1
|
Yamamoto T, Mitsunaga F, Kotani A, Tajima K, Wasaki K, Nakamura S. Safety Assessment of a Sublingual Vaccine Formulated with Poly(I:C) Adjuvant and Influenza HA Antigen in Mice and Macaque Monkeys: Comparison with Intranasal Vaccine. Vaccines (Basel) 2025; 13:261. [PMID: 40266106 PMCID: PMC11945353 DOI: 10.3390/vaccines13030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 04/24/2025] Open
Abstract
A sublingual vaccine comprising the Poly(I:C) adjuvant and influenza HA antigen was evaluated for safety in both mice and macaque monkeys relative to its intranasal counterpart. Safety was assessed in terms of harmful effects corresponding to the upregulation of the inflammation-associated genes Saa3, Tnf, IL6, IL1b, Ccl2, Timp1, C2, Ifi47, Aif1, Omp, Nos2, and/or Gzmb in mice and SAA2, TNF, IL6, IL1B, CCL2, TIMP, C2, AIF1, and GZMB in macaques. Quantitative gene expression analyses were performed using RT-qPCR with RNA samples from four tissue types, the olfactory bulb, pons, lung, tongue, and lymph node, from both mice and macaques. In mice, the intranasally delivered vaccine markedly upregulated the inflammation-related genes in the olfactory bulb 1 day and 7 days after vaccination. The adverse effects of intranasal vaccination were also observed in macaques, albeit to a lesser extent than in mice. The intranasal vaccination also upregulated these genes in the pons of both mice and macaques. In contrast, the sublingual vaccine did not adversely affect the olfactory bulb or pons in either mice or macaques. The intranasally administered vaccine significantly upregulated these genes in the lungs only 1 day after vaccination, but not 7 days later, in both mice and macaques. We conclude that intranasal vaccination results in unfavorable side effects corresponding to upregulated inflammatory genes in the brain (olfactory bulb and pons). Sublingual vaccination, however, did not induce these side effects in either mice or macaques and was hence evaluated as safe.
Collapse
Affiliation(s)
- Tetsuro Yamamoto
- Innovation Research Center, EPS Holdings, Inc., 2-1 Tsukudohachimancho, Shinjuku-ku, Tokyo 162-0815, Japan; (T.Y.); (A.K.); (K.T.); (K.W.)
- EP Mediate Co., Ltd., 1-8 Tsukudocho, Shinjuku-ku, Tokyo 162-0821, Japan
- Research Center, EPS Innovative Medicine Co., Ltd., 1-8 Tsukudocho, Shinjuku-ku, Tokyo 162-0821, Japan
| | - Fusako Mitsunaga
- Intelligence & Technology Lab, Inc., 52-1 Fukue, Kaizu-cho, Kaizu 503-0628, Japan;
- Biomedical Institute, NPO Primate Agora, 52-2 Fukue, Kaizu-cho, Kaizu 503-0628, Japan
| | - Atsushi Kotani
- Innovation Research Center, EPS Holdings, Inc., 2-1 Tsukudohachimancho, Shinjuku-ku, Tokyo 162-0815, Japan; (T.Y.); (A.K.); (K.T.); (K.W.)
- Research Center, EPS Innovative Medicine Co., Ltd., 1-8 Tsukudocho, Shinjuku-ku, Tokyo 162-0821, Japan
| | - Kazuki Tajima
- Innovation Research Center, EPS Holdings, Inc., 2-1 Tsukudohachimancho, Shinjuku-ku, Tokyo 162-0815, Japan; (T.Y.); (A.K.); (K.T.); (K.W.)
- Research Center, EPS Innovative Medicine Co., Ltd., 1-8 Tsukudocho, Shinjuku-ku, Tokyo 162-0821, Japan
| | - Kunihiko Wasaki
- Innovation Research Center, EPS Holdings, Inc., 2-1 Tsukudohachimancho, Shinjuku-ku, Tokyo 162-0815, Japan; (T.Y.); (A.K.); (K.T.); (K.W.)
- EP Mediate Co., Ltd., 1-8 Tsukudocho, Shinjuku-ku, Tokyo 162-0821, Japan
| | - Shin Nakamura
- Intelligence & Technology Lab, Inc., 52-1 Fukue, Kaizu-cho, Kaizu 503-0628, Japan;
- Biomedical Institute, NPO Primate Agora, 52-2 Fukue, Kaizu-cho, Kaizu 503-0628, Japan
| |
Collapse
|
2
|
Abdel-Haq H. Feasibility of Using a Type I IFN-Based Non-Animal Approach to Predict Vaccine Efficacy and Safety Profiles. Vaccines (Basel) 2024; 12:583. [PMID: 38932312 PMCID: PMC11209158 DOI: 10.3390/vaccines12060583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Animal-based tests are used for the control of vaccine quality. However, because highly purified and safe vaccines are now available, alternative approaches that can replace or reduce animal use for the assessment of vaccine outcomes must be established. In vitro tests for vaccine quality control exist and have already been implemented. However, these tests are specifically designed for some next-generation vaccines, and this makes them not readily available for testing other vaccines. Therefore, universal non-animal tests are still needed. Specific signatures of the innate immune response could represent a promising approach to predict the outcome of vaccines by non-animal methods. Type I interferons (IFNs) have multiple immunomodulatory activities, which are exerted through effectors called interferon stimulated genes (ISGs), and are one of the most important immune signatures that might provide potential candidate molecular biomarkers for this purpose. This paper will mainly examine if this idea might be feasible by analyzing all relevant published studies that have provided type I IFN-related biomarkers for evaluating the safety and efficacy profiles of vaccines using an advanced transcriptomic approach as an alternative to the animal methods. Results revealed that such an approach could potentially provide biomarkers predictive of vaccine outcomes after addressing some limitations.
Collapse
Affiliation(s)
- Hanin Abdel-Haq
- Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| |
Collapse
|
3
|
Zhuo SH, Noda N, Hioki K, Jin S, Hayashi T, Hiraga K, Momose H, Li WH, Zhao L, Mizukami T, Ishii KJ, Li YM, Uesugi M. Identification of a Self-Assembling Small-Molecule Cancer Vaccine Adjuvant with an Improved Toxicity Profile. J Med Chem 2023; 66:13266-13279. [PMID: 37676021 DOI: 10.1021/acs.jmedchem.3c01252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Protein or peptide cancer vaccines usually include immune potentiators, so-called adjuvants. However, it remains challenging to identify structurally simple, chemically accessible synthetic molecules that are effective and safe as vaccine adjuvant. Here, we present cholicamideβ (6), a self-assembling small-molecule vaccine adjuvant with an improved toxicity profile and proven efficacy in vivo. We demonstrate that cholicamideβ (6), which is less cytotoxic than its parent compound, forms virus-like particles to potently activate dendritic cells with the concomitant secretion of cytokines. When combined with a peptide antigen, cholicamideβ (6) potentiated the antigen presentation on dendritic cells to induce antigen-specific T cells. As a therapeutic cancer vaccine adjuvant in mice, a mixture of cholicamideβ (6) and a peptide antigen protected mice from the challenges of malignant cancer cells without overt toxicity. Cholicamideβ (6) may offer a translational opportunity as an unprecedented class of small-molecule cancer vaccine adjuvants.
Collapse
Affiliation(s)
- Shao-Hua Zhuo
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Naotaka Noda
- Graduate School of Medicine, Kyoto University, Uji 611-0011, Kyoto, Japan
- Institute for Chemical Research, Kyoto University, Uji 611-0011, Kyoto, Japan
| | - Kou Hioki
- Division of Vaccine Science, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Shuyu Jin
- Graduate School of Medicine, Kyoto University, Uji 611-0011, Kyoto, Japan
- Institute for Chemical Research, Kyoto University, Uji 611-0011, Kyoto, Japan
| | - Tomoya Hayashi
- Division of Vaccine Science, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Kou Hiraga
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Haruka Momose
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Wen-Hao Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lang Zhao
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Takuo Mizukami
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Ken J Ishii
- Division of Vaccine Science, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Yan-Mei Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Beijing Institute for Brain Disorders, Beijing 100069, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Motonari Uesugi
- Institute for Chemical Research, Kyoto University, Uji 611-0011, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
- School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
4
|
van den Biggelaar RHGA, van der Maas L, Meiring HD, Pennings JLA, van Eden W, Rutten VPMG, Jansen CA. Proteomic analysis of chicken bone marrow-derived dendritic cells in response to an inactivated IBV + NDV poultry vaccine. Sci Rep 2021; 11:12666. [PMID: 34135356 PMCID: PMC8209092 DOI: 10.1038/s41598-021-89810-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
Inactivated poultry vaccines are subject to routine potency testing for batch release, requiring large numbers of animals. The replacement of in vivo tests for cell-based alternatives can be facilitated by the identification of biomarkers for vaccine-induced immune responses. In this study, chicken bone marrow-derived dendritic cells were stimulated with an inactivated vaccine for infectious bronchitis virus and Newcastle disease virus, as well as inactivated infectious bronchitis virus only, and lipopolysaccharides as positive control, or left unstimulated for comparison with the stimulated samples. Next, the cells were lysed and subjected to proteomic analysis. Stimulation with the vaccine resulted in 66 differentially expressed proteins associated with mRNA translation, immune responses, lipid metabolism and the proteasome. For the eight most significantly upregulated proteins, mRNA expression levels were assessed. Markers that showed increased expression at both mRNA and protein levels included PLIN2 and PSMB1. Stimulation with infectious bronchitis virus only resulted in 25 differentially expressed proteins, which were mostly proteins containing Src homology 2 domains. Stimulation with lipopolysaccharides resulted in 118 differentially expressed proteins associated with dendritic cell maturation and antimicrobial activity. This study provides leads to a better understanding of the activation of dendritic cells by an inactivated poultry vaccine, and identified PLIN2 and PSMB1 as potential biomarkers for cell-based potency testing.
Collapse
Affiliation(s)
- Robin H G A van den Biggelaar
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Hugo D Meiring
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Utrecht, The Netherlands
| | - Willem van Eden
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Victor P M G Rutten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Christine A Jansen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
5
|
Sasaki E, Asanuma H, Momose H, Furuhata K, Mizukami T, Hamaguchi I. Immunogenicity and Toxicity of Different Adjuvants Can Be Characterized by Profiling Lung Biomarker Genes After Nasal Immunization. Front Immunol 2020; 11:2171. [PMID: 33013912 PMCID: PMC7516075 DOI: 10.3389/fimmu.2020.02171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
The efficacy of vaccine adjuvants depends on their ability to appropriately enhance the immunogenicity of vaccine antigens, which is often insufficient in non-adjuvanted vaccines. Genomic analyses of immune responses elicited by vaccine adjuvants provide information that is critical for the rational design of adjuvant vaccination strategies. In this study, biomarker genes from the genomic analyses of lungs after priming were used to predict the efficacy and toxicity of vaccine adjuvants. Based on the results, it was verified whether the efficacy and toxicity of the tested adjuvants could be predicted based on the biomarker gene profiles after priming. Various commercially available adjuvants were assessed by combining them with the split influenza vaccine and were subsequently administered in mice through nasal inoculation. The expression levels of lung biomarker genes within 24 h after priming were analyzed. Furthermore, we analyzed the antibody titer, cytotoxic T lymphocyte (CTL) induction, IgG1/IgG2a ratio, leukopenic toxicity, and cytotoxicity in mice vaccinated at similar doses. The association between the phenotypes and the changes in the expression levels of biomarker genes were analyzed. The ability of the adjuvants to induce the production of antigen-specific IgA could be assessed based on the levels of Timp1 expression. Furthermore, the expression of this gene partially correlated with the levels of other damage-associated molecular patterns in bronchoalveolar lavage fluid. Additionally, the changes in the expression of proteasome- and transporter-related genes involved in major histocompatibility complex class 1 antigen presentation could be monitored to effectively assess the expansion of CTL by adjuvants. The monitoring of certain genes is necessary for the assessment of leukopenic toxicity and cytotoxicity of the tested adjuvant. These results indicate that the efficacy and toxicity of various adjuvants can be characterized by profiling lung biomarker genes after the first instance of immunization. This approach could make a significant contribution to the development of optimal selection and exploratory screening strategies for novel adjuvants.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Asanuma
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keiko Furuhata
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
6
|
Sasaki E, Hamaguchi I, Mizukami T. Pharmacodynamic and safety considerations for influenza vaccine and adjuvant design. Expert Opin Drug Metab Toxicol 2020; 16:1051-1061. [PMID: 32772723 DOI: 10.1080/17425255.2020.1807936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION A novel adjuvant evaluation system for safety and immunogenicity is needed. Vaccination is important for infection prevention, for example, from influenza viruses. Adjuvants are considered critical for improving the effectiveness of influenza vaccines. Adjuvant development is an important issue in influenza vaccine design. AREAS COVERED A conventional in vivo evaluation method for vaccine safety has been limited in analyzing phenotypic and pathological changes. Therefore, it is difficult to obtain information on the changes at the molecular level. This review aims to explain the recently developed genomics analysis-based vaccine adjuvant safety evaluation tools verified by AddaVaxTM and polyinosinic-polycytidylic acid (poly I:C) using 18 biomarker genes and whole-virion inactivated influenza vaccine as a toxicity control. Genomics analyzes would help provide safety and efficacy information regarding influenza vaccine design by facilitating appropriate adjuvant selection. EXPERT OPINION The efficacy and safety profiles of influenza vaccines and adjuvants using genomics technologies provide useful information regarding immunogenicity, which is related to safety and efficacy. This approach provides important information to select appropriate inoculation routes, combinations of vaccine antigens and adjuvants, and dosing amounts. The efficacy of vaccine adjuvant evaluation by genomics analysis should be verified by various studies using various vaccines in the future.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases , Tokyo, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases , Tokyo, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases , Tokyo, Japan
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW The gradual replacement of inactivated whole cell and live attenuated vaccines with subunit vaccines has generally reduced reactogenicity but in many cases also immunogenicity. Although only used when necessary, adjuvants can be key to vaccine dose/antigen-sparing, broadening immune responses to variable antigens, and enhancing immunogenicity in vulnerable populations with distinct immunity. Licensed vaccines contain an increasing variety of adjuvants, with a growing pipeline of adjuvanted vaccines under development. RECENT FINDINGS Most adjuvants, including Alum, Toll-like receptor agonists and oil-in-water emulsions, activate innate immunity thereby altering the quantity and quality of an adaptive immune response. Adjuvants activate leukocytes, and induce mediators (e.g., cytokines, chemokines, and prostaglandin-E2) some of which are biomarkers for reactogenicity, that is, induction of local/systemic side effects. Although there have been safety concerns regarding a hypothetical risk of adjuvants inducing auto-immunity, such associations have not been established. As immune responses vary by population (e.g., age and sex), adjuvant research now incorporates principles of precision medicine. Innovations in adjuvant research include use of human in vitro models, immuno-engineering, novel delivery systems, and systems biology to identify biomarkers of safety and adjuvanticity. SUMMARY Adjuvants enhance vaccine immunogenicity and can be associated with reactogenicity. Novel multidisciplinary approaches hold promise to accelerate and de-risk targeted adjuvant discovery and development. VIDEO ABSTRACT: http://links.lww.com/MOP/A53.
Collapse
Affiliation(s)
- Etsuro Nanishi
- Precision Vaccines Program
- Division of Infectious Diseases, Boston Children's Hospital
- Harvard Medical School, Boston
| | - David J. Dowling
- Precision Vaccines Program
- Division of Infectious Diseases, Boston Children's Hospital
- Harvard Medical School, Boston
| | - Ofer Levy
- Precision Vaccines Program
- Division of Infectious Diseases, Boston Children's Hospital
- Harvard Medical School, Boston
- Broad Institute of MIT & Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
8
|
Sasaki E, Kusunoki H, Momose H, Furuhata K, Hosoda K, Wakamatsu K, Mizukami T, Hamaguchi I. Changes of urine metabolite profiles are induced by inactivated influenza vaccine inoculations in mice. Sci Rep 2019; 9:16249. [PMID: 31700085 PMCID: PMC6838172 DOI: 10.1038/s41598-019-52686-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/21/2019] [Indexed: 12/23/2022] Open
Abstract
The safety evaluation of vaccines is critical to avoid the development of side effects in humans. To increase the sensitivity of detection for toxicity tests, it is important to capture not only pathological changes but also physiological changes. 1H nuclear magnetic resonance (NMR) spectroscopy analysis of biofluids produces profiles that show characteristic responses to changes in physiological status. In this study, mouse urine metabolomics analysis with 1H NMR was performed using different influenza vaccines of varying toxicity to assess the usefulness of 1H NMR in evaluating vaccine toxicity. Two types of influenza vaccines were used as model vaccines: a toxicity reference vaccine (RE) and a hemagglutinin split vaccine. According to the blood biochemical analyses, the plasma alanine transaminase levels were increased in RE-treated mice. Changes in metabolite levels between mice administered different types of influenza vaccines were observed in the 1H NMR spectra of urine, and a tendency toward dosage-dependent responses for some spectra was observed. Hierarchical clustering analyses and principal component analyses showed that the changes in various urine metabolite levels allowed for the classification of different types of vaccines. Among them, two liver-derived metabolites were shown to largely contribute to the formation of the cluster. These results demonstrate the possibility that urine metabolomics analysis could provide information about vaccine-induced toxicity and physiological changes.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo, 208-0011, Japan.
| | - Hideki Kusunoki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo, 208-0011, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo, 208-0011, Japan
| | - Keiko Furuhata
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo, 208-0011, Japan
| | - Kazuo Hosoda
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kaori Wakamatsu
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo, 208-0011, Japan.
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo, 208-0011, Japan
| |
Collapse
|
9
|
Sasaki E, Momose H, Hiradate Y, Ishii KJ, Mizukami T, Hamaguchi I. In vitro marker gene expression analyses in human peripheral blood mononuclear cells: A tool to assess safety of influenza vaccines in humans. J Immunotoxicol 2018. [PMID: 29521144 DOI: 10.1080/1547691x.2018.1447052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Vaccines are inoculated in healthy individuals from children to the elderly, and thus high levels of safety and consistency of vaccine quality in each lot must meet the required specifications by using preclinical and lot release testing. Because vaccines are inoculated into humans, recapitulation of biological reactions in humans should be considered for test methods. We have developed a new method to evaluate the safety of influenza vaccines using biomarker gene expression in mouse and rat models. Some biomarker genes are already known to be expressed in human lymphocytes, macrophages and dendritic cells; therefore, we considered some of these genes might be common biomarkers for human and mice to evaluate influenza vaccine safety. In this study, we used human peripheral blood mononuclear cells (PBMC) as a primary assessment tool to confirm the usefulness of potential marker genes in humans. Analysis of marker gene expression in PBMC revealed biomarker gene expressions were dose-relatedly increased in toxic reference influenza vaccine (RE)-stimulated PBMC. Although some marker genes showed increased expression in hemagglutinin split vaccine-stimulated PBMC, their expression levels were lower than that of RE in PBMC from two different donors. Many marker gene expressions correlated with chemokine production. Marker genes such as IRF7 were associated with other Type 1 interferon (IFN)-associated signals and were highly expressed in the CD304+ plasmacytoid dendritic cell (pDC) population. These results suggest PBMC and their marker genes may be useful for vaccine safety evaluation in humans.
Collapse
Affiliation(s)
- Eita Sasaki
- a Department of Safety Research on Blood and Biological Products , National Institute of Infectious Diseases , Tokyo , Japan
| | - Haruka Momose
- a Department of Safety Research on Blood and Biological Products , National Institute of Infectious Diseases , Tokyo , Japan
| | - Yuki Hiradate
- a Department of Safety Research on Blood and Biological Products , National Institute of Infectious Diseases , Tokyo , Japan
| | - Ken J Ishii
- b Laboratory of Adjuvant Innovation , National Institutes of Biomedical Innovation, Health and Nutrition , Osaka , Japan.,c Laboratory of Vaccine Science , WPI Immunology Frontier Research Center, Osaka University , Osaka , Japan
| | - Takuo Mizukami
- a Department of Safety Research on Blood and Biological Products , National Institute of Infectious Diseases , Tokyo , Japan
| | - Isao Hamaguchi
- a Department of Safety Research on Blood and Biological Products , National Institute of Infectious Diseases , Tokyo , Japan
| |
Collapse
|
10
|
Sasaki E, Momose H, Hiradate Y, Mizukami T, Hamaguchi I. Establishment of a novel safety assessment method for vaccine adjuvant development. Vaccine 2018; 36:7112-7118. [PMID: 30318166 DOI: 10.1016/j.vaccine.2018.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/09/2018] [Accepted: 09/29/2018] [Indexed: 12/27/2022]
Abstract
Vaccines effectively prevent infectious diseases. Many types of vaccines against various pathogens that threaten humans are currently in widespread use. Recently, adjuvant adaptation has been attempted to activate innate immunity to enhance the effectiveness of vaccines. The effectiveness of adjuvants for vaccinations has been demonstrated in many animal models and clinical trials. Although a highly potent adjuvant tends to have high effectiveness, it also has the potential to increase the risk of side effects such as pain, edema, and fever. Indeed, highly effective adjuvants, such as poly(I:C), have not been clinically applied due to their high risks of toxicity in humans. Therefore, the task in the field of adjuvant development is to clinically apply highly effective and non- or low-toxic adjuvant-containing vaccines. To resolve this issue, it is essential to ensure a low risk of side effects and the high efficacy of an adjuvant in the early developmental phases. This review summarizes the theory and history of the current safety assessment methods for adjuvants, using the inactivated influenza vaccine as a model. Our novel method was developed as a system to judge the safety of a candidate compound using biomarkers identified by genomic technology and statistical tools. A systematic safety assessment tool for adjuvants would be of great use for predicting toxicity during novel adjuvant development, screening, and quality control.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Yuki Hiradate
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan.
| |
Collapse
|
11
|
Momose H, Sasaki E, Kuramitsu M, Hamaguchi I, Mizukami T. Gene expression profiling toward the next generation safety control of influenza vaccines and adjuvants in Japan. Vaccine 2018; 36:6449-6455. [PMID: 30243500 DOI: 10.1016/j.vaccine.2018.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
Abstract
Influenza becomes epidemic worldwide every year, and many individuals receive vaccination annually. Quality control relating to safety and potency of influenza vaccines is important to maintain public confidence. The safety of influenza vaccines has been assessed by clinical trials, and animal safety tests are performed to monitor the consistent quality between vaccines used for clinical trials and marketing; the biological responses in vaccinated animals are evaluated, including changes in body weight and white blood cell count. Animal safety tests have been contributing to the quality relating to the safety of influenza vaccines for decades, but improvements are needed. Although precise mechanisms involving biological changes in animal safety tests have not been fully elucidated, the application of cDNA microarray technology make it possible to reliably identify genes related to biological responses in vaccinated animals. From analysis of the expression profile of >10,000 genes of lung in animals treated with an inactivated whole virion influenza vaccine, we identified 17 marker genes whose expression patterns correlated well to changes in body weight and leukocyte count in vaccinated animals. In influenza HA vaccine-treated animals exhibiting subtle changes in biological responses, a robust expression pattern of marker genes was found. Furthermore, these marker genes could also be used in the evaluation of adjuvanted influenza vaccines. The expression profile of marker genes is expected to be an alternative indicator for safety control of various influenza vaccines conferring high sensitivity and short turnaround time. Thus, gene expression profiling may be a powerful tool for safety control of vaccines in the future.
Collapse
Affiliation(s)
- Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Madoka Kuramitsu
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan.
| |
Collapse
|
12
|
Hiradate Y, Sasaki E, Momose H, Asanuma H, Furuhata K, Takai M, Aoshi T, Yamada H, Ishii KJ, Tanemura K, Mizukami T, Hamaguchi I. Development of screening method for intranasal influenza vaccine and adjuvant safety in preclinical study. Biologicals 2018; 55:43-52. [DOI: 10.1016/j.biologicals.2018.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/29/2018] [Accepted: 07/05/2018] [Indexed: 11/26/2022] Open
|
13
|
Sasaki E, Momose H, Hiradate Y, Furuhata K, Mizukami T, Hamaguchi I. Development of a preclinical humanized mouse model to evaluate acute toxicity of an influenza vaccine. Oncotarget 2018; 9:25751-25763. [PMID: 29899819 PMCID: PMC5995229 DOI: 10.18632/oncotarget.25399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/28/2018] [Indexed: 01/13/2023] Open
Abstract
Safety evaluation of a human vaccine is critical for vaccine development and for preventing an unexpected adverse reaction in humans. Nonetheless, to date, very few systems have been described for preclinical studies of human adverse reactions in vivo. Previously, we have identified biomarker genes expressed in the lungs for evaluation of influenza vaccine safety, and their usefulness in rodent models and for adjuvant-containing vaccines has already been reported. Here, our purpose was to develop a novel humanized mouse model retaining human innate-immunity–related cells to assess the safety of influenza vaccines using the previously identified biomarker genes. In the present study, we tested whether the two humanized models, a short-term and long-term reconstitution model of NOD/Shi-scid IL2rγnull mice, are suitable for biomarker gene–based safety evaluation. In the short-term model, human CD14+ cells, plasmacytoid dendritic cells, CD4+ and CD8+ T cells, and B cells were retained in the lungs. Among these cells, human CD14+ cells and plasmacytoid dendritic cells were not detected in the lungs of the long-term model. After the vaccination, the expression levels of human biomarker genes were elevated only in the short-term model when the toxicity reference vaccine was inoculated. This phenomenon was not observed in the long-term model. The levels of human cytokines and chemokines in the lungs increased in response to the toxicity reference vaccine in the short-term mouse model. According to these results, the short-term model provides a better platform for evaluating vaccine safety in terms of human peripheral blood mononuclear cell–mediated initial reactions in vivo.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Yuki Hiradate
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Keiko Furuhata
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo 208-0011, Japan
| |
Collapse
|
14
|
Sasaki E, Momose H, Hiradate Y, Furuhata K, Takai M, Asanuma H, Ishii KJ, Mizukami T, Hamaguchi I. Modeling for influenza vaccines and adjuvants profile for safety prediction system using gene expression profiling and statistical tools. PLoS One 2018; 13:e0191896. [PMID: 29408882 PMCID: PMC5800680 DOI: 10.1371/journal.pone.0191896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/12/2018] [Indexed: 11/18/2022] Open
Abstract
Historically, vaccine safety assessments have been conducted by animal testing (e.g., quality control tests and adjuvant development). However, classical evaluation methods do not provide sufficient information to make treatment decisions. We previously identified biomarker genes as novel safety markers. Here, we developed a practical safety assessment system used to evaluate the intramuscular, intraperitoneal, and nasal inoculation routes to provide robust and comprehensive safety data. Influenza vaccines were used as model vaccines. A toxicity reference vaccine (RE) and poly I:C-adjuvanted hemagglutinin split vaccine were used as toxicity controls, while a non-adjuvanted hemagglutinin split vaccine and AddaVax (squalene-based oil-in-water nano-emulsion with a formulation similar to MF59)-adjuvanted hemagglutinin split vaccine were used as safety controls. Body weight changes, number of white blood cells, and lung biomarker gene expression profiles were determined in mice. In addition, vaccines were inoculated into mice by three different administration routes. Logistic regression analyses were carried out to determine the expression changes of each biomarker. The results showed that the regression equations clearly classified each vaccine according to its toxic potential and inoculation amount by biomarker expression levels. Interestingly, lung biomarker expression was nearly equivalent for the various inoculation routes. The results of the present safety evaluation were confirmed by the approximation rate for the toxicity control. This method may contribute to toxicity evaluation such as quality control tests and adjuvant development.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, Japan
| | - Yuki Hiradate
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, Japan
| | - Keiko Furuhata
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, Japan
| | - Mamiko Takai
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, Japan
| | - Hideki Asanuma
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, Japan
| | - Ken J. Ishii
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, Japan
- * E-mail: (TM); (IH)
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, Japan
- * E-mail: (TM); (IH)
| |
Collapse
|
15
|
Sasaki E, Momose H, Hiradate Y, Furuhata K, Takai M, Kamachi K, Asanuma H, Ishii KJ, Mizukami T, Hamaguchi I. Evaluation of marker gene expression as a potential predictive marker of leukopenic toxicity for inactivated influenza vaccines. Biologicals 2017; 50:100-108. [PMID: 28838806 DOI: 10.1016/j.biologicals.2017.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 08/06/2017] [Accepted: 08/08/2017] [Indexed: 01/02/2023] Open
Abstract
The leukopenic toxicity test (LTT) is used to evaluate the safety and lot-to-lot consistency of influenza hemagglutinin split vaccine (HAv) and is included in the Japanese Minimum Requirements for Biological Products. LTT assesses the reduced leukocyte levels in murine peripheral blood after HAv administration. However, they require large numbers of animals, and therefore it would be beneficial to develop a more accurate and sensitive alternative method. In this study, we selected biomarkers of leukocyte reduction from 18 previously identified marker genes that were associated with an abnormal toxicity test (ATT). Among these 18 genes, the expressions of 15 marker genes were strongly associated with leukocyte reduction levels. A stepwise single addition multiple regression analysis was used to further extract the genes responsible for leukocyte reduction, with significant (p < 0.25) regression coefficients. The expression of 7 genes significantly predicted the leukocyte reduction. The prediction accuracy of this approach was approximately >90% (mean) for the direct measurement of leukocyte numbers. These results indicate that the expression of these 18 previously identified genes can provide information for both ATT and LTT.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Yuki Hiradate
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Keiko Furuhata
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Mamiko Takai
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Kazunari Kamachi
- Department of Bacteriology II, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Hideki Asanuma
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan.
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| |
Collapse
|
16
|
Sasaki E, Kuramitsu M, Momose H, Kobiyama K, Aoshi T, Yamada H, Ishii KJ, Mizukami T, Hamaguchi I. A novel vaccinological evaluation of intranasal vaccine and adjuvant safety for preclinical tests. Vaccine 2017; 35:821-830. [PMID: 28063707 DOI: 10.1016/j.vaccine.2016.12.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/02/2016] [Accepted: 12/14/2016] [Indexed: 11/25/2022]
Abstract
Vaccines are administered to healthy humans, including infants, so the safety and efficacy must be very high. Therefore, evaluating vaccine safety in preclinical and clinical studies, according to World Health Organization guidelines, is crucial for vaccine development and clinical use. A change in the route of administration is considered to alter a vaccine's immunogenicity. Several adjuvants have also been developed and approved for use in vaccines. However, the addition of adjuvants to vaccines may cause unwanted immune responses, including facial nerve paralysis and narcolepsy. Therefore, a more accurate and comprehensive strategy must be used to develope next-generation vaccines for ensuring vaccine safety. Previously, we have developed a system with which to evaluate vaccine safety in rats using a systematic vaccinological approach and 20 marker genes. In this study, we developed a safety evaluation system for nasally administered influenza vaccines and adjuvanted influenza vaccines using these marker genes. Expression of these genes increased dose-dependent manner when mice were intranasally administered the toxicity reference vaccine. When the adjuvant CpG K3 or a CpG-K3-combined influenza vaccine was administered intranasally, marker gene expression increased in a CpG-K3-dose-dependent way. A histopathological analysis indicated that marker gene expression correlated with vaccine- or adjuvant-induced phenotypic changes in the lung and nasal mucosa. We believe that the marker genes expression analyses will be useful in preclinical testing, adjuvant development, and selecting the appropriate dose of adjuvant in nasal administration vaccines.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Madoka Kuramitsu
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Kouji Kobiyama
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Taiki Aoshi
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Vaccine Dynamics Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan
| | - Hiroshi Yamada
- Toxicogenomics Informatics Project, National Institutes of Biomedical, Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan.
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan.
| |
Collapse
|