1
|
Dargaud Y, Leuci A, Ruiz AR, Lacroix-Desmazes S. Efanesoctocog alfa: the renaissance of Factor VIII replacement therapy. Haematologica 2024; 109:2436-2444. [PMID: 38356459 PMCID: PMC11290510 DOI: 10.3324/haematol.2023.284498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024] Open
Abstract
Efanesoctocog alfa (Altuviiio,TM Sanofi-SOBI) is a B domain-deleted single-chain Factor VIII (FVIII) connected to D'D3 domain of von Willebrand Factor (vWF). Its ingenious design allows efanesoctocog alfa to operate independently of endogenous vWF and results in an outstanding 3-4 times longer half-life compared to standard and extended half-life (EHL) FVIII products. The prolonged half-life ensures sustained high levels of factor activity, maintaining normal to near-normal ranges for the majority of the week, facilitating the convenience of once-weekly administration. Efanesoctocog alfa received regulatory approval in 2023 for application in both adults and children with inherited hemophilia A in the United States and Japan. Its sanctioned use encompasses both prophylaxis and 'on demand' treatment for bleeding episodes. The European Medicines Agency (EMA) is currently undertaking a comprehensive review of Altuviiio. TM This comprehensive review focuses on the immunological profile of efanesoctocog alfa, a highly sophisticated new class of EHL FVIII molecule. The integration of the vWF D'D3 domain, XTEN polypeptides, and potential regulatory T-cell epitopes within various segments of efanesoctocog alfa collectively serves as a mitigating factor against the development of a neutralizing T-cell-mediated immune response. We hypothesize that such distinctive attribute may significantly reduce the risk of neutralizing antibodies, particularly in previously untreated patients. The discussion extends beyond regulatory approval to encompass the preclinical and clinical development of efanesoctocog alfa, including considerations for laboratory monitoring. The review also highlights areas that warrant further investigation to deepen our understanding of this groundbreaking therapeutic agent.
Collapse
Affiliation(s)
- Yesim Dargaud
- French Reference Center for Haemophilia, Clinical Haemostasis Unit, Hopital Louis Pradel, Lyon, France; UR4609 Research Unit on Haemostasis and Thrombosis, University Claude Bernard Lyon 1, Lyon.
| | - Alexandre Leuci
- UR4609 Research Unit on Haemostasis and Thrombosis, University Claude Bernard Lyon 1, Lyon
| | - Alejandra Reyes Ruiz
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, CNRS, Sorbonne Université, Université de Paris, F-75006 Paris
| | - Sebastien Lacroix-Desmazes
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, CNRS, Sorbonne Université, Université de Paris, F-75006 Paris
| |
Collapse
|
2
|
Ay C, Napolitano M, Hassoun A, Tomic R, Martin C, Seifert W, Pinachyan K, Oldenburg J. Classification of recombinant factor VIII products and implications for clinical practice: A systematic literature review. Haemophilia 2024; 30:577-588. [PMID: 38549463 DOI: 10.1111/hae.15001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 05/15/2024]
Abstract
INTRODUCTION Consensus over the definition of recombinant factor VIII (rFVIII) product classification in haemophilia A is lacking. rFVIII products are often classified as standard half-life (SHL) or extended half-life (EHL); despite this, no universally accepted definition currently exists. One proposed definition includes half-life, area under the curve, and technology designed to extend half-life; however, the International Society on Thrombosis and Haemostasis defines activity over time as the most intuitive information for building treatment regimens and the World Federation of Hemophilia describes rFVIII product classification in terms of infusion frequency. AIM To summarise published data on the clinical and pharmacokinetic criteria used to define rFVIII product classification. METHODS PubMed and EMBASE database searches of English-language articles (2002-2022) were conducted using search strings to identify the relevant population, intervention, and outcomes (e.g., clinical and pharmacokinetic parameters). Articles then underwent title/abstract and full-text screens. RESULTS Among 1147 identified articles, 62 were included. Half-life was the most widely reported outcome with no clear trends or product groupings observed. No clear groupings emerged among other outcomes, including infusion frequency, consumption, and efficacy. As activity over time was reported in few articles, further investigation of its relevance to rFVIII product classification is warranted. CONCLUSION The findings of this systematic literature review suggest that parameters other than half-life might be important for the development of a comprehensive and clinically relevant rFVIII product classification definition. There seems to be an opportunity to consider parameters that are clinically meaningful and useful for shared decision-making in haemophilia A treatment.
Collapse
Affiliation(s)
- Cihan Ay
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Abel Hassoun
- Haemophilia Treatment Center, Simone Veil Hospital, GH Eaubonne-Montmorency, Eaubonne, France
| | | | | | | | | | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Desage S, Leuci A, Enjolras N, Holle LA, Singh S, Delavenne X, Wolberg AS, Biswas A, Dargaud Y. Characterization of a recombinant factor IX molecule fused to coagulation factor XIII-B subunit. Haemophilia 2023; 29:1483-1489. [PMID: 37707428 DOI: 10.1111/hae.14855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
INTRODUCTION AND AIM Severe haemophilia B (HB) is characterized by spontaneous bleeding episodes, mostly into joints. Recurrent bleeds lead to progressive joint destruction called haemophilic arthropathy. The current concept of prophylaxis aims at maintaining the FIX level >3-5 IU/dL, which is effective at reducing the incidence of haemophilic arthropathy. Extended half-life FIX molecules make it easier to achieve these target trough levels compared to standard FIX concentrates. We previously reported that the fusion of a recombinant FIX (rFIX) to factor XIII-B (FXIIIB) subunit prolonged the half-life of the rFIX-LXa-FXIIIB fusion molecule in mice and rats 3.9- and 2.2-fold, respectively, compared with rFIX-WT. However, the mechanism behind the extended half-life was not known. MATERIALS AND METHODS Mass spectrometry and ITC were used to study interactions of rFIX-LXa-FXIIIB with albumin. Pharmacokinetic analyses in fibrinogen-KO and FcRn-KO mice were performed to evaluate the effect of albumin and fibrinogen on in-vivo half-life of rFIX-LXa-FXIIIB. Finally saphenous vein bleeding model was used to assess in-vivo haemostatic activity of rFIX-LXa-FXIIIB. RESULTS AND CONCLUSION We report here the key interactions that rFIX-LXa-FXIIIB may have in plasma are with fibrinogen and albumin which may mediate its prolonged half-life. In addition, using the saphenous vein bleeding model, we demonstrate that rFIX-FXIIIB elicits functional clot formation that is indistinguishable from that of rFIX-WT.
Collapse
Affiliation(s)
- Stephanie Desage
- UR4609 - Hemostase et Thrombose, Universite Claude Bernard Lyon I, Lyon, France
- Unite d'Hemostase Clinique, Hopital Cardiologique, Hospices Civils de Lyon, Lyon, France
| | - Alexandre Leuci
- UR4609 - Hemostase et Thrombose, Universite Claude Bernard Lyon I, Lyon, France
| | - Nathalie Enjolras
- UR4609 - Hemostase et Thrombose, Universite Claude Bernard Lyon I, Lyon, France
| | - Lori A Holle
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sneha Singh
- Arijit Biswas Lab, arijitbiswaslab.com, Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Xavier Delavenne
- Laboratory of Pharmacology and Toxicology, University Hospital, Saint-Etienne, France
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Arijit Biswas
- Arijit Biswas Lab, arijitbiswaslab.com, Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Yesim Dargaud
- UR4609 - Hemostase et Thrombose, Universite Claude Bernard Lyon I, Lyon, France
- Unite d'Hemostase Clinique, Hopital Cardiologique, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
4
|
Swystun LL, Michels A, Lillicrap D. The contribution of the sinusoidal endothelial cell receptors CLEC4M, stabilin-2, and SCARA5 to VWF-FVIII clearance in thrombosis and hemostasis. J Thromb Haemost 2023; 21:2007-2019. [PMID: 37085036 PMCID: PMC11539076 DOI: 10.1016/j.jtha.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/23/2023]
Abstract
Quantitative abnormalities in factor VIII (FVIII) and its binding partner, von Willebrand factor (VWF), are associated with an increased risk of bleeding or thrombosis, and pathways that regulate the clearance of VWF-FVIII can strongly influence their plasma levels. In 2010, the Cohorts for Heart and Aging Research in Genome Epidemiology (CHARGE) on genome-wide association study meta-analysis identified variants in the genes for the sinusoidal endothelial receptors C-type lectin domain family 4 member M (CLEC4M), stabilin-2, and scavenger receptor class A member 5 (SCARA5) as being associated with plasma levels of VWF and/or FVIII in normal individuals. The ability of these receptors to bind, internalize, and clear the VWF-FVIII complex from the circulation has now been reported in a series of studies using in vitro and in vivo models. The receptor stabilin-2 has also been shown to modulate the immune response to infused VWF-FVIII concentrates in a murine model. In addition, the influence of genetic variants in CLEC4M, STAB2, and SCARA5 on type 1 von Willebrand disease/low VWF phenotype, FVIII pharmacokinetics, and the risk of venous thromboembolism has been described in a number of patient-based studies. Understanding the role of these receptors in the regulation of VWF-FVIII clearance has led to significant insights into the genomic architecture that modulates plasma VWF and FVIII levels, improving the understanding of pathways that regulate VWF-FVIII clearance and the mechanistic basis of quantitative VWF-FVIII pathologies.
Collapse
Affiliation(s)
- Laura L Swystun
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Alison Michels
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada. https://twitter.com/michels_alison
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
5
|
Interindividual variability in transgene mRNA and protein production following adeno-associated virus gene therapy for hemophilia A. Nat Med 2022; 28:789-797. [PMID: 35411075 PMCID: PMC9018415 DOI: 10.1038/s41591-022-01751-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
Abstract
Factor VIII gene transfer with a single intravenous infusion of valoctocogene roxaparvovec (AAV5-hFVIII-SQ) has demonstrated clinical benefits lasting 5 years to date in people with severe hemophilia A. Molecular mechanisms underlying sustained AAV5-hFVIII-SQ-derived FVIII expression have not been studied in humans. In a substudy of the phase 1/2 clinical trial (NCT02576795), liver biopsy samples were collected 2.6–4.1 years after gene transfer from five participants. Primary objectives were to examine effects on liver histopathology, determine the transduction pattern and percentage of hepatocytes transduced with AAV5-hFVIII-SQ genomes, characterize and quantify episomal forms of vector DNA and quantify transgene expression (hFVIII-SQ RNA and hFVIII-SQ protein). Histopathology revealed no dysplasia, architectural distortion, fibrosis or chronic inflammation, and no endoplasmic reticulum stress was detected in hepatocytes expressing hFVIII-SQ protein. Hepatocytes stained positive for vector genomes, showing a trend for more cells transduced with higher doses. Molecular analysis demonstrated the presence of full-length, inverted terminal repeat-fused, circular episomal genomes, which are associated with long-term expression. Interindividual differences in transgene expression were noted despite similar successful transduction, possibly influenced by host-mediated post-transduction mechanisms of vector transcription, hFVIII-SQ protein translation and secretion. Overall, these results demonstrate persistent episomal vector structures following AAV5-hFVIII-SQ administration and begin to elucidate potential mechanisms mediating interindividual variability. The analysis of liver biopsy samples after AAV gene therapy for hemophilia A reveals normal histology and long-term persistence of the episomal vector, and identifies potential factors contributing to interindividual variability of transgene expression.
Collapse
|
6
|
Mahlangu J. An update of the current pharmacotherapeutic armamentarium for hemophilia A. Expert Opin Pharmacother 2021; 23:129-138. [PMID: 34404300 DOI: 10.1080/14656566.2021.1961742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION For several decades, we have seen unprecedented advances in novel therapy development for hemophilia A. These advances address the unmet need of replacement therapy, and they include the development of recombinant products with improved pharmacokinetics, subcutaneously administered products, and those with better efficacy and safety profiles in hemophilia A management. AREAS COVERED In this update of hemophilia A treatment, the author summarizes data from completed standard half-life FVIII products, extended half-life FVIII products and FVIII mimetic studies. All products have an acceptable safety profile. The standard half-life products, EHL-FVIII products and emicizumab are efficacious in the prevention and treatment of bleeds and for EHL-FVIII in the perisurgical setting. EXPERT OPINION Advances in pharmacotherapy for hemophilia A have been characterized by changing care goals from supportive care to eliminating infections, preventing inhibitors, and more recently achieving zero bleeds in many patients. While gene therapy has the potential for functional cure in hemophilia A, it has many limitations which need to be addressed. Therefore, pharmacotherapy is likely to remain the mainstay in the management of hemophilia A and promises to get better with currently available therapies. Evolving factor and non-factor replacement therapies may also improve current unmet needs in hemophilia A management.
Collapse
Affiliation(s)
- Johnny Mahlangu
- Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand and NHLS, Parktown, South Africa
| |
Collapse
|
7
|
Qi T, Cao Y. In Translation: FcRn across the Therapeutic Spectrum. Int J Mol Sci 2021; 22:3048. [PMID: 33802650 PMCID: PMC8002405 DOI: 10.3390/ijms22063048] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
As an essential modulator of IgG disposition, the neonatal Fc receptor (FcRn) governs the pharmacokinetics and functions many therapeutic modalities. In this review, we thoroughly reexamine the hitherto elucidated biological and thermodynamic properties of FcRn to provide context for our assessment of more recent advances, which covers antigen-binding fragment (Fab) determinants of FcRn affinity, transgenic preclinical models, and FcRn targeting as an immune-complex (IC)-clearing strategy. We further comment on therapeutic antibodies authorized for treating SARS-CoV-2 (bamlanivimab, casirivimab, and imdevimab) and evaluate their potential to saturate FcRn-mediated recycling. Finally, we discuss modeling and simulation studies that probe the quantitative relationship between in vivo IgG persistence and in vitro FcRn binding, emphasizing the importance of endosomal transit parameters.
Collapse
Affiliation(s)
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA;
| |
Collapse
|
8
|
Abstract
INTRODUCTION A number of new FVIII/IX concentrates enriched the portfolio of products available for the treatment of hemophilia A/B patients. Due to the large inter-patient variability, accurate tailoring of the therapy became essential to improve patients' adherence, clinical outcomes, and cost/effectiveness ratio. Recently, non-replacement therapies have taken the limelight and succeeded in decreasing the bleedings of patients. AREAS COVERED The PK characteristics, efficacy, and safety of the new rFVIII and rFIX concentrates and of non-replacement therapy, are reported in detail in the published clinical trials. EXPERT OPINION Outstanding improvements of rFIX concentrates' pharmacokinetics and pharmacodynamics have allowed to reduce the bleedings in hemophilia B patients, in order to increase their adherence to prophylaxis and quality of life. Less significant are the effects of pegylation or Fc fusion on the pharmacokinetics of the new rFVIII concentrates. The new non-replacement therapy is achieving the favor of many treaters and patients, in particular those with Factor VIII inhibitors. Great attention must be paid to the dangerous synergy of APCC and emicizumab, responsible for some fatal events during the clinical trials and compassionate use of this drug. So far, replacement therapy should be the standard of care for hemophilia patients without inhibitors or difficulties in venous access.
Collapse
Affiliation(s)
- Massimo Morfini
- Italian Association of Hemophilia Centres (AICE) , Milan, Italy
| | - Emanuela Marchesini
- Hemophilia Centre - SC Vascular and Emergency Department, University of Perugia , Perugia, Italy
| |
Collapse
|
9
|
Oldham RJ, Mockridge CI, James S, Duriez PJ, Chan HTC, Cox KL, Pitic VA, Glennie MJ, Cragg MS. FcγRII (CD32) modulates antibody clearance in NOD SCID mice leading to impaired antibody-mediated tumor cell deletion. J Immunother Cancer 2020; 8:e000619. [PMID: 32554613 PMCID: PMC7304853 DOI: 10.1136/jitc-2020-000619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Immune compromised mice are increasingly used for the preclinical development of monoclonal antibodies (mAb). Most common are non-obese diabetic (NOD) severe combined immunodeficient (SCID) and their derivatives such as NOD SCID interleukin-2 γ-/- (NSG), which are attractive hosts for patient-derived xenografts. Despite their widespread use, the relative biological performance of mAb in these strains has not been extensively studied. METHODS Clinically relevant mAb of various isotypes were administered to tumor and non-tumor-bearing SCID and NOD SCID mice and the mAb clearance monitored by ELISA. Expression analysis of surface proteins in both strains was carried out by flow cytometry and immunofluorescence microscopy. Further analysis was performed in vitro by surface plasmon resonance to assess mAb affinity for Fcγ receptors (FcγR) at pH 6 and pH 7.4. NOD SCID mice genetically deficient in different FcγR were used to delineate their involvement. RESULTS Here, we show that strains on the NOD SCID background have significantly faster antibody clearance than other strains leading to reduced antitumor efficacy of clinically relevant mAb. This rapid clearance is dependent on antibody isotype, the presence of Fc glycosylation (at N297) and expression of FcγRII. Comparable effects were not seen in the parental NOD or SCID strains, demonstrating the presence of a compound defect requiring both genotypes. The absence of endogenous IgG was the key parameter transferred from the SCID as reconstituting NOD SCID or NSG mice with exogenous IgG overcame the rapid clearance and recovered antitumor efficacy. In contrast, the NOD strain was associated with reduced expression of the neonatal Fc Receptor (FcRn). We propose a novel mechanism for the rapid clearance of certain mAb isotypes in NOD SCID mouse strains, based on their interaction with FcγRII in the context of reduced FcRn. CONCLUSIONS This study highlights the importance of understanding the limitation of the mouse strain being used for preclinical evaluation, and demonstrates that NOD SCID strains of mice should be reconstituted with IgG prior to studies of mAb efficacy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/immunology
- Antineoplastic Agents, Immunological/pharmacology
- Apoptosis
- Cell Proliferation
- Disease Models, Animal
- Humans
- Immunoglobulin G/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Proto-Oncogene Proteins/physiology
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Rituximab/immunology
- Rituximab/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Robert J Oldham
- Antibody & Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - C Ian Mockridge
- Antibody & Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - Sonya James
- Antibody & Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - Patrick J Duriez
- Southampton Experimental Cancer Medicine/CRUK Centre, Protein Core Facility, University of Southampton Faculty of Medicine, Southampton, UK
| | - H T Claude Chan
- Antibody & Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - Kerry L Cox
- Antibody & Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - Vicentiu A Pitic
- Antibody & Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - Martin J Glennie
- Antibody & Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - Mark S Cragg
- Antibody & Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| |
Collapse
|
10
|
Conner KP, Devanaboyina SC, Thomas VA, Rock DA. The biodistribution of therapeutic proteins: Mechanism, implications for pharmacokinetics, and methods of evaluation. Pharmacol Ther 2020; 212:107574. [PMID: 32433985 DOI: 10.1016/j.pharmthera.2020.107574] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/30/2020] [Indexed: 02/08/2023]
Abstract
Therapeutic proteins (TPs) are a diverse drug class that include monoclonal antibodies (mAbs), recombinantly expressed enzymes, hormones and growth factors, cytokines (e.g. chemokines, interleukins, interferons), as well as a wide range of engineered fusion scaffolds containing IgG1 Fc domain for half-life extension. As the pharmaceutical industry advances more potent and selective protein-based medicines through discovery and into the clinical stages of development, it has become widely appreciated that a comprehensive understanding of the mechanisms of TP biodistribution can aid this endeavor. This review aims to highlight the literature that has advanced our understanding of the determinants of TP biodistribution. A particular emphasis is placed on the multi-faceted role of the neonatal Fc receptor (FcRn) in mAb and Fc-fusion protein disposition. In addition, characterization of the TP-target interaction at the cell-level is discussed as an essential strategy to establish pharmacokinetic-pharmacodynamic (PK/PD) relationships that may lead to more informed human dose projections during clinical development. Methods for incorporation of tissue and cell-level parameters defining these characteristics into higher-order mechanistic and semi-mechanistic PK models will also be presented.
Collapse
Affiliation(s)
- Kip P Conner
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| | - Siva Charan Devanaboyina
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| | - Veena A Thomas
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| | - Dan A Rock
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| |
Collapse
|
11
|
Pyzik M, Sand KMK, Hubbard JJ, Andersen JT, Sandlie I, Blumberg RS. The Neonatal Fc Receptor (FcRn): A Misnomer? Front Immunol 2019; 10:1540. [PMID: 31354709 PMCID: PMC6636548 DOI: 10.3389/fimmu.2019.01540] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
Antibodies are essential components of an adaptive immune response. Immunoglobulin G (IgG) is the most common type of antibody found in circulation and extracellular fluids. Although IgG alone can directly protect the body from infection through the activities of its antigen binding region, the majority of IgG immune functions are mediated via proteins and receptors expressed by specialized cell subsets that bind to the fragment crystallizable (Fc) region of IgG. Fc gamma (γ) receptors (FcγR) belong to a broad family of proteins that presently include classical membrane-bound surface receptors as well as atypical intracellular receptors and cytoplasmic glycoproteins. Among the atypical FcγRs, the neonatal Fc receptor (FcRn) has increasingly gained notoriety given its intimate influence on IgG biology and its ability to also bind to albumin. FcRn functions as a recycling or transcytosis receptor that is responsible for maintaining IgG and albumin in the circulation, and bidirectionally transporting these two ligands across polarized cellular barriers. More recently, it has been appreciated that FcRn acts as an immune receptor by interacting with and facilitating antigen presentation of peptides derived from IgG immune complexes (IC). Here we review FcRn biology and focus on newer advances including how emerging FcRn-targeted therapies may affect the immune responses to IgG and IgG IC.
Collapse
Affiliation(s)
- Michal Pyzik
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Kine M K Sand
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jonathan J Hubbard
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Inger Sandlie
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Harvard Digestive Diseases Center, Boston, MA, United States
| |
Collapse
|
12
|
Swystun LL, Notley C, Georgescu I, Lai JD, Nesbitt K, James PD, Lillicrap D. The endothelial lectin clearance receptor CLEC4M binds and internalizes factor VIII in a VWF-dependent and independent manner. J Thromb Haemost 2019; 17:681-694. [PMID: 30740857 PMCID: PMC7083068 DOI: 10.1111/jth.14404] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 01/23/2023]
Abstract
Essentials CLEC4M is an endocytic receptor for factor FVIII. CLEC4M interacts with FVIII in a VWF-dependent and independent manner. CLEC4M binds to mannose-containing glycans on FVIII. CLEC4M internalization of FVIII involves clathrin coated pits. SUMMARY: Background von Willebrand factor (VWF) and factor VIII (FVIII) circulate in the plasma as a non-covalent complex, and the majority of FVIII is likely to be cleared by VWF-dependent pathways. Clearance of VWF-free FVIII is rapid and underlies the pathological basis of some quantitative FVIII deficiencies. The receptor pathways that regulate the clearance of VWF-bound and VWF-free FVIII are incompletely uncharacterized. The human liver-expressed endothelial lectin CLEC4M has been previously characterized as a clearance receptor for VWF, although its influence on FVIII is unknown. Objective The interaction between FVIII and CLEC4M was characterized in the presence or absence of VWF. Methods FVIII interactions with CLEC4M were evaluated by in vitro cell-based and solid phase binding assays. Interactions between FVIII and CLEC4M or liver sinusoidal endothelial cells were evaluated in vivo by immunohistochemistry. Results CLEC4M-expressing HEK 293 cells bound and internalized recombinant and plasma-derived FVIII through VWF-dependent and independent mechanisms. CLEC4M binding to recombinant FVIII was dependent on mannose-exposed N-linked glycans. CLEC4M mediated FVIII internalization via a clathrin-coated pit-dependent mechanism, resulting in transport of FVIII from early and late endosomes for catabolism by lysosomes. In vivo hepatic expression of CLEC4M after hydrodynamic liver transfer was associated with a decrease in plasma levels of endogenous murine FVIII:C in normal mice, whereas infused recombinant human FVIII was associated with sinusoidal endothelial cells in the presence or absence of VWF. Conclusions These findings suggest that CLEC4M is a novel clearance receptor that interacts with mannose-exposed glycans on FVIII in the presence or absence of VWF.
Collapse
Affiliation(s)
- Laura L Swystun
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Colleen Notley
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Ilinca Georgescu
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Jesse D Lai
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Kate Nesbitt
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Paula D James
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
13
|
Kis-Toth K, Rajani GM, Simpson A, Henry KL, Dumont J, Peters RT, Salas J, Loh C. Recombinant factor VIII Fc fusion protein drives regulatory macrophage polarization. Blood Adv 2018; 2:2904-2916. [PMID: 30396910 PMCID: PMC6234359 DOI: 10.1182/bloodadvances.2018024497] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
The main complication of replacement therapy with factor in hemophilia A (HemA) is the formation of inhibitors (neutralizing anti-factor VIII [FVIII] antibodies) in ∼30% of severe HemA patients. Because these inhibitors render replacement FVIII treatment essentially ineffective, preventing or eliminating them is of top priority in disease management. The extended half-life recombinant FVIII Fc fusion protein (rFVIIIFc) is an approved therapy for HemA patients. In addition, it has been reported that rFVIIIFc may induce tolerance to FVIII more readily than FVIII alone in HemA patients that have developed inhibitors. Given that the immunoglobulin G1 Fc region has the potential to interact with immune cells expressing Fc receptors (FcRs) and thereby affect the immune response to rFVIII, we investigated how human macrophages, expressing both FcRs and receptors reported to bind FVIII, respond to rFVIIIFc. We show herein that rFVIIIFc, but not rFVIII, uniquely skews macrophages toward an alternatively activated regulatory phenotype. rFVIIIFc initiates signaling events that result in morphological changes, as well as a specific gene expression and metabolic profile that is characteristic of the regulatory type Mox/M2-like macrophages. Further, these changes are dependent on rFVIIIFc-FcR interactions. Our findings elucidate mechanisms of potential immunomodulatory properties of rFVIIIFc.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joe Salas
- Bioverativ, a Sanofi company, Waltham, MA; and
| | | |
Collapse
|
14
|
Polyethylene Glycol Exposure with Antihemophilic Factor (Recombinant), PEGylated (rurioctocog alfa pegol) and Other Therapies Indicated for the Pediatric Population: History and Safety. Pharmaceuticals (Basel) 2018; 11:ph11030075. [PMID: 30049994 PMCID: PMC6160981 DOI: 10.3390/ph11030075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 12/31/2022] Open
Abstract
Polyethylene glycol (PEG) is an inert, water soluble polymer, used for decades in pharmaceuticals. Although PEG is considered safe, concerns persist about the potential adverse effects of long-term exposure to PEG-containing therapies, specifically in children, following the introduction of PEGylated recombinant factor products used for the treatment of hemophilia. Given the absence of long-term surveillance data, and to evaluate the potential risk, we estimated PEG exposure in the pediatric population receiving PEGylated therapies with pediatric indications administered intravenously or intramuscularly. We used a range of pediatric weights and doses based on prescribing information (PI) or treatment guidelines. PIs and reporting websites were searched for information about adverse events (AEs). For a child weighing 50 kg on the highest prophylactic dose of a FVIII product, the range of total PEG exposure was 40–21,840 mg/year; for factor IX (FIX) products, the range was 13–1342 mg/year; and for other products, the range was 383–26,743 mg/year, primarily as a derivative excipient. No AE patterns attributable to PEG were found for any of these products, including potential renal, neurological, or hepatic AEs. Our analyses suggest the pediatric population has had substantial exposure to PEG for several decades, with no evidence of adverse consequences.
Collapse
|
15
|
Abstract
Haemophilia is a rare disease for which the approved therapeutic options have remained virtually unchanged for 50 years. In the past decade, however, there has been an explosion of innovation in the treatment options that are either in development or have been approved for haemophilia, including engineered clotting factors and an extensive pipeline of new approaches and modalities. Several of these new modalities, especially gene therapy, demonstrate proof of principle in haemophilia but could have broader applications. These advances, in combination with better diagnostics, are now enabling clinicians to improve the standard of care for people with haemophilia. The different mechanisms of action and modifications used in these therapies have implications for their safe and efficacious use, which must be balanced with their therapeutic utility. This Review focuses on the biological aspects of the most advanced and innovative approaches for haemophilia treatment and considers their future use.
Collapse
|
16
|
Wohner N, Muczynski V, Mohamadi A, Legendre P, Proulle V, Aymé G, Christophe OD, Lenting PJ, Denis CV, Casari C. Macrophage scavenger receptor SR-AI contributes to the clearance of von Willebrand factor. Haematologica 2018; 103:728-737. [PMID: 29326120 PMCID: PMC5865439 DOI: 10.3324/haematol.2017.175216] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 12/27/2017] [Indexed: 12/25/2022] Open
Abstract
Previously, we found that LDL-receptor related protein-1 on macrophages mediated shear stress-dependent clearance of von Willebrand factor. In control experiments, however, we observed that von Willebrand factor also binds to macrophages independently of this receptor under static conditions, suggesting the existence of additional clearance-receptors. In search for such receptors, we focused on the macrophage-specific scavenger-receptor SR-AI. von Willebrand factor displays efficient binding to SR-AI (half-maximum binding 14±5 nM). Binding is calcium-dependent and is inhibited by 72±4% in the combined presence of antibodies against the A1- and D4-domains. Association with SR-AI was confirmed in cell-binding experiments. In addition, binding to bone marrow-derived murine SR-AI-deficient macrophages was strongly reduced compared to binding to wild-type murine macrophages. Following expression via hydrodynamic gene transfer, we determined ratios for von Willebrand factor-propeptide over von Willebrand factor-antigen, a marker of von Willebrand factor clearance. Propeptide/antigen ratios were significantly reduced in SR-AI-deficient mice compared to wild-type mice (0.6±0.2 versus 1.3±0.3; P<0.0001), compatible with a slower clearance of von Willebrand factor in SR-AI-deficient mice. Interestingly, mutants associated with increased clearance (von Willebrand factor/p.R1205H and von Willebrand factor/p.S2179F) had significantly increased binding to purified SR-AI and SR-AI expressed on macrophages. Accordingly, propeptide/antigen ratios for these mutants were reduced in SR-AI-deficient mice. In conclusion, we have identified SR-AI as a novel macrophage-specific receptor for von Willebrand factor. Enhanced binding of von Willebrand factor mutants to SR-AI may contribute to the increased clearance of these mutants.
Collapse
Affiliation(s)
- Nikolett Wohner
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Vincent Muczynski
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Amel Mohamadi
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Paulette Legendre
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Valérie Proulle
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France.,Service d'Hématologie Biologique, Centre Hospitalier Universitaire Bicêtre, Assistance Publique-Hôpitaux de Paris, 94276 Le Kremlin-Bicêtre, France
| | - Gabriel Aymé
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Olivier D Christophe
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Peter J Lenting
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Cécile V Denis
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Caterina Casari
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| |
Collapse
|
17
|
Øie CI, Roepstorff K, Behrens C, Bøggild Kristensen J, Karpf DM, Bolt G, Gudme CN, Kjalke M, Smedsrød B, Appa RS. High-affinity von Willebrand factor binding does not affect the anatomical or hepatocellular distribution of factor VIII in rats. J Thromb Haemost 2016; 14:1803-13. [PMID: 27378673 DOI: 10.1111/jth.13406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 11/29/2022]
Abstract
UNLABELLED Essentials Von Willebrand factor (VWF) stabilizes factor VIII (FVIII) and prevents its premature clearance. Rat anatomical and hepatocellular distribution studies assessed the VWF effect on FVIII clearance. Hepatocytes and liver sinusoidal endothelial cells play a key role in FVIII clearance. Anatomical and hepatocellular distribution of FVIII is independent of high-affinity VWF binding. ABSTRACT Background Von Willebrand factor (VWF) stabilizes factor VIII in the circulation and prevents its premature clearance. Objective To study the effects of VWF on FVIII clearance in rats with endogenous VWF. Methods Anatomical and hepatocellular distribution studies were performed in rats following intravenous administration of glycoiodinated recombinant FVIII (rFVIII) and a FVIII variant, FVIII-Y1680F, lacking high-affinity VWF binding. Radioactivity was quantified in organs, and in distinct liver cell populations. The role of VWF binding was also studied by immunohistochemical staining of rat livers perfused ex vivo with rFVIII alone or with a FVIII-binding VWF fragment. Results The liver was the predominant organ of rFVIII distribution, and a radioactivity peak was also observed in the intestines, suggesting FVIII secretion to the bile by hepatocytes. In the liver, ~60% of recovered radioactivity was associated with hepatocytes, 32% with liver sinusoidal endothelial cells (LSECs), and 9% with Kupffer cells (KCs). When calculated per cell, 1.5-fold to 3-fold more radioactivity was associated with LSECs than with hepatocytes. The importance of hepatocytes and LSECs was confirmed by immunohistochemical staining; strong staining was seen in LSECs, and less intense, punctate staining in hepatocytes. Minor staining in KCs was observed. Comparable anatomical and hepatocellular distributions were observed with rFVIII and FVIII-Y1680F, and the presence of the VWF fragment, D'D3A1, did not change the FVIII staining pattern in intact livers. Conclusions The present data support FVIII clearance via the liver, with hepatocytes and LSECs playing a key role. High-affinity VWF binding did not alter the anatomical or hepatocellular distribution of FVIII.
Collapse
Affiliation(s)
- C I Øie
- Vascular Biology Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - K Roepstorff
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - C Behrens
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | | | - D M Karpf
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - G Bolt
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - C N Gudme
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - M Kjalke
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - B Smedsrød
- Vascular Biology Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - R S Appa
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark.
| |
Collapse
|
18
|
Immunogenicity of long-lasting recombinant factor VIII products. Cell Immunol 2016; 301:40-8. [DOI: 10.1016/j.cellimm.2015.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 11/27/2015] [Accepted: 12/18/2015] [Indexed: 01/11/2023]
|
19
|
Dumont JA, Loveday KS, Light DR, Pierce GF, Jiang H. Evaluation of the toxicology and pharmacokinetics of recombinant factor VIII Fc fusion protein in animals. Thromb Res 2015; 136:1266-72. [PMID: 26514955 DOI: 10.1016/j.thromres.2015.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/15/2015] [Accepted: 07/18/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Recombinant factor VIII Fc fusion protein (rFVIIIFc) is a novel recombinant factor VIII with a prolonged half-life, developed for the treatment of hemophilia A. Studies that evaluated the toxicological effects of rFVIIIFc in 2 pharmacologically relevant species, cynomolgus monkeys and Sprague Dawley rats, are reported here. MATERIALS AND METHODS In repeat-dose toxicology studies, rats and monkeys received 0, 50, 250, or 1000 IU/kg rFVIIIFc every other day for 4 weeks. In a high-dose tolerance study, monkeys received 1 rFVIIIFc dose of 3000, 10,000, or 20,000 IU/kg. Evaluations included in-life observations, laboratory and post-mortem evaluations, pharmacokinetics, and local tolerance. Allometric scaling, using data from 4 animal species and humans, was used to evaluate the relationship between animal and human pharmacokinetics. RESULTS rFVIIIFc was well tolerated with no adverse toxicological findings directly attributable to rFVIIIFc. As expected, antibodies to this fully human protein developed in rats and monkeys in a time-dependent fashion following repeated dosing, leading to increased clearance in both species. There were no local reactions (infusion site) or evidence of thrombosis at high doses in rats and monkeys. Allometric scaling demonstrated more rapid clearance in small animals compared with humans and a volume of distribution (steady state) proportional to body weight across species, suggesting that animal pharmacokinetics are predictive of human pharmacokinetics. CONCLUSIONS Repeated doses of rFVIIIFc in 2 relevant animal species and high doses of rFVIIIFc in monkeys were well tolerated. These results supported the clinical safety of rFVIIIFc observed in phase 1/2a and phase 3 clinical trials.
Collapse
|
20
|
Noy-Porat T, Cohen O, Ehrlich S, Epstein E, Alcalay R, Mazor O. Acetylcholinesterase-Fc Fusion Protein (AChE-Fc): A Novel Potential Organophosphate Bioscavenger with Extended Plasma Half-Life. Bioconjug Chem 2015; 26:1753-8. [DOI: 10.1021/acs.bioconjchem.5b00305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Tal Noy-Porat
- Departments
of Biochemistry and Molecular Genetics and ‡Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ofer Cohen
- Departments
of Biochemistry and Molecular Genetics and ‡Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Sharon Ehrlich
- Departments
of Biochemistry and Molecular Genetics and ‡Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Eyal Epstein
- Departments
of Biochemistry and Molecular Genetics and ‡Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ron Alcalay
- Departments
of Biochemistry and Molecular Genetics and ‡Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ohad Mazor
- Departments
of Biochemistry and Molecular Genetics and ‡Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| |
Collapse
|