform the study of allorecognition in general include that D. discoideum's allorecognition system is a continuous and inclusive trait, it is pleiotropic, and it is temporally regulated.
Collapse
Affiliation(s)
- Peter Kundert
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | | |
Collapse
|
5
|
Hayakawa IS, Inouye K. Species recognition in social amoebae. J Biosci 2018; 43:1025-1036. [PMID: 30541961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aggregative multicellularity requires the ability of cells to recognise conspecifics. Social amoebae are among the best studied of such organisms, but the mechanism and evolutionary background of species recognition remained to be investigated. Here we show that heterologous expression of a single Dictyostelium purpureum gene is sufficient for D. discoideum cells to efficiently make chimaeric fruiting bodies with D. purpureum cells. This gene forms a bidirectional pair with another gene on the D. purpureum genome, and they are both highly polymorphic among independent wild isolates of the same mating group that do not form chimaeric fruiting bodies with each other. These paired genes are both structurally similar to D. discoideum tgrB1/C1 pair, which is responsible for clonal discrimination within that species, suggesting that these tgr genes constitute the species recognition system that has attained a level of precision capable of discriminating between clones within a species. Analysis of the available genome sequences of social amoebae revealed that such gene pairs exist only within the clade composed of species that produce precursors of sterile stalk cells (prestalk cells), suggesting concurrent evolution of a precise allorecognition system and a new 'worker' cell-type dedicated to transporting and supporting the reproductive cells.
Collapse
Affiliation(s)
- Ikumi Shibano Hayakawa
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan,
| | | |
Collapse
|
6
|
Species recognition in social amoebae. J Biosci 2018. [DOI: 10.1007/s12038-018-9810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Zahavi A, Harris KD, Nanjundiah V. An individual-level selection model for the apparent altruism exhibited by cellular slime moulds. J Biosci 2018; 43:49-58. [PMID: 29485114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In Dictyostelium discoideum, cells that become part of the stalk or basal disc display behaviour that can be interpreted as altruistic. Atzmony et al. (Curr Sci 72:142-145, 1997) had hypothesised that this behaviour could be the outcome of an adaptive strategy based on differing intrinsic quality as reflected by phenotypes that indicate differences in potential for survival and reproduction, followed by intercellular competition among amoebae of differing qualities. Low-quality amoebae would have a poor chance of succeeding in the competition to form spores; they could enhance their chances of survival by adopting a presumptive stalk strategy. Here we extend the hypothesis by making use of recent findings. Our approach is based on the view that an evolutionary explanation for the apparent altruism of stalk cells in D. discoideum must apply broadly to other cellular slime moulds (CSMs) that exhibit stalk cell death. Further, it must be capable of being modified to cover social behaviour in CSMs with an extracellular stalk, as well as in sorocarpic amoebae whose stalk cells are viable. With regard to D. discoideum, we suggest that (a) differentiation-inducing factor, thought of as a signal that inhibits amoebae from forming spores and induces them to differentiate into basal disc cells, is better viewed as a mediator of competition among post-aggregation amoebae and (b) the products of the 'recognition genes', tgrB and tgrC, allow an amoeba to assess its quality relative to that of its neighbours and move to a position within the aggregate that optimises its reproductive fitness. From this perspective, all cells behave in a manner that is 'selfish' rather than 'altruistic', albeit with different expectations of success.
Collapse
Affiliation(s)
- Amotz Zahavi
- Department of Zoology, Tel Aviv University, 69978 Tel Aviv, Israel
| | | | | |
Collapse
|
8
|
An individual-level selection model for the apparent altruism exhibited by cellular slime moulds. J Biosci 2018. [DOI: 10.1007/s12038-018-9734-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Hirose S, Chen G, Kuspa A, Shaulsky G. The polymorphic proteins TgrB1 and TgrC1 function as a ligand-receptor pair in Dictyostelium allorecognition. J Cell Sci 2017; 130:4002-4012. [PMID: 29038229 PMCID: PMC5769593 DOI: 10.1242/jcs.208975] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/12/2017] [Indexed: 12/15/2022] Open
Abstract
Allorecognition is a key factor in Dictyostelium development and sociality. It is mediated by two polymorphic transmembrane proteins, TgrB1 and TgrC1, which contain extracellular immunoglobulin domains. TgrB1 and TgrC1 are necessary and sufficient for allorecognition, and they carry out separate albeit overlapping functions in development, but their mechanism of action is unknown. Here, we show that TgrB1 acts as a receptor with TgrC1 as its ligand in cooperative aggregation and differentiation. The proteins bind each other in a sequence-specific manner; TgrB1 exhibits a cell-autonomous function and TgrC1 acts non-cell-autonomously. The TgrB1 cytoplasmic tail is essential for its function and it becomes phosphorylated upon association with TgrC1. Dominant mutations in TgrB1 activate the receptor function and confer partial ligand independence. These roles in development and sociality suggest that allorecognition is crucial in the integration of individual cells into a coherent organism.
Collapse
Affiliation(s)
- Shigenori Hirose
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gong Chen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adam Kuspa
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
10
|
Abstract
Triacylglycerol is a universal storage molecule for metabolic energy in living organisms. However, Dictyostelium amoebae, that have accumulated storage fat from added fatty acids do not progress through the starvation period preceding the development of the durable spore. Mutants deficient in genes of fat metabolism, such as fcsA, encoding a fatty acid activating enzyme, or dgat1 and dgat2, specifying proteins that synthesize triacylglycerol, strongly increase their chances to contribute to the spore fraction of the developing fruiting body, but lose the ability to produce storage fat efficiently. Dictyostelium seipin, an orthologue of a human protein that in patients causes the complete loss of adipose tissue when mutated, does not quantitatively affect fat storage in the amoeba. Dictyostelium seiP knockout mutants have lipid droplets that are enlarged in size but reduced in number. These mutants are as vulnerable as the wild type when exposed to fatty acids during their vegetative growth phase, and do not efficiently enter the spore head in Dictyostelium development. Summary: In contrast to many living organisms, storage fat is not beneficial for Dictyostelium cells when progressing through starvation and subsequent development of a dormant stage.
Collapse
Affiliation(s)
- Jessica M Kornke
- Abteilung Zellbiologie, Universität Kassel, D-34109 Kassel, Germany
| | - Markus Maniak
- Abteilung Zellbiologie, Universität Kassel, D-34109 Kassel, Germany
| |
Collapse
|
11
|
Li CLF, Santhanam B, Webb AN, Zupan B, Shaulsky G. Gene discovery by chemical mutagenesis and whole-genome sequencing in Dictyostelium. Genome Res 2016; 26:1268-76. [PMID: 27307293 PMCID: PMC5052037 DOI: 10.1101/gr.205682.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/17/2016] [Indexed: 11/24/2022]
Abstract
Whole-genome sequencing is a useful approach for identification of chemical-induced lesions, but previous applications involved tedious genetic mapping to pinpoint the causative mutations. We propose that saturation mutagenesis under low mutagenic loads, followed by whole-genome sequencing, should allow direct implication of genes by identifying multiple independent alleles of each relevant gene. We tested the hypothesis by performing three genetic screens with chemical mutagenesis in the social soil amoeba Dictyostelium discoideum Through genome sequencing, we successfully identified mutant genes with multiple alleles in near-saturation screens, including resistance to intense illumination and strong suppressors of defects in an allorecognition pathway. We tested the causality of the mutations by comparison to published data and by direct complementation tests, finding both dominant and recessive causative mutations. Therefore, our strategy provides a cost- and time-efficient approach to gene discovery by integrating chemical mutagenesis and whole-genome sequencing. The method should be applicable to many microbial systems, and it is expected to revolutionize the field of functional genomics in Dictyostelium by greatly expanding the mutation spectrum relative to other common mutagenesis methods.
Collapse
Affiliation(s)
- Cheng-Lin Frank Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Balaji Santhanam
- Graduate Program in Structural Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Amanda Nicole Webb
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Blaž Zupan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA; Faculty of Computer and Information Science, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
12
|
Strassmann JE. Kin Discrimination in
Dictyostelium
Social Amoebae. J Eukaryot Microbiol 2016; 63:378-83. [DOI: 10.1111/jeu.12307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/05/2016] [Accepted: 02/11/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Joan E. Strassmann
- Department of Biology Washington University in St. Louis CB1137 St. Louis Missouri 63130‐4899
| |
Collapse
|