1
|
Amin MR, Khara L, Szaszkiewicz J, Kim AM, Hamilton TJ, Ali DW. Brief exposure to (-) THC affects zebrafish embryonic locomotion with effects that persist into the next generation. Sci Rep 2025; 15:2203. [PMID: 39820507 PMCID: PMC11739600 DOI: 10.1038/s41598-024-82353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025] Open
Abstract
Cannabis is one of the most widely used drugs, and yet an understanding of its impact on the human brain and body is inconclusive. Medicinal and recreational use of cannabis has increased in the last decade with a concomitant increase in use by pregnant women. The major psychoactive compound in cannabis, Δ9-tetrahydrocannabinol (THC), exists in different isomers, with the (-) trans isomer most common. Prenatal exposure to THC can alter neural and behavioral development, but it is unknown how exposure to (-) trans-THC ((-)THC) during very early stages of development impacts fetal growth and movement, and whether effects persist to adulthood, or into the next generation. Here we exposed zebrafish (Danio rerio) to a single exposure of (-)THC (0.001 mg/L (3.2 nM) to 20 mg/L (63.6 µM), for 5 h) during gastrulation (5.25 hpf to 10.75 hpf) when key neurons involved in locomotion such as the primary motor neurons and Mauthner cell first appear. We then examined the impact on embryo morphology and locomotion, adult behavior, and locomotion in the next (F1) generation. Embryos treated with (-)THC experienced changes in morphology, were shorter in length and experienced altered hatching and survival. Spontaneous coiling of 1 dpf embryos was reduced, swimming after touch-evoked responses was reduced and basal swimming in 5 dpf larvae was also reduced. Adult zebrafish tested in the open field test and novel object approach test demonstrated no differences in locomotion, anxiety-like behavior, nor boldness, compared to controls. The (-)THC F1 generation embryos at 1 dpf showed reduced coiling activity, while swimming after touch-evoked responses was reduced in 2 dpf animals but basal swimming at 5 dpf remained similar to controls. Taken together, exposure to (-)THC only once for 5 h during gastrulation has a significant impact on locomotion in embryos and larvae, a minimal impact on adult behavior, and effects that persist into the next generation.
Collapse
Affiliation(s)
- Md Ruhul Amin
- Departments of Biological Sciences CW-405 Biological Sciences Building, University of Alberta Edmonton, Edmonton, AB, T6G 2E9, Canada
| | - Lakhan Khara
- Departments of Biological Sciences CW-405 Biological Sciences Building, University of Alberta Edmonton, Edmonton, AB, T6G 2E9, Canada
| | | | - Andrew M Kim
- Departments of Biological Sciences CW-405 Biological Sciences Building, University of Alberta Edmonton, Edmonton, AB, T6G 2E9, Canada
| | - Trevor J Hamilton
- Department of Psychology, MacEwan University, T5J 4S2, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Declan W Ali
- Departments of Biological Sciences CW-405 Biological Sciences Building, University of Alberta Edmonton, Edmonton, AB, T6G 2E9, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| |
Collapse
|
2
|
The Impact of Tetracycline Pollution on the Aquatic Environment and Removal Strategies. Antibiotics (Basel) 2023; 12:antibiotics12030440. [PMID: 36978308 PMCID: PMC10044355 DOI: 10.3390/antibiotics12030440] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Antibacterial drugs are among the most commonly used medications in the world. Tetracycline is a widely used antibiotic for human and animal therapy due to its broad-spectrum activity, high effectiveness, and reasonable cost. The indications for treatment with tetracycline include pneumonia, bone and joint infections, infectious disorders of the skin, sexually transmitted and gastrointestinal infections. However, tetracycline has become a serious threat to the environment because of its overuse by humans and veterinarians and weak ability to degrade. Tetracycline is capable of accumulating along the food chain, causing toxicity to the microbial community, encouraging the development and spread of antibiotic resistance, creating threats to drinking and irrigation water, and disrupting microbial flora in the human intestine. It is essential to address the negative impact of tetracycline on the environment, as it causes ecological imbalance. Ineffective wastewater systems are among the main reasons for the increased antibiotic concentrations in aquatic sources. It is possible to degrade tetracycline by breaking it down into small molecules with less harmful or nonhazardous effects. A range of methods for physical, chemical, and biological degradation exists. The review will discuss the negative effects of tetracycline consumption on the aquatic environment and describe available removal methods.
Collapse
|
3
|
Zhang MQ, Zhang JP, Hu CQ. A Rapid Assessment Model for Liver Toxicity of Macrolides and an Integrative Evaluation for Azithromycin Impurities. Front Pharmacol 2022; 13:860702. [PMID: 35444552 PMCID: PMC9014295 DOI: 10.3389/fphar.2022.860702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Impurities in pharmaceuticals of potentially hazardous materials may cause drug safety problems. Macrolide antibiotic preparations include active pharmaceutical ingredients (APIs) and different types of impurities with similar structures, and the amount of these impurities is usually very low and difficult to be separated for toxicity evaluation. Our previous study indicated that hepatotoxicity induced by macrolides was correlated with c-fos overexpression. Here, we report an assessment of macrolide-related liver toxicity by ADMET prediction, molecular docking, structure–toxicity relationship, and experimental verification via detection of the c-fos gene expression in liver cells. The results showed that a rapid assessment model for the prediction of hepatotoxicity of macrolide antibiotics could be established by calculation of the -CDOCKER interaction energy score with the FosB/JunD bZIP domain and then confirmed by the detection of the c-fos gene expression in L02 cells. Telithromycin, a positive compound of liver toxicity, was used to verify the correctness of the model through comparative analysis of liver toxicity in zebrafish and cytotoxicity in L02 cells exposed to telithromycin and azithromycin. The prediction interval (48.1∼53.1) for quantitative hepatotoxicity in the model was calculated from the docking scores of seven macrolide antibiotics commonly used in clinics. We performed the prediction interval to virtual screening of azithromycin impurities with high hepatotoxicity and then experimentally confirmed by liver toxicity in zebrafish and c-fos gene expression. Simultaneously, we found the hepatotoxicity of azithromycin impurities may be related to the charge of nitrogen (N) atoms on the side chain group at the C5 position via structure–toxicity relationship of azithromycin impurities with different structures. This study provides a theoretical basis for improvement of the quality of macrolide antibiotics.
Collapse
Affiliation(s)
- Miao-Qing Zhang
- Key Laboratory of Biotechnology of Antibiotics, The National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Pu Zhang
- Key Laboratory of Biotechnology of Antibiotics, The National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chang-Qin Hu
- National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
4
|
Weiss JM, Lumaquin-Yin D, Montal E, Suresh S, Leonhardt CS, White RM. Shifting the focus of zebrafish toward a model of the tumor microenvironment. eLife 2022; 11:69703. [PMID: 36538362 PMCID: PMC9767465 DOI: 10.7554/elife.69703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/21/2022] [Indexed: 12/29/2022] Open
Abstract
Cancer cells exist in a complex ecosystem with numerous other cell types in the tumor microenvironment (TME). The composition of this tumor/TME ecosystem will vary at each anatomic site and affects phenotypes such as initiation, metastasis, and drug resistance. A mechanistic understanding of the large number of cell-cell interactions between tumor and TME requires models that allow us to both characterize as well as genetically perturb this complexity. Zebrafish are a model system optimized for this problem, because of the large number of existing cell-type-specific drivers that can label nearly any cell in the TME. These include stromal cells, immune cells, and tissue resident normal cells. These cell-type-specific promoters/enhancers can be used to drive fluorophores to facilitate imaging and also CRISPR cassettes to facilitate perturbations. A major advantage of the zebrafish is the ease by which large numbers of TME cell types can be studied at once, within the same animal. While these features make the zebrafish well suited to investigate the TME, the model has important limitations, which we also discuss. In this review, we describe the existing toolset for studying the TME using zebrafish models of cancer and highlight unique biological insights that can be gained by leveraging this powerful resource.
Collapse
Affiliation(s)
- Joshua M Weiss
- Weill-Cornel Medical College, Tri-Institutional M.D./Ph.D. ProgramNew YorkUnited States
| | - Dianne Lumaquin-Yin
- Weill-Cornel Medical College, Tri-Institutional M.D./Ph.D. ProgramNew YorkUnited States
| | - Emily Montal
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & GeneticsNew YorkUnited States
| | - Shruthy Suresh
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & GeneticsNew YorkUnited States
| | - Carl S Leonhardt
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & GeneticsNew YorkUnited States
| | - Richard M White
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & GeneticsNew YorkUnited States,Department of Medicine, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
5
|
Ryu B, Je JG, Jeon YJ, Yang HW. Zebrafish Model for Studying Dexamethasone-Induced Muscle Atrophy and Preventive Effect of Maca ( Lepidium meyenii). Cells 2021; 10:cells10112879. [PMID: 34831102 PMCID: PMC8616435 DOI: 10.3390/cells10112879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
Loss of myofibers during muscle atrophy affects functional capacity and quality of life. Dexamethasone, an inducer of rapid atrophy of skeletal myofibers, has been studied as a glucocorticoid receptor in muscle atrophy or motor neurodegeneration. In this study, we examined dexamethasone-induced muscle atrophy using zebrafish (Danio rerio), a vertebrate model, and assessed whether administration of Lepidium meyenii (maca) as a dietary supplement can prevent muscle atrophy. Changes in skeletal myofibers in zebrafish were evaluated after exposure to dexamethasone for different periods and at different concentrations. Under optimized conditions, zebrafish pre-fed with maca for 3 days were exposed to 0.01% dexamethasone for 1 h/day for 7 days. Thereafter, myofiber loss, damaged muscle contractile proteins, and abnormal exploratory behavior due to the structural and functional impairment of skeletal muscle associated with muscle atrophy were investigated using hematoxylin-eosin, immunofluorescence staining, and behavioral analyses. Our findings suggest that dexamethasone induces muscle atrophy in zebrafish, inhibiting exploratory behavior by inducing myofiber loss, inhibiting muscle contraction, and causing changes in endurance and velocity. Thus, the zebrafish model can be used to screen pharmaceutical agents and to study muscle atrophy. Furthermore, maca is a potential dietary supplement to prevent muscle atrophy, as it protects muscle fibers.
Collapse
Affiliation(s)
- Bomi Ryu
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (B.R.); (J.-G.J.)
- Healthy Seafood Research Center, Jeju National University, Jeju 63243, Korea
| | - Jun-Geon Je
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (B.R.); (J.-G.J.)
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (B.R.); (J.-G.J.)
- Healthy Seafood Research Center, Jeju National University, Jeju 63243, Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
- Correspondence: (Y.-J.J.); (H.-W.Y.); Tel.: +82-64-754-3475 (Y.-J.J.)
| | - Hye-Won Yang
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (B.R.); (J.-G.J.)
- Correspondence: (Y.-J.J.); (H.-W.Y.); Tel.: +82-64-754-3475 (Y.-J.J.)
| |
Collapse
|
6
|
Hermanowicz JM, Kalaska B, Pawlak K, Sieklucka B, Miklosz J, Mojzych M, Pawlak D. Preclinical Toxicity and Safety of MM-129-First-in-Class BTK/PD-L1 Inhibitor as a Potential Candidate against Colon Cancer. Pharmaceutics 2021; 13:pharmaceutics13081222. [PMID: 34452183 PMCID: PMC8400941 DOI: 10.3390/pharmaceutics13081222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 01/03/2023] Open
Abstract
MM-129 is a novel inhibitor targeting BTK/PI3K/AKT/mTOR and PD-L1, as it possesses antitumor activity against colon cancer. To evaluate the safety profile of MM-129, we conducted a toxicity study using the zebrafish and rodent model. MM-129 was also assessed for pharmacokinetics features through an in vivo study on Wistar rats. The results revealed that MM-129 exhibited favorable pharmacokinetics with quick absorption and 68.6% of bioavailability after intraperitoneal administration. No serious adverse events were reported for the use of MM-129, confirming a favorable safety profile for this compound. It was not fatal and toxic to mice at an anticancer effective dose of 10 μmol/kg. At the end of 14 days of administering hematological and biochemical parameters, liver and renal functions were all at normal levels. No sublethal effects were either detected in zebrafish embryos treated with a concentration of 10 μM. MM-129 has the potential as a safe and well-tolerated anticancer formulation for future treatment of patients with colon cancer.
Collapse
Affiliation(s)
- Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.K.); (B.S.); (J.M.); (D.P.)
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
- Correspondence: ; Tel./Fax: +48-8574-85601
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.K.); (B.S.); (J.M.); (D.P.)
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.K.); (B.S.); (J.M.); (D.P.)
| | - Joanna Miklosz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.K.); (B.S.); (J.M.); (D.P.)
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland;
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.K.); (B.S.); (J.M.); (D.P.)
| |
Collapse
|
7
|
Letrado P, Mole H, Montoya M, Palacios I, Barriuso J, Hurlstone A, Díez-Martínez R, Oyarzabal J. Systematic Roadmap for Cancer Drug Screening Using Zebrafish Embryo Xenograft Cancer Models: Melanoma Cell Line as a Case Study. Cancers (Basel) 2021; 13:cancers13153705. [PMID: 34359605 PMCID: PMC8345186 DOI: 10.3390/cancers13153705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Currently, there is no consensus in the scientific literature regarding the zebrafish embryo xenotransplantation procedure for drug screening. Thus, this study sets systematic guidelines for maximizing the reproducibility of drug screening in zebrafish-embryo cancer xenograft models based on evaluating every step of the procedure in a real case scenario in which the chemical properties of the compounds are unknown or not optimal. It aims to be a stepping stone to bring the versatility of zebrafish embryos to drug screening for cancer. The present work helps our group to pursue the objective of establishing zebrafish embryos as a valuable alternative to mice models; and hopefully, will help other groups in this field to progress in the same direction. Abstract Zebrafish embryo tumor transplant models are widely utilized in cancer research. Compared with traditional murine models, the small size and transparency of zebrafish embryos combined with large clutch sizes that increase statistical power and cheap husbandry make them a cost-effective and versatile tool for in vivo drug discovery. However, the lack of a comprehensive analysis of key factors impacting the successful use of these models impedes the establishment of basic guidelines for systematic screening campaigns. Thus, we explored the following crucial factors: (i) user-independent inclusion criteria, focusing on sample homogeneity; (ii) metric definition for data analysis; (iii) tumor engraftment criteria; (iv) image analysis versus quantification of human cancer cells using qPCR (RNA and gDNA); (v) tumor implantation sites; (vi) compound distribution (intratumoral administration versus alternative inoculation sites); and (vii) efficacy (intratumoral microinjection versus compound solution in media). Based on these analyses and corresponding assessments, we propose the first roadmap for systematic drug discovery screening in zebrafish xenograft cancer models using a melanoma cell line as a case study. This study aims to help the wider cancer research community to consider the adoption of this versatile model for cancer drug screening projects.
Collapse
Affiliation(s)
- Patricia Letrado
- Ikan Biotech SL, Centro Europeo de Empresas e Innovación de Navarra (CEIN), 31110 Noain, Spain;
- Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Correspondence: (P.L.); (J.O.)
| | - Holly Mole
- Division of Cancer Sciences, School of Medical Sciences, The University of Manchester, Manchester M13 9PL, UK; (H.M.); (J.B.)
| | - María Montoya
- Cellomics Unit, Spanish National Center for Cardiovascular Research (CNIC), 28029 Madrid, Spain; (M.M.); (I.P.)
| | - Irene Palacios
- Cellomics Unit, Spanish National Center for Cardiovascular Research (CNIC), 28029 Madrid, Spain; (M.M.); (I.P.)
| | - Jorge Barriuso
- Division of Cancer Sciences, School of Medical Sciences, The University of Manchester, Manchester M13 9PL, UK; (H.M.); (J.B.)
- The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Adam Hurlstone
- Division of Infection, Immunology and Respiratory Medicine, School of Biological Science, The University of Manchester, Manchester M13 9PT, UK;
| | - Roberto Díez-Martínez
- Ikan Biotech SL, Centro Europeo de Empresas e Innovación de Navarra (CEIN), 31110 Noain, Spain;
| | - Julen Oyarzabal
- Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Correspondence: (P.L.); (J.O.)
| |
Collapse
|
8
|
Jijie R, Mihalache G, Balmus IM, Strungaru SA, Baltag ES, Ciobica A, Nicoara M, Faggio C. Zebrafish as a Screening Model to Study the Single and Joint Effects of Antibiotics. Pharmaceuticals (Basel) 2021; 14:ph14060578. [PMID: 34204339 PMCID: PMC8234794 DOI: 10.3390/ph14060578] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
The overuse of antibiotics combined with the limitation of wastewater facilities has resulted in drug residue accumulation in the natural environment. Thus, in recent years, the presence of antibiotic residues in the environment has raised concerns over the potential harmful effects on ecosystems and human health. The in vivo studies represent an essential step to study the potential impact induced by pharmaceutical exposure. Due to the limitations of traditional vertebrate model systems, zebrafish (Danio rerio) has recently emerged as a promising animal model to study the toxic effects of drugs and their therapeutic efficacy. The present review summarizes the recent advances made on the toxicity of seven representative classes of antibiotics, namely aminoglycosides, β-lactams, macrolides, quinolones, sulfonamides, tetracyclines and polyether antibiotics, in zebrafish, as well as the combined effects of antibiotic mixtures, to date. Despite a significant amount of the literature describing the impact of single antibiotic exposure, little information exists on the effects of antibiotic mixtures using zebrafish as an animal model. Most of the research papers on this topic have focused on antibiotic toxicity in zebrafish across different developmental stages rather than on their efficacy assessment.
Collapse
Affiliation(s)
- Roxana Jijie
- Marine Biological Station “Prof. dr. I. Borcea”, “Alexandru Ioan Cuza” University of Iasi, Nicolae Titulescu Street, No. 163, 9007018 Agigea, Romania;
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, 11 Carol I, 700506 Iasi, Romania; (I.-M.B.); (S.-A.S.)
- Correspondence: (R.J.); (C.F.)
| | - Gabriela Mihalache
- Integrated Center of Environmental Science Studies in the North Eastern Region (CERNESIM), “Alexandru Ioan Cuza” University of Iasi, 11 Carol I, 700506 Iasi, Romania;
- Department of Horticultural Technologies, “Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, 700440 Iasi, Romania
| | - Ioana-Miruna Balmus
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, 11 Carol I, 700506 Iasi, Romania; (I.-M.B.); (S.-A.S.)
| | - Stefan-Adrian Strungaru
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, 11 Carol I, 700506 Iasi, Romania; (I.-M.B.); (S.-A.S.)
| | - Emanuel Stefan Baltag
- Marine Biological Station “Prof. dr. I. Borcea”, “Alexandru Ioan Cuza” University of Iasi, Nicolae Titulescu Street, No. 163, 9007018 Agigea, Romania;
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, B-dul Carol I, 700505 Iasi, Romania; (A.C.); (M.N.)
| | - Mircea Nicoara
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, B-dul Carol I, 700505 Iasi, Romania; (A.C.); (M.N.)
- Doctoral School of Geosciences, Faculty of Geography-Geology, “Alexandru Ioan Cuza” University of Iasi, B-dul Carol I, 700505 Iasi, Romania
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno, d’Alcontres, 31 98166 S. Agata-Messina, Italy
- Correspondence: (R.J.); (C.F.)
| |
Collapse
|
9
|
Medium-throughput zebrafish optogenetic platform identifies deficits in subsequent neural activity following brief early exposure to cannabidiol and Δ 9-tetrahydrocannabinol. Sci Rep 2021; 11:11515. [PMID: 34075141 PMCID: PMC8169761 DOI: 10.1038/s41598-021-90902-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/10/2021] [Indexed: 01/20/2023] Open
Abstract
In light of legislative changes and the widespread use of cannabis as a recreational and medicinal drug, delayed effects of cannabis upon brief exposure during embryonic development are of high interest as early pregnancies often go undetected. Here, zebrafish embryos were exposed to cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) until the end of gastrulation (1-10 h post-fertilization) and analyzed later in development (4-5 days post-fertilization). In order to measure neural activity, we implemented Calcium-Modulated Photoactivatable Ratiometric Integrator (CaMPARI) and optimized the protocol for a 96-well format complemented by locomotor analysis. Our results revealed that neural activity was decreased by CBD more than THC. At higher doses, both cannabinoids could dramatically reduce neural activity and locomotor activity. Interestingly, the decrease was more pronounced when CBD and THC were combined. At the receptor level, CBD-mediated reduction of locomotor activity was partially prevented using cannabinoid type 1 and 2 receptor inhibitors. Overall, we report that CBD toxicity occurs via two cannabinoid receptors and is synergistically enhanced by THC exposure to negatively impact neural activity late in larval development. Future studies are warranted to reveal other cannabinoids and their receptors to understand the implications of cannabis consumption on fetal development.
Collapse
|
10
|
Corsinovi D, Usai A, Sarlo MD, Giannaccini M, Ori M. Zebrafish Avatar to Develop Precision Breast Cancer Therapies. Anticancer Agents Med Chem 2021; 22:748-759. [PMID: 33797388 DOI: 10.2174/1871520621666210402111634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Zebrafish (Danio rerio) is a vertebrate that has become a popular alternative model for the cellular and molecular study of human tumors and for drug testing and validating approaches. Notably, zebrafish embryos, thanks to their accessibility, allow rapid collection of in vivo results prodromal to validation in the murine models in respect to the 3R principles. The generation of tumor xenograft in zebrafish embryos and larvae, or zebrafish avatar, represents a unique opportunity to study tumor growth, angiogenesis, cell invasion and metastatic dissemination, interaction between tumor and host in vivo avoiding immunogenic rejection, representing a promising platform for the translational research and personalized therapies. OBJECTIVE In this mini-review we report recent advances in breast cancer research and drug testing that took advantage of the zebrafish xenograft model using both breast cancer cell lines and patient's biopsy. CONCLUSION Patient derived xenograft, together with the gene editing, the omics biotechnology, the in vivo time lapse imaging and the high-throughput screening that are already set up and largely used in zebrafish, could represent a step forward towards precision and personalized medicine in the breast cancer research field.
Collapse
Affiliation(s)
- Debora Corsinovi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa. Italy
| | - Alice Usai
- Department of Biology, University of Pisa, Pisa. Italy
| | | | | | - Michela Ori
- Department of Biology, University of Pisa, Pisa. Italy
| |
Collapse
|
11
|
Chen X, Li Y, Yao T, Jia R. Benefits of Zebrafish Xenograft Models in Cancer Research. Front Cell Dev Biol 2021; 9:616551. [PMID: 33644052 PMCID: PMC7905065 DOI: 10.3389/fcell.2021.616551] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
As a promising in vivo tool for cancer research, zebrafish have been widely applied in various tumor studies. The zebrafish xenograft model is a low-cost, high-throughput tool for cancer research that can be established quickly and requires only a small sample size, which makes it favorite among researchers. Zebrafish patient-derived xenograft (zPDX) models provide promising evidence for short-term clinical treatment. In this review, we discuss the characteristics and advantages of zebrafish, such as their transparent and translucent features, the use of vascular fluorescence imaging, the establishment of metastatic and intracranial orthotopic models, individual pharmacokinetics measurements, and tumor microenvironment. Furthermore, we introduce how these characteristics and advantages are applied other in tumor studies. Finally, we discuss the future direction of the use of zebrafish in tumor studies and provide new ideas for the application of it.
Collapse
Affiliation(s)
- Xingyu Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tengteng Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
12
|
Amin MR, Ahmed KT, Ali DW. Early Exposure to THC Alters M-Cell Development in Zebrafish Embryos. Biomedicines 2020; 8:biomedicines8010005. [PMID: 31947970 PMCID: PMC7168183 DOI: 10.3390/biomedicines8010005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
Cannabis is one of the most commonly used illicit recreational drugs that is often taken for medicinal purposes. The psychoactive ingredient in cannabis is Δ9-Tetrahydrocannabinol (Δ9-THC, hereafter referred to as THC), which is an agonist at the endocannabinoid receptors CB1R and CB2R. Here, we exposed zebrafish embryos to THC during the gastrulation phase to determine the long-term effects during development. We specifically focused on reticulospinal neurons known as the Mauthner cells (M-cell) that are involved in escape response movements. The M- cells are born during gastrulation, thus allowing us to examine neuronal morphology of neurons born during the time of exposure. After the exposure, embryos were allowed to develop normally and were examined at two days post-fertilization for M-cell morphology and escape responses. THC treated embryos exhibited subtle alterations in M-cell axon diameter and small changes in escape response dynamics to touch. Because escape responses were altered, we also examined muscle fiber development. The fluorescent labelling of red and white muscle fibers showed that while muscles were largely intact, the fibers were slightly disorganized with subtle but significant changes in the pattern of expression of nicotinic acetylcholine receptors. However, there were no overt changes in the expression of nicotinic receptor subunit mRNA ascertained by qPCR. Embryos were allowed to further develop until 5 dpf, when they were examined for overall levels of movement. Animals exposed to THC during gastrulation exhibited reduced activity compared with vehicle controls. Together, these findings indicate that zebrafish exposed to THC during the gastrula phase exhibit small changes in neuronal and muscle morphology that may impact behavior and locomotion.
Collapse
Affiliation(s)
- Md Ruhul Amin
- Department of Biological Sciences, CW-405 Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada; (M.R.A.); (K.T.A.)
| | - Kazi T. Ahmed
- Department of Biological Sciences, CW-405 Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada; (M.R.A.); (K.T.A.)
| | - Declan W. Ali
- Department of Biological Sciences, CW-405 Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada; (M.R.A.); (K.T.A.)
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: ; Tel.: +1-780-492-6094
| |
Collapse
|
13
|
Tian L, Sheng D, Li Q, Guo C, Zhu G. Preliminary safety assessment of oridonin in zebrafish. PHARMACEUTICAL BIOLOGY 2019; 57:632-640. [PMID: 31545911 PMCID: PMC6764400 DOI: 10.1080/13880209.2019.1662457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Context: Oridonin, isolated from the leaves of Isodon rubescens (Hemsl.) H.Hara (Lamiaceae), has good antitumor activity. However, its safety in vivo is still unclear. Objective: To investigate the preliminary safety of oridonin in zebrafish. Materials and methods: Embryo, larvae and adult zebrafish (n = 40) were used. Low, medium and high oridonin concentrations (100, 200 and 400 mg/L for embryo; 150, 300 and 600 mg/L for larvae; 200, 400 and 800 mg/L for adult zebrafish) and blank samples were administered. At specific stages of zebrafish development, spontaneous movement, heartbeat, hatching rate, etc., were recorded to assess the developmental effects of oridonin. VEGFA, VEGFR2 and VEGFR3 gene expression were also examined. Results: Low-dose oridonin increased spontaneous movement and hatching rate with median effective doses (ED50) of 115.17 mg/L at 24 h post-fertilization (hpf) and 188.59 mg/L at 54 hpf, but these values decreased at high doses with half maximal inhibitory concentrations (IC50) of 209.11 and 607.84 mg/L. Oridonin decreased heartbeat with IC50 of 285.76 mg/L at 48 hpf, and induced malformation at 120 hpf with half maximal effective concentration (EC50) of 411.94 mg/L. Oridonin also decreased body length with IC50 of 324.78 mg/L at 144 hpf, and increased swimming speed with ED50 of 190.98 mg/L at 120 hpf. The effects of oridonin on zebrafish embryo development may be attributed to the downregulation of VEGFR3 gene expression. Discussions and conclusions: Oridonin showed adverse effects at early stages of zebrafish development. We will perform additional studies on mechanism of oridonin based on VEGFR3.
Collapse
Affiliation(s)
- Lili Tian
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Traditional Chinese Medicine Pharmacy, Zhejiang Hospital, Hangzhou, China
| | - Donglai Sheng
- Institute of Developmental and Regenerative Biology, Hangzhou Normal University, Hangzhou, China
| | - Qiushuang Li
- Center of Clinical Evaluation and Analysis, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Chenxu Guo
- Department of Integrated Chinese and Western Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Guofu Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- CONTACT Guofu Zhu School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Das N, Madhavan J, Selvi A, Das D. An overview of cephalosporin antibiotics as emerging contaminants: a serious environmental concern. 3 Biotech 2019; 9:231. [PMID: 31139546 PMCID: PMC6534636 DOI: 10.1007/s13205-019-1766-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/16/2019] [Indexed: 01/21/2023] Open
Abstract
Antibiotics have been categorized as emerging pollutants due to their indiscriminate usage, continuous input and persistence in various environmental matrices even at lower concentrations. Cephalosporins are the broad-spectrum antibiotics of β-lactam family. Owing to its enormous production and consumption, it is reported as the second most prescribed antibiotic classes in Europe. The cephalosporin wastewater contains toxic organic compounds, inorganic salts, and active pharmaceutical ingredients (API) which pose a potential threat to the organisms in the environment. Therefore, removal of cephalosporin antibiotics from the environment has become mandatory as it contributes to increase in the level of chemical oxygen demand (COD), causing toxicity of the effluent and production of cephalosporin-resistant microbes. So far, several processes have been reported for degradation/removal of cephalosporins from the environment. A number of individual studies have been published within the last decade covering the various aspects of antibiotics. However, a detailed compilation on cephalosporin antibiotics as an emerging environmental contaminant is still lacking. Hence, the present review intends to highlight the current ecological scenario with respect to distribution, toxicity, degradation, various remediation technologies, and the regulatory aspects concerning cephalosporins. The latest successful technologies for cephalosporin degradation/removal discussed in this review will help researchers for a better understanding of the nature and persistence of cephalosporins in the environment along with the risks associated with their existence. The research thrust discussed in this review will also evoke new technologies to be attempted by the future researchers to develop sustainable options to remediate cephalosporin-contaminated environments.
Collapse
Affiliation(s)
- Nilanjana Das
- Bioremediation Laboratory, School of Bio Sciences and Technology, VIT, Vellore, Tamilnadu 632014 India
| | - Jagannathan Madhavan
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Serkadu, Vellore, Tamilnadu 632115 India
| | - Adikesavan Selvi
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore, Tamilnadu 632115 India
| | - Devlina Das
- Department of Biotechnology, PSG College of Technology, Coimbatore, Tamilnadu India
| |
Collapse
|
15
|
Structural characterization, teratogenicity and in vitro avian antimicrobial activity of posterior salivary gland (PSG) toxin from cuttlefish, Sepia prashadi. Int J Biol Macromol 2019; 124:1145-1155. [DOI: 10.1016/j.ijbiomac.2018.12.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/01/2018] [Accepted: 12/02/2018] [Indexed: 11/22/2022]
|
16
|
Liu Y, Zhang X, Zhang J, Hu C. Construction of a Quantitative Structure Activity Relationship (QSAR) Model to Predict the Absorption of Cephalosporins in Zebrafish for Toxicity Study. Front Pharmacol 2019; 10:31. [PMID: 30761002 PMCID: PMC6361752 DOI: 10.3389/fphar.2019.00031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/11/2019] [Indexed: 12/17/2022] Open
Abstract
Cephalosporins are beta-lactam antibiotics that are widely used in China. Five generations of cephalosporins have been introduced in clinical practice to date; moreover, some new candidates are also undergoing clinical evaluations. To improve the success rates of new drug development, we need to have a comprehensive understanding about the relationship between the structure of cephalosporins and the toxicity that it induces at an early stage. In the cephalosporins toxicity study using zebrafish, the drug absorption is a key point. In this study, we determined the absorption of cephalosporins in zebrafish during toxicity test. The internal concentrations of 19 cephalosporins in zebrafish were determined using a developed liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Furthermore, a quantitative structure-activity relationship (QSAR) model was established by multilinear regression; moreover, it was used to predict the absorption of cephalosporins in zebrafish. During leave-one-out cross-validation, a satisfactory performance was obtained with a predictive ability (q 2) of 0.839. The prediction ability of the model was further confirmed when the predictive ability (q 2) was 0.859 in external prediction. The best QSAR model, which was based on five molecular descriptors, exhibited a promising predictive performance and robustness. In experiments involving drug toxicity, the developed QSAR model was used to estimate internal concentrations of cephalosporins. Thus, the toxicity results were correlated with the internal concentration of the drug within the larvae. The developed model served as a new powerful tool in zebrafish toxicity tests.
Collapse
Affiliation(s)
- Ying Liu
- National Institutes for Food and Drug Control, Beijing, China
| | - Xia Zhang
- National Institutes for Food and Drug Control, Beijing, China
| | - Jingpu Zhang
- Institute of Medicinal Biotechnology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Changqin Hu
- National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
17
|
Abstract
Tuberculosis is still a global health burden. It is caused by Mycobacterium tuberculosis which afflicts around one third of the world's population and costs around 1.3 million people their lives every year. Bacillus Calmette-Guerin vaccine is inefficient to prevent overt infection. Additionally, the lengthy inconvenient course of treatment, along with the raising issue of antimicrobial resistance, result in incomplete eradication of this infectious disease. The lack of proper animal models that replicate the latent and active courses of human tuberculosis infection remains one of the main reasons behind the poor advancement in tuberculosis research. Danio rerio, commonly known as zebrafish, is catching more attention as an animal model in tuberculosis research field. This shift is based on the histological and pathological similarities between Mycobacterium marinum infection in zebrafish and Mycobacterium tuberculosis infection in humans. Being small, cheap, transparent, and easy to handle have added further advantages to the use of zebrafish model. Besides better understanding of the pathogenesis of tuberculosis, Mycobacterium marinum infected zebrafish model is useful for evaluating novel vaccines against human tuberculosis, high throughput small molecule screening, repurposing established drugs with possible antitubercular activity, and assessing novel antituberculars for hepatotoxicity.
Collapse
Affiliation(s)
- Ghada Bouz
- a Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove , Charles University , Hradec Kralove , Czech Republic
| | - Nada Al Hasawi
- b Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Kuwait University , Kuwait , State of Kuwait
| |
Collapse
|
18
|
Screening for osteogenic activity in extracts from Irish marine organisms: The potential of Ceramium pallidum. PLoS One 2018; 13:e0207303. [PMID: 30485314 PMCID: PMC6261572 DOI: 10.1371/journal.pone.0207303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/29/2018] [Indexed: 11/19/2022] Open
Abstract
Extracts and compounds derived from marine organisms have reportedly shown some osteogenic potential. As such, these bioactives may aid in the treatment of musculoskeletal conditions such as osteoporosis; helping to address inefficacies with current treatment options. In this study, 72 fractions were tested for their in vitro osteogenic activity using a human foetal osteoblast (hFOB) cell line and bone marrow derived mesenchymal stem cells (MSCs), focusing on their cytotoxic, proliferative and differentiation effects. Extracts dissolved in dimethyl sulfoxide and ethanol showed no significant osteogenic potential. However, two extracts derived from powder residues (left over from original organic extractions) caused a significant promotion of MSC differentiation. Bioactivity from powder residues derived from the epiphytic red algae Ceramium pallidum is described in detail to highlight its treatment potential. In vitro, C. pallidum was shown to promote MSC differentiation and extracellular matrix mineralisation. In vivo, this extract caused a significant increase in opercular bone growth of zebrafish larvae and a significant increase in bone density of regenerated adult caudal fins. Our findings therefore show the importance of continued screening efforts, particularly of novel extract sources, and the presence of bioactive compounds in C. pallidum extract.
Collapse
|
19
|
Letrado P, de Miguel I, Lamberto I, Díez-Martínez R, Oyarzabal J. Zebrafish: Speeding Up the Cancer Drug Discovery Process. Cancer Res 2018; 78:6048-6058. [PMID: 30327381 DOI: 10.1158/0008-5472.can-18-1029] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/29/2018] [Accepted: 08/23/2018] [Indexed: 11/16/2022]
Abstract
Zebrafish (Danio rerio) is an ideal in vivo model to study a wide variety of human cancer types. In this review, we provide a comprehensive overview of zebrafish in the cancer drug discovery process, from (i) approaches to induce malignant tumors, (ii) techniques to monitor cancer progression, and (iii) strategies for compound administration to (iv) a compilation of the 355 existing case studies showing the impact of zebrafish models on cancer drug discovery, which cover a broad scope of scenarios. Finally, based on the current state-of-the-art analysis, this review presents some highlights about future directions using zebrafish in cancer drug discovery and the potential of this model as a prognostic tool in prospective clinical studies. Cancer Res; 78(21); 6048-58. ©2018 AACR.
Collapse
Affiliation(s)
- Patricia Letrado
- Ikan Biotech SL, The Zebrafish Lab Department, Centro Europeo de Empresas e Innovación de Navarra (CEIN), Noain, Spain.,Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Irene de Miguel
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Iranzu Lamberto
- Ikan Biotech SL, The Zebrafish Lab Department, Centro Europeo de Empresas e Innovación de Navarra (CEIN), Noain, Spain
| | - Roberto Díez-Martínez
- Ikan Biotech SL, The Zebrafish Lab Department, Centro Europeo de Empresas e Innovación de Navarra (CEIN), Noain, Spain.
| | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
| |
Collapse
|
20
|
Pindling S, Azulai D, Zheng B, Dahan D, Perron GG. Dysbiosis and early mortality in zebrafish larvae exposed to subclinical concentrations of streptomycin. FEMS Microbiol Lett 2018; 365:5062791. [PMID: 30085054 PMCID: PMC6109437 DOI: 10.1093/femsle/fny188] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022] Open
Abstract
Exposure to low concentrations of antibiotics found in aquatic environments can increase susceptibility to infection in adult fish due to microbiome disruption. However, little is known regarding the effect of antibiotic pollution on fish larvae. Here, we show that exposure to streptomycin, a common antibiotic used in medicine and aquaculture, disrupts the normal composition of zebrafish larvae microbiomes, significantly reducing the microbial diversity found in the fish. Exposure to streptomycin also significantly increased early mortality among fish larvae, causing full mortality within a few days of exposure at 10 μg/mL. Finally, we found that subclinical concentrations of streptomycin also increased the abundance of class 1 integrons, an integrase-dependent genetic system associated to the horizontal transfer of antibiotic resistance genes, in the larvae microbiomes. These results suggest that even low concentrations of streptomycin associated with environmental pollution could impact fish populations and lead to the creation of antibiotic resistance reservoirs.
Collapse
Affiliation(s)
- Sydney Pindling
- Department of Biology, Reem-Kayden Center for Science and Computation, 30 Campus Road, Annandale-On-Hudson, NY, 12504, USA
| | - Daniella Azulai
- Department of Biology, Reem-Kayden Center for Science and Computation, 30 Campus Road, Annandale-On-Hudson, NY, 12504, USA
| | - Brandon Zheng
- Department of Biology, Reem-Kayden Center for Science and Computation, 30 Campus Road, Annandale-On-Hudson, NY, 12504, USA
| | - Dylan Dahan
- Department of Microbiology and Immunology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA, 94305, USA
| | - Gabriel G Perron
- Department of Biology, Reem-Kayden Center for Science and Computation, 30 Campus Road, Annandale-On-Hudson, NY, 12504, USA
| |
Collapse
|
21
|
Motor neuron development in zebrafish is altered by brief (5-hr) exposures to THC (∆ 9-tetrahydrocannabinol) or CBD (cannabidiol) during gastrulation. Sci Rep 2018; 8:10518. [PMID: 30002406 PMCID: PMC6043604 DOI: 10.1038/s41598-018-28689-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022] Open
Abstract
Marijuana is one of the most commonly used illicit recreational drugs and is widely used for medicinal purposes. The psychoactive ingredient in marijuana is ∆9-tetrahydrocannabinol (∆9-THC), whereas the major non-psychoactive ingredient is cannabidiol (CBD). Here, we exposed zebrafish embryos to ∆9-THC or CBD for 5 hours during the critical stage of development known as gastrulation. Embryos were allowed to develop normally and were examined at 2 and 5 days post fertilization. THC and CBD treated embryos exhibited reduced heart rates, axial malformations and shorter trunks. Cannabinoid treatment altered synaptic activity at neuromuscular junctions (NMJs), and fluorescent labelling of primary and secondary motor neurons indicated a change in branching patterns and a reduction in the number of axonal branches in the trunk musculature. Furthermore, there were alterations in the α-bungarotoxin labelling of nicotinic acetylcholine receptors at NMJs. Locomotion studies show that larvae exposed to THC or CBD during gastrulation exhibited drastic reductions in the number of C-start escape responses to sound stimuli, but not to touch stimuli. Together these findings indicate that zebrafish embryos exposed to ∆9-THC or CBD during the brief but critical period of gastrulation exhibited alterations in heart rate, motor neuronal morphology, synaptic activity at the NMJ and locomotor responses to sound.
Collapse
|
22
|
Carson MA, Nelson J, Cancela ML, Laizé V, Gavaia PJ, Rae M, Heesch S, Verzin E, Maggs C, Gilmore BF, Clarke SA. Red algal extracts from Plocamium lyngbyanum and Ceramium secundatum stimulate osteogenic activities in vitro and bone growth in zebrafish larvae. Sci Rep 2018; 8:7725. [PMID: 29769706 PMCID: PMC5956103 DOI: 10.1038/s41598-018-26024-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/23/2018] [Indexed: 12/18/2022] Open
Abstract
Through the current trend for bioprospecting, marine organisms - particularly algae - are becoming increasingly known for their osteogenic potential. Such organisms may provide novel treatment options for osteoporosis and other musculoskeletal conditions, helping to address their large healthcare burden and the limitations of current therapies. In this study, extracts from two red algae – Plocamium lyngbyanum and Ceramium secundatum – were tested in vitro and in vivo for their osteogenic potential. In vitro, the growth of human bone marrow stromal cells (hBMSCs) was significantly greater in the presence of the extracts, particularly with P. lyngbyanum treatment. Osteogenic differentiation was promoted more by C. secundatum (70 µg/ml), though P. lyngbyanum had greater in vitro mineralisation potential. Both species caused a marked and dose-dependent increase in the opercular bone area of zebrafish larvae. Our findings therefore indicate the presence of bioactive components in P. lyngbyanum and C. secundatum extracts, which can promote both in vitro and in vivo osteogenic activity.
Collapse
Affiliation(s)
- Matthew A Carson
- School of Nursing and Midwifery, Queen's University Belfast, Belfast, United Kingdom.
| | - John Nelson
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Vincent Laizé
- Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Paulo J Gavaia
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Margaret Rae
- Marine Institute and Irish Seaweed Research Group, Rinville, Oranmore, Co., Galway, Ireland
| | - Svenja Heesch
- Irish Seaweed Research Group, Ryan Institute, National University of Ireland Galway, University Road, Galway, Ireland
| | - Eugene Verzin
- Orthopaedic department, Royal Victoria Hospital, Belfast, United Kingdom
| | - Christine Maggs
- Faculty of Science and Technology, Bournemouth University, Bournemouth, United Kingdom
| | - Brendan F Gilmore
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Susan A Clarke
- School of Nursing and Midwifery, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
23
|
Xiao C, Han Y, Liu Y, Zhang J, Hu C. Relationship Between Fluoroquinolone Structure and Neurotoxicity Revealed by Zebrafish Neurobehavior. Chem Res Toxicol 2018; 31:238-250. [PMID: 29561132 DOI: 10.1021/acs.chemrestox.7b00300] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Central nervous system side effects are one of the most frequently reported adverse reactions of fluoroquinolones (FQs). However, the mechanism is not fully understood. In this study, zebrafish ( Danio rerio) were used as a model system. We quantified neurobehavior by recording indicators with automated video-tracking and used liquid chromatography-tandem mass spectrometry to detect drug absorption in vivo. We studied embryotoxicity and effects on zebrafish locomotor activity of 17 typical FQs. In addition, we calculated the stable conformation of typical FQs in aqueous conditions. The relationships between structure, neurotoxicity, and embryotoxicity were analyzed. The results indicate: (1) The effects of FQs on zebrafish neurobehavior can be divided into four categories. Type I has no significant influence on locomotor activity. Type II suppresses locomotor activity. Type III inhibits at low concentration and stimulates at high concentration. Type IV stimulates and then suppresses (biphasic response). (2) Structural modifications of FQs can change toxicity properties in zebrafish. Cleavage of the C-7 piperazinyl structure decreases neurotoxicity but enhances embryotoxicity. The C-3 decarboxyl formation and 5-NH2 derivatives might enhance embryotoxicity and neurotoxicity. (3) There are two toxic functional groups. The piperazinyl structure at position C-7 (toxic functional group I) can cause primary reactions which may be by the inhibition of γ-aminobutyric acid receptors, and the nucleus containing a carboxyl group at position 3 (toxic functional group II) might cause a reaction secondary to the effect of toxic functional group I and reverse its effects.
Collapse
Affiliation(s)
- Chaoqiang Xiao
- Chinese Academy of Medical Sciences and Peking Union Medical College , 100730 Beijing , China.,National Institutes for Food and Drug Control , 100050 Beijing , China
| | - Ying Han
- National Institutes for Food and Drug Control , 100050 Beijing , China
| | - Ying Liu
- National Institutes for Food and Drug Control , 100050 Beijing , China
| | - Jingpu Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College , 100730 Beijing , China
| | - Changqin Hu
- Chinese Academy of Medical Sciences and Peking Union Medical College , 100730 Beijing , China.,National Institutes for Food and Drug Control , 100050 Beijing , China
| |
Collapse
|
24
|
Han Y, Zheng Y, Zhang J, Hu C. Neurobehavioral Effects of Cephalosporins: Assessment of Locomotors Activity, Motor and Sensory Development in Zebrafish. Front Pharmacol 2018; 9:160. [PMID: 29551974 PMCID: PMC5840155 DOI: 10.3389/fphar.2018.00160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/14/2018] [Indexed: 12/14/2022] Open
Abstract
Most third- and fourth-generation cephalosporins, such as cefotaxime, cefmenoxime, cefepime, and cefpirome, contain an aminothiazoyl ring at the C-7 position. Drug impurity, which may be produced either during synthesis or upon degradation, can induce adverse effects. Various reports have indicated that neurotoxicity is a side effect of cephalosporin. In this study, we developed methods for assessing the free-swimming activities and behaviors in zebrafish larvae in response to continuous darkness and stimulation of light-to-dark photoperiod transition by chemical treatments. We also performed transcriptome analysis to identify differentially expressed genes (DEGs). Gene ontology analysis revealed that various processes related to nervous system development were significantly enriched by DEGs. We integrated 16 DEGs with protein–protein interaction networks and identified that neuroactive ligand–receptor interaction [e.g., λ-aminobutyric acid and glutamate receptor, metabotropic 1a (GRM1A)] pathway was regulated by the compounds. Our findings suggested that neurobehavioral effects mainly depend on the mother nucleus structure 7-aminocephalosporanic acid and the substitution at the C-3 position. In addition, gad2, or111-4, or126-3, grm1a, opn8c, or111-5, or113-2, and or118-3 may potentially be utilized as novel biomarkers for this class of cephalosporins, which causes neurotoxicity. This study provides neurological behavior, transcriptome, and docking information that could be used in further investigations of the structures and developmental neurotoxicity relationship of chemicals.
Collapse
Affiliation(s)
- Ying Han
- Division of Antibiotics, National Institutes for Food and Drug Control, Beijing, China
| | - Yangmin Zheng
- Department of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingpu Zhang
- Department of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changqin Hu
- Division of Antibiotics, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
25
|
|
26
|
Chen B, Gao ZQ, Liu Y, Zheng YM, Han Y, Zhang JP, Hu CQ. Embryo and Developmental Toxicity of Cefazolin Sodium Impurities in Zebrafish. Front Pharmacol 2017; 8:403. [PMID: 28694779 PMCID: PMC5483477 DOI: 10.3389/fphar.2017.00403] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/07/2017] [Indexed: 11/15/2022] Open
Abstract
Cefazolin sodium is an essential drug that is widely used in clinical therapy for certain infective diseases caused by bacteria. As drug impurities are considered to be one of the most important causes of drug safety issues, we studied embryotoxicity, cardiotoxicity, and neurotoxicity of nine cefazolin sodium impurities in zebrafish embryo and larvae for the objective control of impurity profiling. LC-MS/MS was employed to analyze the compound absorbance in vivo, and the structure-toxicity relationship was approached. Our results suggested that the structure of MMTD (2-mercapto-5-methyl-1, 3, 4-thiadiazole) is the main toxic functional group for embryo deformities; the 7-ACA (7-aminocephalosporanic acid) structure mainly affects motor nerve function; and both the MMTD and 7-ACA structures are responsible for cardiac effects. Impurity G (7-ACA) presented with the strongest toxicity; impurity A was most extensively absorbed to embryo and larvae; and impurity F (MMTD) exhibited the strongest apparent toxic effect; Therefore, impurities F and G should be monitored from the cefazolin sodium preparations.
Collapse
Affiliation(s)
- Bo Chen
- Department of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Zhu-Qing Gao
- Division of Antibiotics, National Institutes for Food and Drug Control, Graduate School of Peking Union Medical CollegeBeijing, China
| | - Ying Liu
- Division of Antibiotics, National Institutes for Food and Drug Control, Graduate School of Peking Union Medical CollegeBeijing, China
| | - Yang-Min Zheng
- Department of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Ying Han
- Division of Antibiotics, National Institutes for Food and Drug Control, Graduate School of Peking Union Medical CollegeBeijing, China
| | - Jing-Pu Zhang
- Department of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Chang-Qin Hu
- Division of Antibiotics, National Institutes for Food and Drug Control, Graduate School of Peking Union Medical CollegeBeijing, China
| |
Collapse
|
27
|
Méndez E, González-Fuentes MA, Rebollar-Perez G, Méndez-Albores A, Torres E. Emerging pollutant treatments in wastewater: Cases of antibiotics and hormones. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:235-253. [PMID: 27901630 DOI: 10.1080/10934529.2016.1253391] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Because of the intensive use of pharmaceutical substances in human life, studies on the detection of these chemical compounds and their metabolites as pollutants in water bodies are continuously reported. Some pharmaceutical agents are associated with adverse effects to aquatic life, even at very low concentrations (ng L-1 to μg L-1). For instance, the presence of antibiotics and hormones has been associated with increasing proliferation of antibiotic resistant pathogens and feminization and masculinization of some aquatic organisms. Currently, new attempts are being made to minimize or fully remove these types of pollutants from aquatic systems to protect the environment and human health. In this regard, physicochemical and biological treatments are among the most promising technologies for the treatment of wastewater containing pharmaceutical pollutants. These treatments are green alternatives for the degradation of hazardous organic compounds into nontoxic by-products. Here, we review some of the physicochemical and biological treatment methods used for the removal of the most extensively used antibiotics and hormones. Enzymatic oxidation, photocatalysis and electrochemical oxidation are described in terms of the aforementioned pharmaceutically active compounds (PhACs). The use of membrane technologies to separate different groups of antibiotics and hormones prior to biologic or physicochemical treatment methods is also addressed.
Collapse
Affiliation(s)
- Erika Méndez
- a Faculty of Chemical Sciences, Universidad Autónoma de Puebla , Puebla , Mexico
| | | | | | | | - Eduardo Torres
- c Institute of Sciences, Universidad Autónoma de Puebla , Puebla , Mexico
| |
Collapse
|
28
|
Humanizing the zebrafish liver shifts drug metabolic profiles and improves pharmacokinetics of CYP3A4 substrates. Arch Toxicol 2016; 91:1187-1197. [PMID: 27485346 DOI: 10.1007/s00204-016-1789-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/05/2016] [Indexed: 12/29/2022]
Abstract
Understanding and predicting whether new drug candidates will be safe in the clinic is a critical hurdle in pharmaceutical development, that relies in part on absorption, distribution, metabolism, excretion and toxicology studies in vivo. Zebrafish is a relatively new model system for drug metabolism and toxicity studies, offering whole organism screening coupled with small size and potential for high-throughput screening. Through toxicity and absorption analyses of a number of drugs, we find that zebrafish is generally predictive of drug toxicity, although assay outcomes are influenced by drug lipophilicity which alters drug uptake. In addition, liver microsome assays reveal specific differences in metabolism of compounds between human and zebrafish livers, likely resulting from the divergence of the cytochrome P450 superfamily between species. To reflect human metabolism more accurately, we generated a transgenic "humanized" zebrafish line that expresses the major human phase I detoxifying enzyme, CYP3A4, in the liver. Here, we show that this humanized line shows an elevated metabolism of CYP3A4-specific substrates compared to wild-type zebrafish. The generation of this first described humanized zebrafish liver suggests such approaches can enhance the accuracy of the zebrafish model for toxicity prediction.
Collapse
|
29
|
De Campos EG, Bruni AT, De Martinis BS. Ketamine induces anxiolytic effects in adult zebrafish: A multivariate statistics approach. Behav Brain Res 2015; 292:537-46. [DOI: 10.1016/j.bbr.2015.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/01/2015] [Accepted: 07/04/2015] [Indexed: 01/09/2023]
|