1
|
Wang D, Sun L, Shen WT, Haggard A, Yu Y, Zhang JA, Fang RH, Gao W, Zhang L. Neuronal Membrane-Derived Nanodiscs for Broad-Spectrum Neurotoxin Detoxification. ACS NANO 2024; 18:25069-25080. [PMID: 39190873 DOI: 10.1021/acsnano.4c06708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Neurotoxins pose significant challenges in defense and healthcare due to their disruptive effects on nervous tissues. Their extreme potency and enormous structural diversity have hindered the development of effective antidotes. Motivated by the properties of cell membrane-derived nanodiscs, such as their ultrasmall size, disc shape, and inherent cell membrane functions, here, we develop neuronal membrane-derived nanodiscs (denoted "Neuron-NDs") as a countermeasure nanomedicine for broad-spectrum neurotoxin detoxification. We fabricate Neuron-NDs using the plasma membrane of human SH-SY5Y neurons and demonstrate their effectiveness in detoxifying tetrodotoxin (TTX) and botulinum toxin (BoNT), two model toxins with distinct mechanisms of action. Cell-based assays confirm the ability of Neuron-NDs to inhibit TTX-induced ion channel blockage and BoNT-mediated inhibition of synaptic vesicle recycling. In mouse models of TTX and BoNT intoxication, treatment with Neuron-NDs effectively improves survival rates in both therapeutic and preventative settings. Importantly, high-dose administration of Neuron-NDs shows no observable acute toxicity in mice, indicating its safety profile. Overall, our study highlights the facile fabrication of Neuron-NDs and their broad-spectrum detoxification capabilities, offering promising solutions for neurotoxin-related challenges in biodefense and therapeutic applications.
Collapse
Affiliation(s)
- Dan Wang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Lei Sun
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Wei-Ting Shen
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Austin Haggard
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Yiyan Yu
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Jiayuan Alex Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Ronnie H Fang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Weiwei Gao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Liangfang Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Abstract
Membrane proteins (MPs) play essential roles in numerous cellular processes. Because around 70% of the currently marketed drugs target MPs, a detailed understanding of their structure, binding properties, and functional dynamics in a physiologically relevant environment is crucial for a more detailed understanding of this important protein class. We here summarize the benefits of using lipid nanodiscs for NMR structural investigations and provide a detailed overview of the currently used lipid nanodisc systems as well as their applications in solution-state NMR. Despite the increasing use of other structural methods for the structure determination of MPs in lipid nanodiscs, solution NMR turns out to be a versatile tool to probe a wide range of MP features, ranging from the structure determination of small to medium-sized MPs to probing ligand and partner protein binding as well as functionally relevant dynamical signatures in a lipid nanodisc setting. We will expand on these topics by discussing recent NMR studies with lipid nanodiscs and work out a key workflow for optimizing the nanodisc incorporation of an MP for subsequent NMR investigations. With this, we hope to provide a comprehensive background to enable an informed assessment of the applicability of lipid nanodiscs for NMR studies of a particular MP of interest.
Collapse
Affiliation(s)
- Umut Günsel
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany
| | - Franz Hagn
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
3
|
Mohamed Asik R, Suganthy N, Aarifa MA, Kumar A, Szigeti K, Mathe D, Gulyás B, Archunan G, Padmanabhan P. Alzheimer's Disease: A Molecular View of β-Amyloid Induced Morbific Events. Biomedicines 2021; 9:biomedicines9091126. [PMID: 34572312 PMCID: PMC8468668 DOI: 10.3390/biomedicines9091126] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022] Open
Abstract
Amyloid-β (Aβ) is a dynamic peptide of Alzheimer’s disease (AD) which accelerates the disease progression. At the cell membrane and cell compartments, the amyloid precursor protein (APP) undergoes amyloidogenic cleavage by β- and γ-secretases and engenders the Aβ. In addition, externally produced Aβ gets inside the cells by receptors mediated internalization. An elevated amount of Aβ yields spontaneous aggregation which causes organelles impairment. Aβ stimulates the hyperphosphorylation of tau protein via acceleration by several kinases. Aβ travels to the mitochondria and interacts with its functional complexes, which impairs the mitochondrial function leading to the activation of apoptotic signaling cascade. Aβ disrupts the Ca2+ and protein homeostasis of the endoplasmic reticulum (ER) and Golgi complex (GC) that promotes the organelle stress and inhibits its stress recovery machinery such as unfolded protein response (UPR) and ER-associated degradation (ERAD). At lysosome, Aβ precedes autophagy dysfunction upon interacting with autophagy molecules. Interestingly, Aβ act as a transcription regulator as well as inhibits telomerase activity. Both Aβ and p-tau interaction with neuronal and glial receptors elevate the inflammatory molecules and persuade inflammation. Here, we have expounded the Aβ mediated events in the cells and its cosmopolitan role on neurodegeneration, and the current clinical status of anti-amyloid therapy.
Collapse
Affiliation(s)
- Rajmohamed Mohamed Asik
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Natarajan Suganthy
- Department of Nanoscience and Technology, Alagappa University, Karaikudi 630003, Tamil Nadu, India;
| | - Mohamed Asik Aarifa
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Arvind Kumar
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India;
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (K.S.); (D.M.)
- CROmed Translational Research Centers, 1094 Budapest, Hungary
| | - Domokos Mathe
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (K.S.); (D.M.)
- CROmed Translational Research Centers, 1094 Budapest, Hungary
- In Vivo Imaging Advanced Core Facility, Hungarian Center of Excellence for Molecular Medicine (HCEMM), 1094 Budapest, Hungary
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Govindaraju Archunan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
- Marudupandiyar College, Thanjavur 613403, Tamil Nadu, India
- Correspondence: (G.A.); (P.P.)
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Correspondence: (G.A.); (P.P.)
| |
Collapse
|
4
|
Marty MT. Nanodiscs and Mass Spectrometry: Making Membranes Fly. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2020; 458:116436. [PMID: 33100891 PMCID: PMC7584149 DOI: 10.1016/j.ijms.2020.116436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cells are surrounded by a protective lipid bilayer membrane, and membrane proteins in the bilayer control the flow of chemicals, information, and energy across this barrier. Many therapeutics target membrane proteins, and some directly target the lipid membrane itself. However, interactions within biological membranes are challenging to study due to their heterogeneity and insolubility. Mass spectrometry (MS) has become a powerful technique for studying membrane proteins, especially how membrane proteins interact with their surrounding lipid environment. Although detergent micelles are the most common membrane mimetic, nanodiscs are emerging as a promising platform for MS. Nanodiscs, nanoscale lipid bilayers encircled by two scaffold proteins, provide a controllable lipid bilayer for solubilizing membrane proteins. This Young Scientist Perspective focuses on native MS of intact nanodiscs and highlights the unique experiments enabled by making membranes fly, including studying membrane protein-lipid interactions and exploring the specificity of fragile transmembrane peptide complexes. It will also explore current challenges and future perspectives for interfacing nanodiscs with MS.
Collapse
Affiliation(s)
- Michael T Marty
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
5
|
Sligar SG, Denisov IG. Nanodiscs: A toolkit for membrane protein science. Protein Sci 2020; 30:297-315. [PMID: 33165998 DOI: 10.1002/pro.3994] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/25/2022]
Abstract
Membrane proteins are involved in numerous vital biological processes, including transport, signal transduction and the enzymes in a variety of metabolic pathways. Integral membrane proteins account for up to 30% of the human proteome and they make up more than half of all currently marketed therapeutic targets. Unfortunately, membrane proteins are inherently recalcitrant to study using the normal toolkit available to scientists, and one is most often left with the challenge of finding inhibitors, activators and specific antibodies using a denatured or detergent solubilized aggregate. The Nanodisc platform circumvents these challenges by providing a self-assembled system that renders typically insoluble, yet biologically and pharmacologically significant, targets such as receptors, transporters, enzymes, and viral antigens soluble in aqueous media in a native-like bilayer environment that maintain a target's functional activity. By providing a bilayer surface of defined composition and structure, Nanodiscs have found great utility in the study of cellular signaling complexes that assemble on a membrane surface. Nanodiscs provide a nanometer scale vehicle for the in vivo delivery of amphipathic drugs, therapeutic lipids, tethered nucleic acids, imaging agents and active protein complexes. This means for generating nanoscale lipid bilayers has spawned the successful use of numerous other polymer and peptide amphipathic systems. This review, in celebration of the Anfinsen Award, summarizes some recent results and provides an inroad into the current and historical literature.
Collapse
Affiliation(s)
- Stephen G Sligar
- Departments of Biochemistry Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - Ilia G Denisov
- Departments of Biochemistry Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
6
|
Rozema NB, Procissi D, Bertolino N, Viola KL, Nandwana V, Abdul N, Pribus S, Dravid V, Klein WL, Disterhoft JF, Weiss C. Aβ oligomer induced cognitive impairment and evaluation of ACU193-MNS-based MRI in rabbit. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2020; 6:e12087. [PMID: 33072847 PMCID: PMC7547311 DOI: 10.1002/trc2.12087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022]
Abstract
Introduction Amyloid‐beta oligomers (AβOs) accumulate in Alzheimer's disease and may instigate neuronal pathology and cognitive impairment. We examined the ability of a new probe for molecular magnetic resonance imaging (MRI) to detect AβOs in vivo, and we tested the behavioral impact of AβOs injected in rabbits, a species with an amino acid sequence that is nearly identical to the human sequence. Methods Intracerebroventricular (ICV) injection with stabilized AβOs was performed. Rabbits were probed for AβO accumulation using ACUMNS (an AβO‐selective antibody [ACU193] coupled to magnetic nanostructures). Immunohistochemistry was used to verify AβO presence. Cognitive impairment was evaluated using object location and object recognition memory tests and trace eyeblink conditioning. Results AβOs in the entorhinal cortex of ICV‐injected animals were detected by MRI and confirmed by immunohistochemistry. Injections of AβOs also impaired hippocampal‐dependent, but not hippocampal‐independent, tasks and the area fraction of bound ACUMNs correlated with the behavioral impairment. Discussion Accumulation of AβOs can be visualized in vivo by MRI of ACUMNS and the cognitive impairment induced by the AβOs can be followed longitudinally with the novel location memory test.
Collapse
Affiliation(s)
- Nicholas B Rozema
- Department of Neurobiology Northwestern University Evanston Illinois USA
| | - Daniele Procissi
- Department of Radiology Northwestern University Feinberg School of Medicine Chicago Illinois USA
| | - Nicola Bertolino
- Department of Radiology Northwestern University Feinberg School of Medicine Chicago Illinois USA
| | - Kirsten L Viola
- Department of Neurobiology Northwestern University Evanston Illinois USA
| | - Vikas Nandwana
- Department of Materials Science and Engineering Northwestern University Evanston Illinois USA
| | - Nafay Abdul
- Department of Neurobiology Northwestern University Evanston Illinois USA
| | - Sophia Pribus
- Department of Neurobiology Northwestern University Evanston Illinois USA
| | - Vinayak Dravid
- Department of Materials Science and Engineering Northwestern University Evanston Illinois USA
| | - William L Klein
- Department of Neurobiology Northwestern University Evanston Illinois USA
| | - John F Disterhoft
- Department of Physiology Northwestern University Feinberg School of Medicine Chicago Illinois USA
| | - Craig Weiss
- Department of Physiology Northwestern University Feinberg School of Medicine Chicago Illinois USA
| |
Collapse
|
7
|
Ahmad F, Liu P. Synaptosome as a tool in Alzheimer's disease research. Brain Res 2020; 1746:147009. [PMID: 32659233 DOI: 10.1016/j.brainres.2020.147009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/21/2020] [Accepted: 07/04/2020] [Indexed: 12/29/2022]
Abstract
Synapse dysfunction is an integral feature of Alzheimer's disease (AD) pathophysiology. In fact, prodromal manifestation of structural and functional deficits in synapses much prior to appearance of overt pathological hallmarks of the disease indicates that AD might be considered as a degenerative disorder of the synapses. Several research instruments and techniques have allowed us to study synaptic function and plasticity and their alterations in pathological conditions, such as AD. One such tool is the biochemically isolated preparations of detached and resealed synaptic terminals, the "synaptosomes". Because of the preservation of many of the physiological processes such as metabolic and enzymatic activities, synaptosomes have proved to be an indispensable ex vivo model system to study synapse physiology both when isolated from fresh or cryopreserved tissues, and from animal or human post-mortem tissues. This model system has been tremendously successful in the case of post-mortem tissues because of their accessibility relative to acute brain slices or cultures. The current review details the use of synaptosomes in AD research and its potential as a valuable tool in furthering our understanding of the pathogenesis and in devising and testing of therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Anatomy, School of Biomedical Sciences, Brain Research New Zealand, University of Otago, Dunedin, New Zealand.
| | - Ping Liu
- Department of Anatomy, School of Biomedical Sciences, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Carlson ML, Stacey RG, Young JW, Wason IS, Zhao Z, Rattray DG, Scott N, Kerr CH, Babu M, Foster LJ, Duong Van Hoa F. Profiling the Escherichia coli membrane protein interactome captured in Peptidisc libraries. eLife 2019; 8:46615. [PMID: 31364989 PMCID: PMC6697469 DOI: 10.7554/elife.46615] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/30/2019] [Indexed: 12/23/2022] Open
Abstract
Protein-correlation-profiling (PCP), in combination with quantitative proteomics, has emerged as a high-throughput method for the rapid identification of dynamic protein complexes in native conditions. While PCP has been successfully applied to soluble proteomes, characterization of the membrane interactome has lagged, partly due to the necessary use of detergents to maintain protein solubility. Here, we apply the peptidisc, a ‘one-size fits all’ membrane mimetic, for the capture of the Escherichia coli cell envelope proteome and its high-resolution fractionation in the absence of detergent. Analysis of the SILAC-labeled peptidisc library via PCP allows generation of over 4900 possible binary interactions out of >700,000 random associations. Using well-characterized membrane protein systems such as the SecY translocon, the Bam complex and the MetNI transporter, we demonstrate that our dataset is a useful resource for identifying transient and surprisingly novel protein interactions. For example, we discover a trans-periplasmic supercomplex comprising subunits of the Bam and Sec machineries, including membrane-bound chaperones YfgM and PpiD. We identify RcsF and OmpA as bone fide interactors of BamA, and we show that MetQ association with the ABC transporter MetNI depends on its N-terminal lipid anchor. We also discover NlpA as a novel interactor of MetNI complex. Most of these interactions are largely undetected by standard detergent-based purification. Together, the peptidisc workflow applied to the proteomic field is emerging as a promising novel approach to characterize membrane protein interactions under native expression conditions and without genetic manipulation.
Collapse
Affiliation(s)
- Michael Luke Carlson
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - R Greg Stacey
- Michael Smith Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - John William Young
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Irvinder Singh Wason
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Zhiyu Zhao
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - David G Rattray
- Michael Smith Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Nichollas Scott
- Michael Smith Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Craig H Kerr
- Michael Smith Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Mohan Babu
- Department of Biochemistry, Faculty of Science, University of Regina, Regina, Canada
| | - Leonard J Foster
- Michael Smith Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Franck Duong Van Hoa
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
Shelby ML, He W, Dang AT, Kuhl TL, Coleman MA. Cell-Free Co-Translational Approaches for Producing Mammalian Receptors: Expanding the Cell-Free Expression Toolbox Using Nanolipoproteins. Front Pharmacol 2019; 10:744. [PMID: 31333463 PMCID: PMC6616253 DOI: 10.3389/fphar.2019.00744] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/07/2019] [Indexed: 12/28/2022] Open
Abstract
Membranes proteins make up more than 60% of current drug targets and account for approximately 30% or more of the cellular proteome. Access to this important class of proteins has been difficult due to their inherent insolubility and tendency to aggregate in aqueous solutions. Understanding membrane protein structure and function demands novel means of membrane protein production that preserve both their native conformational state as well as function. Over the last decade, cell-free expression systems have emerged as an important complement to cell-based expression of membrane proteins due to their simple and customizable experimental parameters. One approach to overcome the solubility and stability limitations of purified membrane proteins is to support them in stable, native-like states within nanolipoprotein particles (NLPs), aka nanodiscs. This has become common practice to facilitate biochemical and biophysical characterization of proteins of interest. NLP technology can be easily coupled with cell-free systems to achieve functional membrane protein production for this purpose. Our approach involves utilizing cell-free expression systems in the presence of NLPs or using co-translation techniques to perform one-pot expression and self-assembly of membrane protein/NLP complexes. We describe how cell-free reactions can be modified to render control over nanoparticle size and monodispersity in support of membrane protein production. These modifications have been exploited to facilitate co-expression of full-length functional membrane proteins such as G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). In particular, we summarize the state of the art in NLP-assisted cell-free coexpression of these important classes of membrane proteins as well as evaluate the advances in and prospects for this technology that will drive drug discovery against these targets. We conclude with a prospective on the use of NLPs to produce as well as deliver functional mammalian membrane-bound proteins for a range of applications.
Collapse
Affiliation(s)
- Megan L Shelby
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Wei He
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Amanda T Dang
- University of California at Davis, Davis, CA, United States
| | - Tonya L Kuhl
- University of California at Davis, Davis, CA, United States
| | - Matthew A Coleman
- Lawrence Livermore National Laboratory, Livermore, CA, United States.,University of California at Davis, Davis, CA, United States
| |
Collapse
|
10
|
Cline EN, Bicca MA, Viola KL, Klein WL. The Amyloid-β Oligomer Hypothesis: Beginning of the Third Decade. J Alzheimers Dis 2019; 64:S567-S610. [PMID: 29843241 PMCID: PMC6004937 DOI: 10.3233/jad-179941] [Citation(s) in RCA: 585] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The amyloid-β oligomer (AβO) hypothesis was introduced in 1998. It proposed that the brain damage leading to Alzheimer’s disease (AD) was instigated by soluble, ligand-like AβOs. This hypothesis was based on the discovery that fibril-free synthetic preparations of AβOs were potent CNS neurotoxins that rapidly inhibited long-term potentiation and, with time, caused selective nerve cell death (Lambert et al., 1998). The mechanism was attributed to disrupted signaling involving the tyrosine-protein kinase Fyn, mediated by an unknown toxin receptor. Over 4,000 articles concerning AβOs have been published since then, including more than 400 reviews. AβOs have been shown to accumulate in an AD-dependent manner in human and animal model brain tissue and, experimentally, to impair learning and memory and instigate major facets of AD neuropathology, including tau pathology, synapse deterioration and loss, inflammation, and oxidative damage. As reviewed by Hayden and Teplow in 2013, the AβO hypothesis “has all but supplanted the amyloid cascade.” Despite the emerging understanding of the role played by AβOs in AD pathogenesis, AβOs have not yet received the clinical attention given to amyloid plaques, which have been at the core of major attempts at therapeutics and diagnostics but are no longer regarded as the most pathogenic form of Aβ. However, if the momentum of AβO research continues, particularly efforts to elucidate key aspects of structure, a clear path to a successful disease modifying therapy can be envisioned. Ensuring that lessons learned from recent, late-stage clinical failures are applied appropriately throughout therapeutic development will further enable the likelihood of a successful therapy in the near-term.
Collapse
Affiliation(s)
- Erika N Cline
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Maíra Assunção Bicca
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Kirsten L Viola
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - William L Klein
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| |
Collapse
|
11
|
Camp T, McLean M, Kato M, Cheruzel L, Sligar S. The hydrodynamic motion of Nanodiscs. Chem Phys Lipids 2019; 220:28-35. [PMID: 30802435 DOI: 10.1016/j.chemphyslip.2019.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 02/02/2023]
Abstract
We present a fluorescence-based methodology for monitoring the rotational dynamics of Nanodiscs. Nanodiscs are nano-scale lipid bilayers surrounded by a helical membrane scaffold protein (MSP) that have found considerable use in studying the interactions between membrane proteins and their lipid bilayer environment. Using a long-lifetime Ruthenium label covalently attached to the Nanodiscs, we find that Nanodiscs of increasing diameter, made by varying the number of helical repeats in the MSP, display increasing rotational correlation times. We also model our system using both analytical equations that describe rotating spheroids and numerical calculations performed on atomic models of Nanodiscs. Using these methods, we observe a linear relationship between the experimentally determined rotational correlation times and those calculated from both analytical equations and numerical solutions. This work sets the stage for accurate, label-free quantification of protein-lipid interactions at the membrane surface.
Collapse
Affiliation(s)
- Tyler Camp
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 314F Roger Adams Laboratory (MC-712), 600 S Mathews Ave, Urbana, IL, 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, 417 RAL (MC-712), 600 South Mathews Avenue, Urbana, IL, 61801, United States
| | - Mark McLean
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 417 RAL (MC-712), 600 South Mathews Avenue, Urbana, IL, 61801, United States
| | - Mallory Kato
- Department of Chemistry, San Jose State University, San Jose, CA, 95192-0101, United States
| | - Lionel Cheruzel
- Department of Chemistry, San Jose State University, San Jose, CA, 95192-0101, United States
| | - Stephen Sligar
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 314F Roger Adams Laboratory (MC-712), 600 S Mathews Ave, Urbana, IL, 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, 417 RAL (MC-712), 600 South Mathews Avenue, Urbana, IL, 61801, United States.
| |
Collapse
|
12
|
Chen PC, Hennig J. The role of small-angle scattering in structure-based screening applications. Biophys Rev 2018; 10:1295-1310. [PMID: 30306530 PMCID: PMC6233350 DOI: 10.1007/s12551-018-0464-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022] Open
Abstract
In many biomolecular interactions, changes in the assembly states and structural conformations of participants can act as a complementary reporter of binding to functional and thermodynamic assays. This structural information is captured by a number of structural biology and biophysical techniques that are viable either as primary screens in small-scale applications or as secondary screens to complement higher throughput methods. In particular, small-angle X-ray scattering (SAXS) reports the average distance distribution between all atoms after orientational averaging. Such information is important when for example investigating conformational changes involved in inhibitory and regulatory mechanisms where binding events do not necessarily cause functional changes. Thus, we summarise here the current and prospective capabilities of SAXS-based screening in the context of other methods that yield structural information. Broad guidelines are also provided to assist readers in preparing screening protocols that are tailored to available X-ray sources.
Collapse
Affiliation(s)
- Po-Chia Chen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Meyerhofstrasse 1, 69126, Heidelberg, Germany.
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Meyerhofstrasse 1, 69126, Heidelberg, Germany.
| |
Collapse
|
13
|
Cellular Receptors of Amyloid β Oligomers (AβOs) in Alzheimer's Disease. Int J Mol Sci 2018; 19:ijms19071884. [PMID: 29954063 PMCID: PMC6073792 DOI: 10.3390/ijms19071884] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022] Open
Abstract
It is estimated that Alzheimer’s disease (AD) affects tens of millions of people, comprising not only suffering patients, but also their relatives and caregivers. AD is one of age-related neurodegenerative diseases (NDs) characterized by progressive synaptic damage and neuronal loss, which result in gradual cognitive impairment leading to dementia. The cause of AD remains still unresolved, despite being studied for more than a century. The hallmark pathological features of this disease are senile plaques within patients’ brain composed of amyloid beta (Aβ) and neurofibrillary tangles (NFTs) of Tau protein. However, the roles of Aβ and Tau in AD pathology are being questioned and other causes of AD are postulated. One of the most interesting theories proposed is the causative role of amyloid β oligomers (AβOs) aggregation in the pathogenesis of AD. Moreover, binding of AβOs to cell membranes is probably mediated by certain proteins on the neuronal cell surface acting as AβO receptors. The aim of our paper is to describe alternative hypotheses of AD etiology, including genetic alterations and the role of misfolded proteins, especially Aβ oligomers, in Alzheimer’s disease. Furthermore, in this review we present various putative cellular AβO receptors related to toxic activity of oligomers.
Collapse
|
14
|
Abstract
Neurofibromatosis type 1 (NF1), a genetic disorder linked to inactivating mutations or a homozygous deletion of the Nf1 gene, is characterized by tumorigenesis, cognitive dysfunction, seizures, migraine, and pain. Omic studies on human NF1 tissues identified an increase in the expression of collapsin response mediator protein 2 (CRMP2), a cytosolic protein reported to regulate the trafficking and activity of presynaptic N-type voltage-gated calcium (Cav2.2) channels. Because neurofibromin, the protein product of the Nf1 gene, binds to and inhibits CRMP2, the neurofibromin-CRMP2 signaling cascade will likely affect Ca channel activity and regulate nociceptive neurotransmission and in vivo responses to noxious stimulation. Here, we investigated the function of neurofibromin-CRMP2 interaction on Cav2.2. Mapping of >275 peptides between neurofibromin and CRMP2 identified a 15-amino acid CRMP2-derived peptide that, when fused to the tat transduction domain of HIV-1, inhibited Ca influx in dorsal root ganglion neurons. This peptide mimics the negative regulation of CRMP2 activity by neurofibromin. Neurons treated with tat-CRMP2/neurofibromin regulating peptide 1 (t-CNRP1) exhibited a decreased Cav2.2 membrane localization, and uncoupling of neurofibromin-CRMP2 and CRMP2-Cav2.2 interactions. Proteomic analysis of a nanodisc-solubilized membrane protein library identified syntaxin 1A as a novel CRMP2-binding protein whose interaction with CRMP2 was strengthened in neurofibromin-depleted cells and reduced by t-CNRP1. Stimulus-evoked release of calcitonin gene-related peptide from lumbar spinal cord slices was inhibited by t-CNRP1. Intrathecal administration of t-CNRP1 was antinociceptive in experimental models of inflammatory, postsurgical, and neuropathic pain. Our results demonstrate the utility of t-CNRP1 to inhibit CRMP2 protein-protein interactions for the potential treatment of pain.
Collapse
|
15
|
McLean MA, Gregory MC, Sligar SG. Nanodiscs: A Controlled Bilayer Surface for the Study of Membrane Proteins. Annu Rev Biophys 2018; 47:107-124. [PMID: 29494254 DOI: 10.1146/annurev-biophys-070816-033620] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The study of membrane proteins and receptors presents many challenges to researchers wishing to perform biophysical measurements to determine the structure, function, and mechanism of action of such components. In most cases, to be fully functional, proteins and receptors require the presence of a native phospholipid bilayer. In addition, many complex multiprotein assemblies involved in cellular communication require an integral membrane protein as well as a membrane surface for assembly and information transfer to soluble partners in a signaling cascade. Incorporation of membrane proteins into Nanodiscs renders the target soluble and provides a native bilayer environment with precisely controlled composition of lipids, cholesterol, and other components. Likewise, Nanodiscs provide a surface of defined area useful in revealing lipid specificity and affinities for the assembly of signaling complexes. In this review, we highlight several biophysical techniques made possible through the use of Nanodiscs.
Collapse
Affiliation(s)
- Mark A McLean
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA; , ,
| | - Michael C Gregory
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA; , ,
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA; , ,
| |
Collapse
|
16
|
SMPL Synaptic Membranes: Nanodisc-Mediated Synaptic Membrane Mimetics Expand the Toolkit for Drug Discovery and the Molecular Cell Biology of Synapses. NEUROMETHODS 2018. [DOI: 10.1007/978-1-4939-8739-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Rodriguez Camargo DC, Korshavn KJ, Jussupow A, Raltchev K, Goricanec D, Fleisch M, Sarkar R, Xue K, Aichler M, Mettenleiter G, Walch AK, Camilloni C, Hagn F, Reif B, Ramamoorthy A. Stabilization and structural analysis of a membrane-associated hIAPP aggregation intermediate. eLife 2017; 6:31226. [PMID: 29148426 PMCID: PMC5706959 DOI: 10.7554/elife.31226] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022] Open
Abstract
Membrane-assisted amyloid formation is implicated in human diseases, and many of the aggregating species accelerate amyloid formation and induce cell death. While structures of membrane-associated intermediates would provide tremendous insights into the pathology and aid in the design of compounds to potentially treat the diseases, it has not been feasible to overcome the challenges posed by the cell membrane. Here, we use NMR experimental constraints to solve the structure of a type-2 diabetes related human islet amyloid polypeptide intermediate stabilized in nanodiscs. ROSETTA and MD simulations resulted in a unique β-strand structure distinct from the conventional amyloid β-hairpin and revealed that the nucleating NFGAIL region remains flexible and accessible within this isolated intermediate, suggesting a mechanism by which membrane-associated aggregation may be propagated. The ability of nanodiscs to trap amyloid intermediates as demonstrated could become one of the most powerful approaches to dissect the complicated misfolding pathways of protein aggregation.
Collapse
Affiliation(s)
- Diana C Rodriguez Camargo
- Institute for Advanced Study, Technische Universität München, Garching, Germany.,Program in Biophysics, Department of Chemistry, University of Michigan, Ann Arbor, United States.,Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München, Garching, Germany
| | - Kyle J Korshavn
- Program in Biophysics, Department of Chemistry, University of Michigan, Ann Arbor, United States
| | - Alexander Jussupow
- Institute for Advanced Study, Technische Universität München, Garching, Germany
| | - Kolio Raltchev
- Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München, Garching, Germany
| | - David Goricanec
- Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München, Garching, Germany
| | | | - Riddhiman Sarkar
- Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München, Garching, Germany
| | - Kai Xue
- Helmholtz Zentrum München, Neuherberg, Germany
| | | | | | | | - Carlo Camilloni
- Institute for Advanced Study, Technische Universität München, Garching, Germany
| | - Franz Hagn
- Institute for Advanced Study, Technische Universität München, Garching, Germany.,Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München, Garching, Germany.,Helmholtz Zentrum München, Neuherberg, Germany
| | - Bernd Reif
- Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München, Garching, Germany.,Helmholtz Zentrum München, Neuherberg, Germany
| | - Ayyalusamy Ramamoorthy
- Institute for Advanced Study, Technische Universität München, Garching, Germany.,Program in Biophysics, Department of Chemistry, University of Michigan, Ann Arbor, United States
| |
Collapse
|
18
|
Pitt J, Wilcox KC, Tortelli V, Diniz LP, Oliveira MS, Dobbins C, Yu XW, Nandamuri S, Gomes FCA, DiNunno N, Viola KL, De Felice FG, Ferreira ST, Klein WL. Neuroprotective astrocyte-derived insulin/insulin-like growth factor 1 stimulates endocytic processing and extracellular release of neuron-bound Aβ oligomers. Mol Biol Cell 2017; 28:2623-2636. [PMID: 28963439 PMCID: PMC5620371 DOI: 10.1091/mbc.e17-06-0416] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022] Open
Abstract
Synaptopathy underlying memory deficits in Alzheimer's disease (AD) is increasingly thought to be instigated by toxic oligomers of the amyloid beta peptide (AβOs). Given the long latency and incomplete penetrance of AD dementia with respect to Aβ pathology, we hypothesized that factors present in the CNS may physiologically protect neurons from the deleterious impact of AβOs. Here we employed physically separated neuron-astrocyte cocultures to investigate potential non-cell autonomous neuroprotective factors influencing AβO toxicity. Neurons cultivated in the absence of an astrocyte feeder layer showed abundant AβO binding to dendritic processes and associated synapse deterioration. In contrast, neurons in the presence of astrocytes showed markedly reduced AβO binding and synaptopathy. Results identified the protective factors released by astrocytes as insulin and insulin-like growth factor-1 (IGF1). The protective mechanism involved release of newly bound AβOs into the extracellular medium dependent upon trafficking that was sensitive to exosome pathway inhibitors. Delaying insulin treatment led to AβO binding that was no longer releasable. The neuroprotective potential of astrocytes was itself sensitive to chronic AβO exposure, which reduced insulin/IGF1 expression. Our findings support the idea that physiological protection against synaptotoxic AβOs can be mediated by astrocyte-derived insulin/IGF1, but that this protection itself is vulnerable to AβO buildup.
Collapse
Affiliation(s)
- Jason Pitt
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Kyle C Wilcox
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208
| | - Vanessa Tortelli
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21944-590, Brazil
| | - Luan Pereira Diniz
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21944-590, Brazil
| | - Maira S Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21944-590, Brazil
| | - Cassandra Dobbins
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208
| | - Xiao-Wen Yu
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Sathwik Nandamuri
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208
| | - Flávia C A Gomes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21944-590, Brazil
| | - Nadia DiNunno
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208
| | - Kirsten L Viola
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21944-590, Brazil.,Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21944-590, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21944-590, Brazil
| | - William L Klein
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
19
|
Rouck J, Krapf J, Roy J, Huff H, Das A. Recent advances in nanodisc technology for membrane protein studies (2012-2017). FEBS Lett 2017; 591:2057-2088. [PMID: 28581067 PMCID: PMC5751705 DOI: 10.1002/1873-3468.12706] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 01/01/2023]
Abstract
Historically, the main barrier to membrane protein investigations has been the tendency of membrane proteins to aggregate (due to their hydrophobic nature), in aqueous solution as well as on surfaces. The introduction of biomembrane mimetics has since stimulated momentum in the field. One such mimetic, the nanodisc (ND) system, has proved to be an exceptional system for solubilizing membrane proteins. Herein, we critically evaluate the advantages and imperfections of employing nanodiscs in biophysical and biochemical studies. Specifically, we examine the techniques that have been modified to study membrane proteins in nanodiscs. Techniques discussed here include fluorescence microscopy, solution-state/solid-state nuclear magnetic resonance, electron microscopy, small-angle X-ray scattering, and several mass spectroscopy methods. Newer techniques such as SPR, charge-sensitive optical detection, and scintillation proximity assays are also reviewed. Lastly, we cover how nanodiscs are advancing nanotechnology through nanoplasmonic biosensing, lipoprotein-nanoplatelets, and sortase-mediated labeling of nanodiscs.
Collapse
Affiliation(s)
- John Rouck
- Department of Biochemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - John Krapf
- Department of Biochemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - Jahnabi Roy
- Department of Chemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - Hannah Huff
- Department of Chemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
- Department of Biochemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
- Beckman Institute for Advanced Science, Division of Nutritional Sciences, Neuroscience Program and Department of Bioengineering, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| |
Collapse
|
20
|
DiChiara T, DiNunno N, Clark J, Bu RL, Cline EN, Rollins MG, Gong Y, Brody DL, Sligar SG, Velasco PT, Viola KL, Klein WL. Alzheimer's Toxic Amyloid Beta Oligomers: Unwelcome Visitors to the Na/K ATPase alpha3 Docking Station. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:45-61. [PMID: 28356893 PMCID: PMC5369044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Toxic amyloid beta oligomers (AβOs) are known to accumulate in Alzheimer's disease (AD) and in animal models of AD. Their structure is heterogeneous, and they are found in both intracellular and extracellular milieu. When given to CNS cultures or injected ICV into non-human primates and other non-transgenic animals, AβOs have been found to cause impaired synaptic plasticity, loss of memory function, tau hyperphosphorylation and tangle formation, synapse elimination, oxidative and ER stress, inflammatory microglial activation, and selective nerve cell death. Memory loss and pathology in transgenic models are prevented by AβO antibodies, while Aducanumab, an antibody that targets AβOs as well as fibrillar Aβ, has provided cognitive benefit to humans in early clinical trials. AβOs have now been investigated in more than 3000 studies and are widely thought to be the major toxic form of Aβ. Although much has been learned about the downstream mechanisms of AβO action, a major gap concerns the earliest steps: How do AβOs initially interact with surface membranes to generate neuron-damaging transmembrane events? Findings from Ohnishi et al (PNAS 2005) combined with new results presented here are consistent with the hypothesis that AβOs act as neurotoxins because they attach to particular membrane protein docks containing Na/K ATPase-α3, where they inhibit ATPase activity and pathologically restructure dock composition and topology in a manner leading to excessive Ca++ build-up. Better understanding of the mechanism that makes attachment of AβOs to vulnerable neurons a neurotoxic phenomenon should open the door to therapeutics and diagnostics targeting the first step of a complex pathway that leads to neural damage and dementia.
Collapse
Affiliation(s)
- Thomas DiChiara
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University
| | - Nadia DiNunno
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University
| | - Jeffrey Clark
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University
| | - Riana Lo Bu
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University
| | - Erika N. Cline
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University
| | - Madeline G. Rollins
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University
| | | | - David L. Brody
- Department of Neurology, Washington University Medical School
| | - Stephen G. Sligar
- School of Molecular and Cell Biology, University of Illinois, Urbana-Champagne
| | - Pauline T. Velasco
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University
| | - Kirsten L. Viola
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University
| | - William L. Klein
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University,Department of Neurology, Feinberg School of Medicine, Northwestern University,To whom all correspondence should be addressed: William L. Klein, Northwestern University, Dept. Neurobiology, 2205 Tech Drive, Evanston, IL 60208, ph: 847-491-5510, fax: 847-491-5211,
| |
Collapse
|
21
|
Abstract
Membrane proteins play a most important part in metabolism, signaling, cell motility, transport, development, and many other biochemical and biophysical processes which constitute fundamentals of life on the molecular level. Detailed understanding of these processes is necessary for the progress of life sciences and biomedical applications. Nanodiscs provide a new and powerful tool for a broad spectrum of biochemical and biophysical studies of membrane proteins and are commonly acknowledged as an optimal membrane mimetic system that provides control over size, composition, and specific functional modifications on the nanometer scale. In this review we attempted to combine a comprehensive list of various applications of nanodisc technology with systematic analysis of the most attractive features of this system and advantages provided by nanodiscs for structural and mechanistic studies of membrane proteins.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| | - Stephen G Sligar
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|
22
|
Tagit O, Hildebrandt N. Fluorescence Sensing of Circulating Diagnostic Biomarkers Using Molecular Probes and Nanoparticles. ACS Sens 2017; 2:31-45. [PMID: 28722447 DOI: 10.1021/acssensors.6b00625] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The interplay of photonics, nanotechnology, and biochemistry has significantly improved the identification and characterization of multiple types of biomarkers by optical biosensors. Great achievements in fluorescence-based technologies have been realized, for example, by the advancement of multiplexing techniques or the introduction of nanoparticles to biochemical and clinical research. This review presents a concise overview of recent advances in fluorescence sensing techniques for the detection of circulating disease biomarkers. Detection principles of representative approaches, including fluorescence detection using molecular fluorophores, quantum dots, and metallic and silica nanoparticles, are explained and illustrated by pertinent examples from the recent literature. Advanced detection technologies and material development play a major role in modern biosensing and consistently provide significant improvements toward robust, sensitive, and versatile platforms for early detection of circulating diagnostic biomarkers.
Collapse
Affiliation(s)
- Oya Tagit
- NanoBioPhotonics
(nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91405 Orsay, France
- Department
of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Niko Hildebrandt
- NanoBioPhotonics
(nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91405 Orsay, France
| |
Collapse
|
23
|
Nanodiscs for structural and functional studies of membrane proteins. Nat Struct Mol Biol 2016; 23:481-6. [PMID: 27273631 DOI: 10.1038/nsmb.3195] [Citation(s) in RCA: 358] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/24/2016] [Indexed: 12/12/2022]
Abstract
Membrane proteins have long presented a challenge to biochemical and functional studies. In the absence of a bilayer environment, individual proteins and critical macromolecular complexes may be insoluble and may display altered or absent activities. Nanodisc technology provides important advantages for the isolation, purification, structural resolution and functional characterization of membrane proteins. In addition, the ability to precisely control the nanodisc composition provides a nanoscale membrane surface for investigating molecular recognition events.
Collapse
|
24
|
Wang S, Yu L, Yang H, Li C, Hui Z, Xu Y, Zhu X. Oridonin Attenuates Synaptic Loss and Cognitive Deficits in an Aβ1-42-Induced Mouse Model of Alzheimer's Disease. PLoS One 2016; 11:e0151397. [PMID: 26974541 PMCID: PMC4790895 DOI: 10.1371/journal.pone.0151397] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/26/2016] [Indexed: 12/31/2022] Open
Abstract
Synaptic loss induced by beta-amyloid (Aβ) plays a critical role in the pathophysiology of Alzheimer’s disease (AD), but the mechanisms underlying this process remain unknown. In this study, we found that oridonin (Ori) rescued synaptic loss induced by Aβ1–42in vivo and in vitro and attenuated the alterations in dendritic structure and spine density observed in the hippocampus of AD mice. In addition, Ori increased the expression of PSD-95 and synaptophysin and promoted mitochondrial activity in the synaptosomes of AD mice. Ori also activated the BDNF/TrkB/CREB signaling pathway in the hippocampus of AD mice. Furthermore, in the Morris water maze test, Ori reduced latency and searching distance and increased the number of platform crosses in AD mice. These data suggest that Ori might prevent synaptic loss and improve behavioral symptoms in Aβ1–42-induced AD mice.
Collapse
Affiliation(s)
- Sulei Wang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Linjie Yu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, PR China
| | - Hui Yang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Chaosheng Li
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Zhen Hui
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, PR China
- Jiangsu Stroke Research Collaborative Group, Nanjing, PR China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, PR China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, PR China
- * E-mail: (YX); (XLZ)
| | - Xiaolei Zhu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, PR China
- * E-mail: (YX); (XLZ)
| |
Collapse
|
25
|
Huang X, Tang G, Liao Y, Zhuang X, Dong X, Liu H, Huang XJ, Ye WC, Wang Y, Shi L. 7-(4-Hydroxyphenyl)-1-phenyl-4 E-hepten-3-one, a Diarylheptanoid from Alpinia officinarum, Protects Neurons against Amyloid-β Induced Toxicity. Biol Pharm Bull 2016; 39:1961-1967. [DOI: 10.1248/bpb.b16-00411] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiaojie Huang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University
| | - Genyun Tang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University
- Department of Medical Genetics, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine
| | - Yumei Liao
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University
| | - Xiaoji Zhuang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University
| | - Xiao Dong
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University
| | - Hui Liu
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University
| | - Xiao-Jun Huang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University
| | - Wen-Cai Ye
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University
| | - Ying Wang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University
| |
Collapse
|
26
|
Viola KL, Klein WL. Amyloid β oligomers in Alzheimer's disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 2015; 129:183-206. [PMID: 25604547 DOI: 10.1007/s00401-015-1386-3] [Citation(s) in RCA: 468] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/11/2015] [Accepted: 01/11/2015] [Indexed: 12/22/2022]
Abstract
Protein aggregation is common to dozens of diseases including prionoses, diabetes, Parkinson's and Alzheimer's. Over the past 15 years, there has been a paradigm shift in understanding the structural basis for these proteinopathies. Precedent for this shift has come from investigation of soluble Aβ oligomers (AβOs), toxins now widely regarded as instigating neuron damage leading to Alzheimer's dementia. Toxic AβOs accumulate in AD brain and constitute long-lived alternatives to the disease-defining Aβ fibrils deposited in amyloid plaques. Key experiments using fibril-free AβO solutions demonstrated that while Aβ is essential for memory loss, the fibrillar Aβ in amyloid deposits is not the agent. The AD-like cellular pathologies induced by AβOs suggest their impact provides a unifying mechanism for AD pathogenesis, explaining why early stage disease is specific for memory and accounting for major facets of AD neuropathology. Alternative ideas for triggering mechanisms are being actively investigated. Some research favors insertion of AβOs into membrane, while other evidence supports ligand-like accumulation at particular synapses. Over a dozen candidate toxin receptors have been proposed. AβO binding triggers a redistribution of critical synaptic proteins and induces hyperactivity in metabotropic and ionotropic glutamate receptors. This leads to Ca(2+) overload and instigates major facets of AD neuropathology, including tau hyperphosphorylation, insulin resistance, oxidative stress, and synapse loss. Because different species of AβOs have been identified, a remaining question is which oligomer is the major pathogenic culprit. The possibility has been raised that more than one species plays a role. Despite some key unknowns, the clinical relevance of AβOs has been established, and new studies are beginning to point to co-morbidities such as diabetes and hypercholesterolemia as etiological factors. Because pathogenic AβOs appear early in the disease, they offer appealing targets for therapeutics and diagnostics. Promising therapeutic strategies include use of CNS insulin signaling enhancers to protect against the presence of toxins and elimination of the toxins through use of highly specific AβO antibodies. An AD-dependent accumulation of AβOs in CSF suggests their potential use as biomarkers and new AβO probes are opening the door to brain imaging. Overall, current evidence indicates that Aβ oligomers provide a substantive molecular basis for the cause, treatment and diagnosis of Alzheimer's disease.
Collapse
|