1
|
Kennedy G, West RM, Poti K, Bobb B, Ippolito MM, Marzinke MA, Kaludov N, Sullivan DJ. Cethromycin Pharmacokinetics and Pharmacodynamics for Single Dose Cure of Plasmodium berghei Liver Stages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637401. [PMID: 39990335 PMCID: PMC11844388 DOI: 10.1101/2025.02.10.637401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Cethromycin combines a quinoline nucleus and a macrolide for broad spectrum antibacterial and antiprotozoan activity. Here we characterized the murine pharmacokinetics and Plasmodium berghei lifecycle stage pharmacodynamics for the cethromycin base. Liver pharmacokinetic studies in mice show peak mM drug levels in the liver with 20 hour sustained levels above 10 μM. Peak concentrations in the liver were double the lung and about 440 times that of plasma. Immunofluorescence imaging of in vitro cethromycin-treated infected hepatocytes shows complete ablation of the apicoplast. We observed complete cure of P. berghei liver stage infection by single oral dose of 60 mg/kg in mice which is equivalent to the 5 mg/kg human dose of 300 mg a day used in bacterial pneumonia studies. Cethromycin at 60 mg/kg daily for 7 days was curative in the high parasitemic P. berghei mouse model. Both mosquito membrane feeding of P. falciparum gametocytes incubated with 20 μM cethromycin and oral dosing in mice demonstrated no decrease in oocyst numbers. Cethromycin has been evaluated for efficacy against bacterial pneumonia in more than 5,000 patients with good safety profiles. Cethromycin has potential for rapid clinical development for casual malaria prophylaxis and possibly radical cure of dormant liver P. vivax.
Collapse
Affiliation(s)
- Grace Kennedy
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rachel M. West
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kristin Poti
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Bryce Bobb
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Matthew M. Ippolito
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore Maryland USA
| | - Mark A. Marzinke
- Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore Maryland USA
| | | | - David J. Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- AliQuantumRx Inc, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Abstract
Quantum mechanics (QM) methods provide a fine description of receptor-ligand interactions and of chemical reactions. Their use in drug design and drug discovery is increasing, especially for complex systems including metal ions in the binding sites, for the design of highly selective inhibitors, for the optimization of bi-specific compounds, to understand enzymatic reactions, and for the study of covalent ligands and prodrugs. They are also used for generating molecular descriptors for predictive QSAR/QSPR models and for the parameterization of force fields. Thanks to the continuous increase of computational power offered by GPUs and to the development of sophisticated algorithms, QM methods are becoming part of the standard tools used in computer-aided drug design (CADD). We present the most used QM methods and software packages, and we discuss recent representative applications in drug design and drug discovery.
Collapse
Affiliation(s)
- Martin Kotev
- Global Research Informatics/Cheminformatics and Drug Design, Evotec (France) SAS, Toulouse, France
| | - Laurie Sarrat
- Global Research Informatics/Cheminformatics and Drug Design, Evotec (France) SAS, Toulouse, France
| | | |
Collapse
|
3
|
Yadav BS, Chaturvedi N, Marina N. Recent Advances in System Based Study for Anti-Malarial Drug Development Process. Curr Pharm Des 2019; 25:3367-3377. [DOI: 10.2174/1381612825666190902162105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 12/22/2022]
Abstract
Background:
Presently, malaria is one of the most prevalent and deadly infectious disease across Africa,
Asia, and America that has now started to spread in Europe. Despite large research being carried out in the
field, still, there is a lack of efficient anti-malarial therapeutics. In this paper, we highlight the increasing efforts
that are urgently needed towards the development and discovery of potential antimalarial drugs, which must be
safe and affordable. The new drugs thus mentioned are also able to counter the spread of malaria parasites that
have been resistant to the existing agents.
Objective:
The main objective of the review is to highlight the recent development in the use of system biologybased
approaches towards the design and discovery of novel anti-malarial inhibitors.
Method:
A huge literature survey was performed to gain advance knowledge about the global persistence of
malaria, its available treatment and shortcomings of the available inhibitors. Literature search and depth analysis
were also done to gain insight into the use of system biology in drug discovery and how this approach could be
utilized towards the development of the novel anti-malarial drug.
Results:
The system-based analysis has made easy to understand large scale sequencing data, find candidate
genes expression during malaria disease progression further design of drug molecules those are complementary of
the target proteins in term of shape and configuration.
Conclusion:
The review article focused on the recent computational advances in new generation sequencing,
molecular modeling, and docking related to malaria disease and utilization of the modern system and network
biology approach to antimalarial potential drug discovery and development.
Collapse
Affiliation(s)
- Brijesh S. Yadav
- Department of Bioengineering, University of Information Science and Technology, Partizahska, Ohrid, Macedonia, the Former Yugoslav Republic of
| | - Navaneet Chaturvedi
- Department of Bioengineering, University of Information Science and Technology, Partizahska, Ohrid, Macedonia, the Former Yugoslav Republic of
| | - Ninoslav Marina
- Department of Bioengineering, University of Information Science and Technology, Partizahska, Ohrid, Macedonia, the Former Yugoslav Republic of
| |
Collapse
|
4
|
Gaillard T, Madamet M, Tsombeng FF, Dormoi J, Pradines B. Antibiotics in malaria therapy: which antibiotics except tetracyclines and macrolides may be used against malaria? Malar J 2016; 15:556. [PMID: 27846898 PMCID: PMC5109779 DOI: 10.1186/s12936-016-1613-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/10/2016] [Indexed: 01/15/2023] Open
Abstract
Malaria, a parasite vector-borne disease, is one of the most significant health threats in tropical regions, despite the availability of individual chemoprophylaxis. Malaria chemoprophylaxis and chemotherapy remain a major area of research, and new drug molecules are constantly being developed before drug-resistant parasites strains emerge. The use of anti-malarial drugs is challenged by contra-indications, the level of resistance of Plasmodium falciparum in endemic areas, clinical tolerance and financial cost. New therapeutic approaches are currently needed to fight against this disease. Some antibiotics that have shown potential effects on malaria parasite have been recently studied in vitro or in vivo intensively. Two families, tetracyclines and macrolides and their derivatives have been particularly studied in recent years. However, other less well-known have been tested or are being used for malaria treatment. Some of these belong to older families, such as quinolones, co-trimoxazole or fusidic acid, while others are new drug molecules such as tigecycline. These emerging antibiotics could be used to prevent malaria in the future. In this review, the authors overview the use of antibiotics for malaria treatment.
Collapse
Affiliation(s)
- Tiphaine Gaillard
- Fédération des Laboratoires, Hôpital d'Instruction des Armées Saint Anne, Toulon, France.,Unité de Parasitologie et d'Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Aix Marseille Université, UM 63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Marylin Madamet
- Unité de Parasitologie et d'Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Aix Marseille Université, UM 63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Francis Foguim Tsombeng
- Unité de Parasitologie et d'Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Aix Marseille Université, UM 63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Jérôme Dormoi
- Unité de Parasitologie et d'Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Aix Marseille Université, UM 63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Bruno Pradines
- Unité de Parasitologie et d'Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France. .,Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Aix Marseille Université, UM 63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France. .,Centre National de Référence du Paludisme, Marseille, France.
| |
Collapse
|