1
|
Stürner T, Brooks P, Serratosa Capdevila L, Morris BJ, Javier A, Fang S, Gkantia M, Cachero S, Beckett IR, Marin EC, Schlegel P, Champion AS, Moitra I, Richards A, Klemm F, Kugel L, Namiki S, Cheong HSJ, Kovalyak J, Tenshaw E, Parekh R, Phelps JS, Mark B, Dorkenwald S, Bates AS, Matsliah A, Yu SC, McKellar CE, Sterling A, Seung HS, Murthy M, Tuthill JC, Lee WCA, Card GM, Costa M, Jefferis GSXE, Eichler K. Comparative connectomics of Drosophila descending and ascending neurons. Nature 2025:10.1038/s41586-025-08925-z. [PMID: 40307549 DOI: 10.1038/s41586-025-08925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025]
Abstract
In most complex nervous systems there is a clear anatomical separation between the nerve cord, which contains most of the final motor outputs necessary for behaviour, and the brain. In insects, the neck connective is both a physical and an information bottleneck connecting the brain and the ventral nerve cord (an analogue of the spinal cord) and comprises diverse populations of descending neurons (DNs), ascending neurons (ANs) and sensory ascending neurons, which are crucial for sensorimotor signalling and control. Here, by integrating three separate electron microscopy (EM) datasets1-4, we provide a complete connectomic description of the ANs and DNs of the Drosophila female nervous system and compare them with neurons of the male nerve cord. Proofread neuronal reconstructions are matched across hemispheres, datasets and sexes. Crucially, we also match 51% of DN cell types to light-level data5 defining specific driver lines, as well as classifying all ascending populations. We use these results to reveal the anatomical and circuit logic of neck connective neurons. We observe connected chains of DNs and ANs spanning the neck, which may subserve motor sequences. We provide a complete description of sexually dimorphic DN and AN populations, with detailed analyses of selected circuits for reproductive behaviours, including male courtship6 (DNa12; also known as aSP22) and song production7 (AN neurons from hemilineage 08B) and female ovipositor extrusion8 (DNp13). Our work provides EM-level circuit analyses that span the entire central nervous system of an adult animal.
Collapse
Affiliation(s)
- Tomke Stürner
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Paul Brooks
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Billy J Morris
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alexandre Javier
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Siqi Fang
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marina Gkantia
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Sebastian Cachero
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Isabella R Beckett
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Elizabeth C Marin
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Andrew S Champion
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Ilina Moitra
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alana Richards
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Finja Klemm
- Genetics Department, Leipzig University, Leipzig, Germany
| | - Leonie Kugel
- Genetics Department, Leipzig University, Leipzig, Germany
| | - Shigehiro Namiki
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Han S J Cheong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Julie Kovalyak
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Emily Tenshaw
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jasper S Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Brain Mind Institute and Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Brandon Mark
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Alexander S Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire E McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - John C Tuthill
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.
- Genetics Department, Leipzig University, Leipzig, Germany.
| |
Collapse
|
2
|
Li M, Chen DS, Junker IP, Szorenyi FI, Chen GH, Berger AJ, Comeault AA, Matute DR, Ding Y. Ancestral neural circuits potentiate the origin of a female sexual behavior in Drosophila. Nat Commun 2024; 15:9210. [PMID: 39468043 PMCID: PMC11519493 DOI: 10.1038/s41467-024-53610-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Courtship interactions are remarkably diverse in form and complexity among species. How neural circuits evolve to encode new behaviors that are functionally integrated into these dynamic social interactions is unknown. Here we report a recently originated female sexual behavior in the island endemic Drosophila species D. santomea, where females signal receptivity to male courtship songs by spreading their wings, which in turn promotes prolonged songs in courting males. Copulation success depends on this female signal and correlates with males' ability to adjust his singing in such a social feedback loop. Functional comparison of sexual circuitry across species suggests that a pair of descending neurons, which integrates male song stimuli and female internal state to control a conserved female abdominal behavior, drives wing spreading in D. santomea. This co-option occurred through the refinement of a pre-existing, plastic circuit that can be optogenetically activated in an outgroup species. Combined, our results show that the ancestral potential of a socially-tuned key circuit node to engage the wing motor circuit facilitates the expression of a new female behavior in appropriate sensory and motivational contexts. More broadly, our work provides insights into the evolution of social behaviors, particularly female behaviors, and the underlying neural mechanisms.
Collapse
Affiliation(s)
- Minhao Li
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Dawn S Chen
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian P Junker
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Guan Hao Chen
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Arnold J Berger
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron A Comeault
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Daniel R Matute
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Yun Ding
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Li J, Ning C, Liu Y, Deng B, Wang B, Shi K, Wang R, Fang R, Zhou C. The function of juvenile-adult transition axis in female sexual receptivity of Drosophila melanogaster. eLife 2024; 12:RP92545. [PMID: 39240259 PMCID: PMC11379460 DOI: 10.7554/elife.92545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Female sexual receptivity is essential for reproduction of a species. Neuropeptides play the main role in regulating female receptivity. However, whether neuropeptides regulate female sexual receptivity during the neurodevelopment is unknown. Here, we found the peptide hormone prothoracicotropic hormone (PTTH), which belongs to the insect PG (prothoracic gland) axis, negatively regulated virgin female receptivity through ecdysone during neurodevelopment in Drosophila melanogaster. We identified PTTH neurons as doublesex-positive neurons, they regulated virgin female receptivity before the metamorphosis during the third-instar larval stage. PTTH deletion resulted in the increased EcR-A expression in the whole newly formed prepupae. Furthermore, the ecdysone receptor EcR-A in pC1 neurons positively regulated virgin female receptivity during metamorphosis. The decreased EcR-A in pC1 neurons induced abnormal morphological development of pC1 neurons without changing neural activity. Among all subtypes of pC1 neurons, the function of EcR-A in pC1b neurons was necessary for virgin female copulation rate. These suggested that the changes of synaptic connections between pC1b and other neurons decreased female copulation rate. Moreover, female receptivity significantly decreased when the expression of PTTH receptor Torso was reduced in pC1 neurons. This suggested that PTTH not only regulates female receptivity through ecdysone but also through affecting female receptivity associated neurons directly. The PG axis has similar functional strategy as the hypothalamic-pituitary-gonadal axis in mammals to trigger the juvenile-adult transition. Our work suggests a general mechanism underlying which the neurodevelopment during maturation regulates female sexual receptivity.
Collapse
Affiliation(s)
- Jing Li
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chao Ning
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yaohua Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Department of Plant Protection, Shanxi Agricultural University, Jinzhong, China
| | - Bowen Deng
- Chinese Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Zhongguancun Life Sciences Park, Beijing, China
| | - Bingcai Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rencong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruixin Fang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Chuan Zhou
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Afkhami M. Neurobiology of egg-laying behavior in Drosophila: neural control of the female reproductive system. J Neurogenet 2024; 38:47-61. [PMID: 39250036 DOI: 10.1080/01677063.2024.2396352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Egg-laying is one of the key aspects of female reproductive behavior in insects. Egg-laying has been studied since the dawn of Drosophila melanogaster as a model organism. The female's internal state, hormones, and external factors, such as nutrition, light, and social environment, affect egg-laying output. However, only recently, neurobiological features of egg-laying behavior have been studied in detail. fruitless and doublesex, two key players in the sex determination pathway, have become focal points in identifying neurons of reproductive significance in both central and peripheral nervous systems. The reproductive tract and external terminalia house sensory neurons that carry the sensory information of egg maturation, mating and egg-laying. These sensory signals include the presence of male accessory gland products and mechanical stimuli. The abdominal neuromere houses neurons that receive information from the reproductive tract, including sex peptide abdominal ganglion neurons (SAGs), and send their information to the brain. In the brain, neuronal groups like aDNs and pC1 clusters modulate egg-laying decision-making, and other neurons like oviINs and oviDNs are necessary for egg-laying itself. Lastly, motor neurons involved in egg-laying, which are mostly octopaminergic, reside in the abdominal neuromere and orchestrate the muscle movements required for laying the egg. Egg-laying neuronal control is important in various evolutionary processes like cryptic female choice, and using different Drosophila species can provide intriguing avenues for the future of the field.
Collapse
Affiliation(s)
- Mehrnaz Afkhami
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
5
|
Imoto K, Ishikawa Y, Aso Y, Funke J, Tanaka R, Kamikouchi A. Neural-circuit basis of song preference learning in fruit flies. iScience 2024; 27:110266. [PMID: 39040064 PMCID: PMC11260866 DOI: 10.1016/j.isci.2024.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/27/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024] Open
Abstract
As observed in human language learning and song learning in birds, the fruit fly Drosophila melanogaster changes its auditory behaviors according to prior sound experiences. This phenomenon, known as song preference learning in flies, requires GABAergic input to pC1 neurons in the brain, with these neurons playing a key role in mating behavior. The neural circuit basis of this GABAergic input, however, is not known. Here, we find that GABAergic neurons expressing the sex-determination gene doublesex are necessary for song preference learning. In the brain, only four doublesex-expressing GABAergic neurons exist per hemibrain, identified as pCd-2 neurons. pCd-2 neurons directly, and in many cases mutually, connect with pC1 neurons, suggesting the existence of reciprocal circuits between them. Moreover, GABAergic and dopaminergic inputs to doublesex-expressing GABAergic neurons are necessary for song preference learning. Together, this study provides a neural circuit model that underlies experience-dependent auditory plasticity at a single-cell resolution.
Collapse
Affiliation(s)
- Keisuke Imoto
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Yuki Ishikawa
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jan Funke
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ryoya Tanaka
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
6
|
Baker CA, Guan XJ, Choi M, Murthy M. The role of fruitless in specifying courtship behaviors across divergent Drosophila species. SCIENCE ADVANCES 2024; 10:eadk1273. [PMID: 38478605 PMCID: PMC10936877 DOI: 10.1126/sciadv.adk1273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/08/2024] [Indexed: 04/20/2024]
Abstract
Sex-specific behaviors are critical for reproduction and species survival. The sex-specifically spliced transcription factor fruitless (fru) helps establish male courtship behaviors in invertebrates. Forcing male-specific fru (fruM) splicing in Drosophila melanogaster females produces male-typical behaviors while disrupting female-specific behaviors. However, whether fru's joint role in specifying male and inhibiting female behaviors is conserved across species is unknown. We used CRISPR-Cas9 to force FruM expression in female Drosophila virilis, a species in which males and females produce sex-specific songs. In contrast to D. melanogaster, in which one fruM allele is sufficient to generate male behaviors in females, two alleles are needed in D. virilis females. D. virilis females expressing FruM maintain the ability to sing female-typical song as well as lay eggs, whereas D. melanogaster FruM females cannot lay eggs. These results reveal potential differences in fru function between divergent species and underscore the importance of studying diverse behaviors and species for understanding the genetic basis of sex differences.
Collapse
Affiliation(s)
| | - Xiao-Juan Guan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | | |
Collapse
|
7
|
Li M, Chen DS, Junker IP, Szorenyi F, Chen GH, Berger AJ, Comeault AA, Matute DR, Ding Y. Ancestral neural circuits potentiate the origin of a female sexual behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570174. [PMID: 38106147 PMCID: PMC10723342 DOI: 10.1101/2023.12.05.570174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Courtship interactions are remarkably diverse in form and complexity among species. How neural circuits evolve to encode new behaviors that are functionally integrated into these dynamic social interactions is unknown. Here we report a recently originated female sexual behavior in the island endemic Drosophila species D. santomea, where females signal receptivity to male courtship songs by spreading their wings, which in turn promotes prolonged songs in courting males. Copulation success depends on this female signal and correlates with males' ability to adjust his singing in such a social feedback loop. Functional comparison of sexual circuitry across species suggests that a pair of descending neurons, which integrates male song stimuli and female internal state to control a conserved female abdominal behavior, drives wing spreading in D. santomea. This co-option occurred through the refinement of a pre-existing, plastic circuit that can be optogenetically activated in an outgroup species. Combined, our results show that the ancestral potential of a socially-tuned key circuit node to engage the wing motor program facilitates the expression of a new female behavior in appropriate sensory and motivational contexts. More broadly, our work provides insights into the evolution of social behaviors, particularly female behaviors, and the underlying neural mechanisms.
Collapse
Affiliation(s)
- Minhao Li
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Dawn S Chen
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian P Junker
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Fabianna Szorenyi
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Guan Hao Chen
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Arnold J Berger
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron A Comeault
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Current address: School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Daniel R Matute
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Yun Ding
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Roemschied FA, Pacheco DA, Aragon MJ, Ireland EC, Li X, Thieringer K, Pang R, Murthy M. Flexible circuit mechanisms for context-dependent song sequencing. Nature 2023; 622:794-801. [PMID: 37821705 PMCID: PMC10600009 DOI: 10.1038/s41586-023-06632-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Sequenced behaviours, including locomotion, reaching and vocalization, are patterned differently in different contexts, enabling animals to adjust to their environments. How contextual information shapes neural activity to flexibly alter the patterning of actions is not fully understood. Previous work has indicated that this could be achieved via parallel motor circuits, with differing sensitivities to context1,2. Here we demonstrate that a single pathway operates in two regimes dependent on recent sensory history. We leverage the Drosophila song production system3 to investigate the role of several neuron types4-7 in song patterning near versus far from the female fly. Male flies sing 'simple' trains of only one mode far from the female fly but complex song sequences comprising alternations between modes when near her. We find that ventral nerve cord (VNC) circuits are shaped by mutual inhibition and rebound excitability8 between nodes driving the two song modes. Brief sensory input to a direct brain-to-VNC excitatory pathway drives simple song far from the female, whereas prolonged input enables complex song production via simultaneous recruitment of functional disinhibition of VNC circuitry. Thus, female proximity unlocks motor circuit dynamics in the correct context. We construct a compact circuit model to demonstrate that the identified mechanisms suffice to replicate natural song dynamics. These results highlight how canonical circuit motifs8,9 can be combined to enable circuit flexibility required for dynamic communication.
Collapse
Affiliation(s)
- Frederic A Roemschied
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- European Neuroscience Institute, Göttingen, Germany
| | - Diego A Pacheco
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Harvard Medical School, Boston, MA, USA
| | - Max J Aragon
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Elise C Ireland
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Xinping Li
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Kyle Thieringer
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Rich Pang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
9
|
Cury KM, Axel R. Flexible neural control of transition points within the egg-laying behavioral sequence in Drosophila. Nat Neurosci 2023; 26:1054-1067. [PMID: 37217726 PMCID: PMC10244180 DOI: 10.1038/s41593-023-01332-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023]
Abstract
Innate behaviors are frequently comprised of ordered sequences of component actions that progress to satisfy essential drives. Progression is governed by specialized sensory cues that induce transitions between components within the appropriate context. Here we have characterized the structure of the egg-laying behavioral sequence in Drosophila and found significant variability in the transitions between component actions that affords the organism an adaptive flexibility. We identified distinct classes of interoceptive and exteroceptive sensory neurons that control the timing and direction of transitions between the terminal components of the sequence. We also identified a pair of motor neurons that enact the final transition to egg expulsion. These results provide a logic for the organization of innate behavior in which sensory information processed at critical junctures allows for flexible adjustments in component actions to satisfy drives across varied internal and external environments.
Collapse
Affiliation(s)
- Kevin M Cury
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA.
| | - Richard Axel
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA.
- Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
10
|
Laturney M, Sterne GR, Scott K. Mating activates neuroendocrine pathways signaling hunger in Drosophila females. eLife 2023; 12:e85117. [PMID: 37184218 PMCID: PMC10229122 DOI: 10.7554/elife.85117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/13/2023] [Indexed: 05/16/2023] Open
Abstract
Mated females reallocate resources to offspring production, causing changes to nutritional requirements and challenges to energy homeostasis. Although observed across species, the neural and endocrine mechanisms that regulate the nutritional needs of mated females are not well understood. Here, we find that mated Drosophila melanogaster females increase sugar intake, which is regulated by the activity of sexually dimorphic insulin receptor (Lgr3) neurons. In virgins, Lgr3+ cells have reduced activity as they receive inhibitory input from active, female-specific pCd-2 cells, restricting sugar intake. During copulation, males deposit sex peptide into the female reproductive tract, which silences a three-tier mating status circuit and initiates the female postmating response. We show that pCd-2 neurons also become silenced after mating due to the direct synaptic input from the mating status circuit. Thus, in mated females pCd-2 inhibition is attenuated, activating downstream Lgr3+ neurons and promoting sugar intake. Together, this circuit transforms the mated signal into a long-term hunger signal. Our results demonstrate that the mating circuit alters nutrient sensing centers to increase feeding in mated females, providing a mechanism to increase intake in anticipation of the energetic costs associated with reproduction.
Collapse
Affiliation(s)
| | | | - Kristin Scott
- University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
11
|
Karigo T, Deutsch D. Flexibility of neural circuits regulating mating behaviors in mice and flies. Front Neural Circuits 2022; 16:949781. [PMID: 36426135 PMCID: PMC9679785 DOI: 10.3389/fncir.2022.949781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/28/2022] [Indexed: 11/11/2022] Open
Abstract
Mating is essential for the reproduction of animal species. As mating behaviors are high-risk and energy-consuming processes, it is critical for animals to make adaptive mating decisions. This includes not only finding a suitable mate, but also adapting mating behaviors to the animal's needs and environmental conditions. Internal needs include physical states (e.g., hunger) and emotional states (e.g., fear), while external conditions include both social cues (e.g., the existence of predators or rivals) and non-social factors (e.g., food availability). With recent advances in behavioral neuroscience, we are now beginning to understand the neural basis of mating behaviors, particularly in genetic model organisms such as mice and flies. However, how internal and external factors are integrated by the nervous system to enable adaptive mating-related decision-making in a state- and context-dependent manner is less well understood. In this article, we review recent knowledge regarding the neural basis of flexible mating behaviors from studies of flies and mice. By contrasting the knowledge derived from these two evolutionarily distant model organisms, we discuss potential conserved and divergent neural mechanisms involved in the control of flexible mating behaviors in invertebrate and vertebrate brains.
Collapse
Affiliation(s)
- Tomomi Karigo
- Kennedy Krieger Institute, Baltimore, MD, United States,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: Tomomi Karigo,
| | - David Deutsch
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel,David Deutsch,
| |
Collapse
|
12
|
Nöbel S, Monier M, Fargeot L, Lespagnol G, Danchin E, Isabel G. Female fruit flies copy the acceptance, but not the rejection, of a mate. Behav Ecol 2022. [DOI: 10.1093/beheco/arac071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Acceptance and avoidance can be socially transmitted, especially in the case of mate choice. When a Drosophila melanogaster female observes a conspecific female (called demonstrator female) choosing to mate with one of two males, the former female (called observer female) can memorize and copy the latter female’s choice. Traditionally in mate-copying experiments, demonstrations provide two types of information to observer females, namely, the acceptance (positive) of one male and the rejection of the other male (negative). To disentangle the respective roles of positive and negative information in Drosophila mate copying, we performed experiments in which demonstrations provided only one type of information at a time. We found that positive information alone is sufficient to trigger mate copying. Observer females preferred males of phenotype A after watching a female mating with a male of phenotype A in the absence of any other male. Contrastingly, negative information alone (provided by a demonstrator female actively rejecting a male of phenotype B) did not affect future observer females’ mate choice. These results suggest that the informative part of demonstrations in Drosophila mate-copying experiments lies mainly, if not exclusively, in the positive information provided by the copulation with a given male. We discuss the reasons for such a result and suggest that Drosophila females learn to prefer the successful males, implying that the underlying learning mechanisms may be shared with those of appetitive memory in non-social associative learning.
Collapse
Affiliation(s)
- Sabine Nöbel
- Université Toulouse 1 Capitole and Institute for Advanced Study in Toulouse (IAST) , Toulouse , France
- Laboratoire Évolution & Diversité Biologique (EDB), UMR5174, CNRS, IRD, Université Toulouse III Paul Sabatier , 118 route de Narbonne, F-31062 Toulouse Cedex 9 , France
| | - Magdalena Monier
- Laboratoire Évolution & Diversité Biologique (EDB), UMR5174, CNRS, IRD, Université Toulouse III Paul Sabatier , 118 route de Narbonne, F-31062 Toulouse Cedex 9 , France
| | - Laura Fargeot
- Centre de Recherches sur la Cognition Animale (CRCA) , Centre de Biologie Intégrative (CBI), CNRS UMR 5169, Toulouse , France
| | - Guillaume Lespagnol
- Laboratoire Évolution & Diversité Biologique (EDB), UMR5174, CNRS, IRD, Université Toulouse III Paul Sabatier , 118 route de Narbonne, F-31062 Toulouse Cedex 9 , France
| | - Etienne Danchin
- Laboratoire Évolution & Diversité Biologique (EDB), UMR5174, CNRS, IRD, Université Toulouse III Paul Sabatier , 118 route de Narbonne, F-31062 Toulouse Cedex 9 , France
| | - Guillaume Isabel
- Centre de Recherches sur la Cognition Animale (CRCA) , Centre de Biologie Intégrative (CBI), CNRS UMR 5169, Toulouse , France
| |
Collapse
|
13
|
Casado-Navarro R, Serrano-Saiz E. DMRT Transcription Factors in the Control of Nervous System Sexual Differentiation. Front Neuroanat 2022; 16:937596. [PMID: 35958734 PMCID: PMC9361473 DOI: 10.3389/fnana.2022.937596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Sexual phenotypic differences in the nervous system are one of the most prevalent features across the animal kingdom. The molecular mechanisms responsible for sexual dimorphism throughout metazoan nervous systems are extremely diverse, ranging from intrinsic cell autonomous mechanisms to gonad-dependent endocrine control of sexual traits, or even extrinsic environmental cues. In recent years, the DMRT ancient family of transcription factors has emerged as being central in the development of sex-specific differentiation in all animals in which they have been studied. In this review, we provide an overview of the function of Dmrt genes in nervous system sexual regulation from an evolutionary perspective.
Collapse
|
14
|
Vyas M, Parepally SK, Kamala Jayanthi PD. Is the Natural Instinct to Oviposit in Mated Female Oriental Fruit Fly, Bactrocera dorsalis More of a Brain-Independent Act? Front Physiol 2022; 13:800441. [PMID: 35360250 PMCID: PMC8964073 DOI: 10.3389/fphys.2022.800441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
What physiological and neuro-molecular changes control the female oviposition behavior post-mating in insects? The molecular changes that occur in a gravid female insect are difficult to dissect out considering the distinct behavioral patterns displayed by different insect groups. To understand the role of the brain center in Oriental fruit fly, Bactrocera dorsalis oviposition, egg-laying behavior was analyzed in γ-octalactone exposed, decapitated mated B. dorsalis females. Interestingly, the females displayed a possible urge to oviposit, which suggests a natural instinct to pass on the gene pool. Expression analysis of certain genes involved in oviposition behavior was also carried out in these insects to explore the molecular aspects of such behavior. This study tries to assess the involvement of brain center in egg-laying and also explore the role of certain neurotransmitter-related receptors in decapitated B. dorsalis oviposition behavior. Our results indicate that B. dorsalis oviposition behavior could potentially have a bypass route of neuronal control devoid of the brain. The study reported here establishes that decapitation in gravid females fails to abolish their ability to sense ovipositional cues and also to oviposit.
Collapse
|
15
|
Duckhorn JC, Cande J, Metkus MC, Song H, Altamirano S, Stern DL, Shirangi TR. Regulation of Drosophila courtship behavior by the Tlx/tailless-like nuclear receptor, dissatisfaction. Curr Biol 2022; 32:1703-1714.e3. [PMID: 35245457 DOI: 10.1016/j.cub.2022.02.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/16/2022] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
Abstract
Sexually dimorphic courtship behaviors in Drosophila melanogaster develop from the activity of the sexual differentiation genes, doublesex (dsx) and fruitless (fru), functioning with other regulatory factors that have received little attention. The dissatisfaction (dsf) gene encodes an orphan nuclear receptor homologous to vertebrate Tlx and Drosophila tailless that is critical for the development of several aspects of female- and male-specific sexual behaviors. Here, we report the pattern of dsf expression in the central nervous system and show that the activity of sexually dimorphic abdominal interneurons that co-express dsf and dsx is necessary and sufficient for vaginal plate opening in virgin females, ovipositor extrusion in mated females, and abdominal curling in males during courtship. We find that dsf activity results in different neuroanatomical outcomes in females and males, promoting and suppressing, respectively, female development and function of these neurons depending upon the sexual state of dsx expression. We posit that dsf and dsx interact to specify sex differences in the neural circuitry for dimorphic abdominal behaviors.
Collapse
Affiliation(s)
- Julia C Duckhorn
- Villanova University, Department of Biology, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - Jessica Cande
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Mary C Metkus
- Villanova University, Department of Biology, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - Hyeop Song
- Villanova University, Department of Biology, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - Sofia Altamirano
- Villanova University, Department of Biology, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Troy R Shirangi
- Villanova University, Department of Biology, 800 East Lancaster Ave, Villanova, PA 19085, USA.
| |
Collapse
|
16
|
Goodwin SF, Hobert O. Molecular Mechanisms of Sexually Dimorphic Nervous System Patterning in Flies and Worms. Annu Rev Cell Dev Biol 2021; 37:519-547. [PMID: 34613817 DOI: 10.1146/annurev-cellbio-120319-115237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Male and female brains display anatomical and functional differences. Such differences are observed in species across the animal kingdom, including humans, but have been particularly well-studied in two classic animal model systems, the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans. Here we summarize recent advances in understanding how the worm and fly brain acquire sexually dimorphic features during development. We highlight the advantages of each system, illustrating how the precise anatomical delineation of sexual dimorphisms in worms has enabled recent analysis into how these dimorphisms become specified during development, and how focusing on sexually dimorphic neurons in the fly has enabled an increasingly detailed understanding of sex-specific behaviors.
Collapse
Affiliation(s)
- Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, United Kingdom;
| | - Oliver Hobert
- Department of Biological Sciences and Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
17
|
Ishimoto H, Kamikouchi A. Molecular and neural mechanisms regulating sexual motivation of virgin female Drosophila. Cell Mol Life Sci 2021; 78:4805-4819. [PMID: 33837450 PMCID: PMC11071752 DOI: 10.1007/s00018-021-03820-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 01/06/2023]
Abstract
During courtship, multiple information sources are integrated in the brain to reach a final decision, i.e., whether or not to mate. The brain functions for this complex behavior can be investigated by genetically manipulating genes and neurons, and performing anatomical, physiological, and behavioral analyses. Drosophila is a powerful model experimental system for such studies, which need to be integrated from molecular and cellular levels to the behavioral level, and has enabled pioneering research to be conducted. In male flies, which exhibit a variety of characteristic sexual behaviors, we have accumulated knowledge of many genes and neural circuits that control sexual behaviors. On the other hand, despite the importance of the mechanisms of mating decision-making in females from an evolutionary perspective (such as sexual selection), research on the mechanisms that control sexual behavior in females has progressed somewhat slower. In this review, we focus on the pre-mating behavior of female Drosophila melanogaster, and introduce previous key findings on the neuronal and molecular mechanisms that integrate sensory information and selective expression of behaviors toward the courting male.
Collapse
Grants
- JP20H03355 Ministry of Education, Culture, Sports, Science and Technology
- JP20H04997 Ministry of Education, Culture, Sports, Science and Technology
- 19H04933 Ministry of Education, Culture, Sports, Science and Technology
- 17K19450 Ministry of Education, Culture, Sports, Science and Technology
- 15K07147 Ministry of Education, Culture, Sports, Science and Technology
- 18K06332 Ministry of Education, Culture, Sports, Science and Technology
- Naito Foundation
- Inamori Foundation
Collapse
Affiliation(s)
- Hiroshi Ishimoto
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan.
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan.
| |
Collapse
|
18
|
Nojima T, Rings A, Allen AM, Otto N, Verschut TA, Billeter JC, Neville MC, Goodwin SF. A sex-specific switch between visual and olfactory inputs underlies adaptive sex differences in behavior. Curr Biol 2021; 31:1175-1191.e6. [PMID: 33508219 PMCID: PMC7987718 DOI: 10.1016/j.cub.2020.12.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/15/2020] [Accepted: 12/24/2020] [Indexed: 01/05/2023]
Abstract
Although males and females largely share the same genome and nervous system, they differ profoundly in reproductive investments and require distinct behavioral, morphological, and physiological adaptations. How can the nervous system, while bound by both developmental and biophysical constraints, produce these sex differences in behavior? Here, we uncover a novel dimorphism in Drosophila melanogaster that allows deployment of completely different behavioral repertoires in males and females with minimum changes to circuit architecture. Sexual differentiation of only a small number of higher order neurons in the brain leads to a change in connectivity related to the primary reproductive needs of both sexes-courtship pursuit in males and communal oviposition in females. This study explains how an apparently similar brain generates distinct behavioral repertoires in the two sexes and presents a fundamental principle of neural circuit organization that may be extended to other species.
Collapse
Affiliation(s)
- Tetsuya Nojima
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Annika Rings
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Aaron M Allen
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Nils Otto
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Thomas A Verschut
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Megan C Neville
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK.
| | - Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK.
| |
Collapse
|
19
|
Nakata M, Kikuchi Y, Iwami M, Takayanagi-Kiya S, Kiya T. Identification and characterization of sexually dimorphic neurons that express the sex-determining gene doublesex in the brain of silkmoth Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 129:103518. [PMID: 33421546 DOI: 10.1016/j.ibmb.2021.103518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/21/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
Sexual differences in behavior are generated by sexually dimorphic neural circuits in animals. In insects, a highly conserved sex-determining gene doublesex (dsx) plays essential roles in the development of sexual dimorphisms. In the present study, to elucidate the neural basis of sexual differences in behaviors of silkmoth Bombyx mori, we investigated Bombyx mori dsx (Bmdsx) expression in the brains through development. In the brain, Bmdsx was differentially expressed in sex- and developmental stage-dependent manners. BmDSX protein-expressing cells were located in the dorsomedial region of the pupal and adult brains, and constituted two and one neural clusters in males and females, respectively. The number of BmDSX-positive cells was developmentally regulated and peaked at the early to middle pupal stages, suggesting that the sexually dimorphic neural circuits are established during this period. The detection of a neural activity marker protein BmHR38 suggested that the BmDSX-positive cells are not active during sexual behavior in both male and female moths, even though the cells in the vicinity of the BmDSX-positive cell clusters are active. These results imply that Bmdsx plays roles in the development of sexually dimorphic neural circuits, but the neural circuits are not related to sexual behavior in silkmoths.
Collapse
Affiliation(s)
- Masami Nakata
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | - Yusuke Kikuchi
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | - Masafumi Iwami
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | - Seika Takayanagi-Kiya
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | - Taketoshi Kiya
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Japan.
| |
Collapse
|
20
|
Wang K, Wang F, Forknall N, Yang T, Patrick C, Parekh R, Dickson BJ. Neural circuit mechanisms of sexual receptivity in Drosophila females. Nature 2020; 589:577-581. [PMID: 33239786 DOI: 10.1038/s41586-020-2972-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/30/2020] [Indexed: 11/09/2022]
Abstract
Choosing a mate is one of the most consequential decisions a female will make during her lifetime. A female fly signals her willingness to mate by opening her vaginal plates, allowing a courting male to copulate1,2. Vaginal plate opening (VPO) occurs in response to the male courtship song and is dependent on the mating status of the female. How these exteroceptive (song) and interoceptive (mating status) inputs are integrated to regulate VPO remains unknown. Here we characterize the neural circuitry that implements mating decisions in the brain of female Drosophila melanogaster. We show that VPO is controlled by a pair of female-specific descending neurons (vpoDNs). The vpoDNs receive excitatory input from auditory neurons (vpoENs), which are tuned to specific features of the D. melanogaster song, and from pC1 neurons, which encode the mating status of the female3,4. The song responses of vpoDNs, but not vpoENs, are attenuated upon mating, accounting for the reduced receptivity of mated females. This modulation is mediated by pC1 neurons. The vpoDNs thus directly integrate the external and internal signals that control the mating decisions of Drosophila females.
Collapse
Affiliation(s)
- Kaiyu Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Fei Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Nora Forknall
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Tansy Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA. .,Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
21
|
Deutsch D, Pacheco D, Encarnacion-Rivera L, Pereira T, Fathy R, Clemens J, Girardin C, Calhoun A, Ireland E, Burke A, Dorkenwald S, McKellar C, Macrina T, Lu R, Lee K, Kemnitz N, Ih D, Castro M, Halageri A, Jordan C, Silversmith W, Wu J, Seung HS, Murthy M. The neural basis for a persistent internal state in Drosophila females. eLife 2020; 9:e59502. [PMID: 33225998 PMCID: PMC7787663 DOI: 10.7554/elife.59502] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Sustained changes in mood or action require persistent changes in neural activity, but it has been difficult to identify the neural circuit mechanisms that underlie persistent activity and contribute to long-lasting changes in behavior. Here, we show that a subset of Doublesex+ pC1 neurons in the Drosophila female brain, called pC1d/e, can drive minutes-long changes in female behavior in the presence of males. Using automated reconstruction of a volume electron microscopic (EM) image of the female brain, we map all inputs and outputs to both pC1d and pC1e. This reveals strong recurrent connectivity between, in particular, pC1d/e neurons and a specific subset of Fruitless+ neurons called aIPg. We additionally find that pC1d/e activation drives long-lasting persistent neural activity in brain areas and cells overlapping with the pC1d/e neural network, including both Doublesex+ and Fruitless+ neurons. Our work thus links minutes-long persistent changes in behavior with persistent neural activity and recurrent circuit architecture in the female brain.
Collapse
Affiliation(s)
- David Deutsch
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Diego Pacheco
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | | | - Talmo Pereira
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Ramie Fathy
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Jan Clemens
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Cyrille Girardin
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Adam Calhoun
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Elise Ireland
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Austin Burke
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Department of Computer Science, Princeton UniversityPrincetonUnited States
| | - Claire McKellar
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Thomas Macrina
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Department of Computer Science, Princeton UniversityPrincetonUnited States
| | - Ran Lu
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Kisuk Lee
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Brain & Cognitive Science Department, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Dodam Ih
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Manuel Castro
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Akhilesh Halageri
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Chris Jordan
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - William Silversmith
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Jingpeng Wu
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Department of Computer Science, Princeton UniversityPrincetonUnited States
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| |
Collapse
|
22
|
Mezzera C, Brotas M, Gaspar M, Pavlou HJ, Goodwin SF, Vasconcelos ML. Ovipositor Extrusion Promotes the Transition from Courtship to Copulation and Signals Female Acceptance in Drosophila melanogaster. Curr Biol 2020; 30:3736-3748.e5. [PMID: 32795437 DOI: 10.1016/j.cub.2020.06.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/05/2020] [Accepted: 06/22/2020] [Indexed: 10/23/2022]
Abstract
Communication between male and female fruit flies during courtship is essential for successful mating, but, as with many other species, it is the female who decides whether to mate. Here, we show a novel role for ovipositor extrusion in promoting male copulation attempts in virgin and mated females and signaling acceptance in virgins. We first show that ovipositor extrusion is only displayed by sexually mature females, exclusively during courtship and in response to the male song. We identified a pair of descending neurons that controls ovipositor extrusion in mated females. Genetic silencing of the descending neurons shows that ovipositor extrusion stimulates the male to attempt copulation. A detailed behavioral analysis revealed that during courtship, the male repeatedly licks the female genitalia, independently of ovipositor extrusion, and that licking an extruded ovipositor prompts a copulation attempt. However, if the ovipositor is not subsequently retracted, copulation is prevented, as it happens with mated females. In this study, we reveal a dual function of the ovipositor: while its extrusion is necessary for initiating copulation by the male, its retraction signals female acceptance. We thus uncover the significance of the communication between male and female that initiates the transition from courtship to copulation.
Collapse
Affiliation(s)
- Cecilia Mezzera
- Champalimaud Center for the Unknown, Lisbon 1400-038, Portugal
| | | | - Miguel Gaspar
- Champalimaud Center for the Unknown, Lisbon 1400-038, Portugal
| | - Hania J Pavlou
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | | |
Collapse
|
23
|
Abstract
Females communicate sexual receptivity in various ways. Drosophila signal that they are mated and ovulating, and resistive to mating again, by extruding their egg-laying organ (ovipositor). Connectome-aided circuit analysis reveals how this break up message is computed and differs from an acceptance response in virgins.
Collapse
|
24
|
Wang F, Wang K, Forknall N, Parekh R, Dickson BJ. Circuit and Behavioral Mechanisms of Sexual Rejection by Drosophila Females. Curr Biol 2020; 30:3749-3760.e3. [PMID: 32795445 DOI: 10.1016/j.cub.2020.07.083] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/29/2022]
Abstract
The mating decisions of Drosophila melanogaster females are primarily revealed through either of two discrete actions: opening of the vaginal plates to allow copulation, or extrusion of the ovipositor to reject the male. Both actions are triggered by the male courtship song, and both are dependent upon the female's mating status. Virgin females are more likely to open their vaginal plates in response to song; mated females are more likely to extrude their ovipositor. Here, we examine the neural cause and behavioral consequence of ovipositor extrusion. We show that the DNp13 descending neurons act as command-type neurons for ovipositor extrusion, and that ovipositor extrusion is an effective deterrent only when performed by females that have previously mated. The DNp13 neurons respond to male song via direct synaptic input from the pC2l auditory neurons. Mating status does not modulate the song responses of DNp13 neurons, but rather how effectively they can engage the motor circuits for ovipositor extrusion. We present evidence that mating status information is mediated by ppk+ sensory neurons in the uterus, which are activated upon ovulation. Vaginal plate opening and ovipositor extrusion are thus controlled by anatomically and functionally distinct circuits, highlighting the diversity of neural decision-making circuits even in the context of closely related behaviors with shared exteroceptive and interoceptive inputs.
Collapse
Affiliation(s)
- Fei Wang
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Kaiyu Wang
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Nora Forknall
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
25
|
Allen AM, Neville MC, Birtles S, Croset V, Treiber CD, Waddell S, Goodwin SF. A single-cell transcriptomic atlas of the adult Drosophila ventral nerve cord. eLife 2020; 9:e54074. [PMID: 32314735 PMCID: PMC7173974 DOI: 10.7554/elife.54074] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
The Drosophila ventral nerve cord (VNC) receives and processes descending signals from the brain to produce a variety of coordinated locomotor outputs. It also integrates sensory information from the periphery and sends ascending signals to the brain. We used single-cell transcriptomics to generate an unbiased classification of cellular diversity in the VNC of five-day old adult flies. We produced an atlas of 26,000 high-quality cells, representing more than 100 transcriptionally distinct cell types. The predominant gene signatures defining neuronal cell types reflect shared developmental histories based on the neuroblast from which cells were derived, as well as their birth order. The relative position of cells along the anterior-posterior axis could also be assigned using adult Hox gene expression. This single-cell transcriptional atlas of the adult fly VNC will be a valuable resource for future studies of neurodevelopment and behavior.
Collapse
Affiliation(s)
- Aaron M Allen
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Megan C Neville
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Sebastian Birtles
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Vincent Croset
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | | | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
26
|
Ishii K, Wohl M, DeSouza A, Asahina K. Sex-determining genes distinctly regulate courtship capability and target preference via sexually dimorphic neurons. eLife 2020; 9:e52701. [PMID: 32314964 PMCID: PMC7173972 DOI: 10.7554/elife.52701] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 04/03/2020] [Indexed: 11/17/2022] Open
Abstract
For successful mating, a male animal must execute effective courtship behaviors toward a receptive target sex, which is female. Whether the courtship execution capability and upregulation of courtship toward females are specified through separable sex-determining genetic pathways remains uncharacterized. Here, we found that one of the two Drosophila sex-determining genes, doublesex (dsx), specifies a male-specific neuronal component that serves as an execution mechanism for courtship behavior, whereas fruitless (fru) is required for enhancement of courtship behavior toward females. The dsx-dependent courtship execution mechanism includes a specific subclass within a neuronal cluster that co-express dsx and fru. This cluster contains at least another subclass that is specified cooperatively by both dsx and fru. Although these neuronal populations can also promote aggressive behavior toward male flies, this capacity requires fru-dependent mechanisms. Our results uncover how sex-determining genes specify execution capability and female-specific enhancement of courtship behavior through separable yet cooperative neurogenetic mechanisms.
Collapse
Affiliation(s)
- Kenichi Ishii
- Molecular Neurobiology Laboratory, Salk Institute for Biological StudiesLa JollaUnited States
| | - Margot Wohl
- Molecular Neurobiology Laboratory, Salk Institute for Biological StudiesLa JollaUnited States
- Neuroscience Graduate Program, University of California, San DiegoSan DiegoUnited States
| | - Andre DeSouza
- Molecular Neurobiology Laboratory, Salk Institute for Biological StudiesLa JollaUnited States
- Neuroscience Graduate Program, University of California, San DiegoSan DiegoUnited States
| | - Kenta Asahina
- Molecular Neurobiology Laboratory, Salk Institute for Biological StudiesLa JollaUnited States
- Neuroscience Graduate Program, University of California, San DiegoSan DiegoUnited States
| |
Collapse
|
27
|
Wang F, Wang K, Forknall N, Patrick C, Yang T, Parekh R, Bock D, Dickson BJ. Neural circuitry linking mating and egg laying in Drosophila females. Nature 2020; 579:101-105. [PMID: 32103180 DOI: 10.1038/s41586-020-2055-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/13/2020] [Indexed: 12/30/2022]
Abstract
Mating and egg laying are tightly cooordinated events in the reproductive life of all oviparous females. Oviposition is typically rare in virgin females but is initiated after copulation. Here we identify the neural circuitry that links egg laying to mating status in Drosophila melanogaster. Activation of female-specific oviposition descending neurons (oviDNs) is necessary and sufficient for egg laying, and is equally potent in virgin and mated females. After mating, sex peptide-a protein from the male seminal fluid-triggers many behavioural and physiological changes in the female, including the onset of egg laying1. Sex peptide is detected by sensory neurons in the uterus2-4, and silences these neurons and their postsynaptic ascending neurons in the abdominal ganglion5. We show that these abdominal ganglion neurons directly activate the female-specific pC1 neurons. GABAergic (γ-aminobutyric-acid-releasing) oviposition inhibitory neurons (oviINs) mediate feed-forward inhibition from pC1 neurons to both oviDNs and their major excitatory input, the oviposition excitatory neurons (oviENs). By attenuating the abdominal ganglion inputs to pC1 neurons and oviINs, sex peptide disinhibits oviDNs to enable egg laying after mating. This circuitry thus coordinates the two key events in female reproduction: mating and egg laying.
Collapse
Affiliation(s)
- Fei Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Kaiyu Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Nora Forknall
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Tansy Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Davi Bock
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.,Department of Neurological Sciences, University of Vermont, Burlington, VT, USA
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA. .,Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
28
|
A Feedforward Circuit Regulates Action Selection of Pre-mating Courtship Behavior in Female Drosophila. Curr Biol 2020; 30:396-407.e4. [PMID: 31902724 DOI: 10.1016/j.cub.2019.11.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/21/2019] [Accepted: 11/21/2019] [Indexed: 01/01/2023]
Abstract
In the early phase of courtship, female fruit flies exhibit an acute rejection response to avoid unfavorable mating. This pre-mating rejection response is evolutionarily paralleled across species, but the molecular and neuronal basis of that behavior is unclear. Here, we show that a putative incoherent feedforward circuit comprising ellipsoid body neurons, cholinergic R4d, and its repressor GABAergic R2/R4m neurons regulates the pre-mating rejection response in the virgin female Drosophila melanogaster. Both R4d and R2/R4m are positively regulated, via specific dopamine receptors, by a subset of neurons in the dopaminergic PPM3 cluster. Genetic deprivation of GABAergic signal via GABAA receptor RNA interference in this circuit induces a massive rejection response, whereas activation of GABAergic R2/R4m or suppression of cholinergic R4d increases receptivity. Moreover, glutamatergic signaling via N-methyl-d-aspartate receptors induces NO-mediated retrograde regulation potentially from R4d to R2/R4m, likely providing flexible control of the behavioral switching from rejection to acceptance. Our study elucidates the molecular and neural mechanisms regulating the behavioral selection process of the pre-mating female.
Collapse
|
29
|
Deutsch D, Clemens J, Thiberge SY, Guan G, Murthy M. Shared Song Detector Neurons in Drosophila Male and Female Brains Drive Sex-Specific Behaviors. Curr Biol 2019; 29:3200-3215.e5. [PMID: 31564492 PMCID: PMC6885007 DOI: 10.1016/j.cub.2019.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/10/2019] [Accepted: 08/02/2019] [Indexed: 10/25/2022]
Abstract
Males and females often produce distinct responses to the same sensory stimuli. How such differences arise-at the level of sensory processing or in the circuits that generate behavior-remains largely unresolved across sensory modalities. We address this issue in the acoustic communication system of Drosophila. During courtship, males generate time-varying songs, and each sex responds with specific behaviors. We characterize male and female behavioral tuning for all aspects of song and show that feature tuning is similar between sexes, suggesting sex-shared song detectors drive divergent behaviors. We then identify higher-order neurons in the Drosophila brain, called pC2, that are tuned for multiple temporal aspects of one mode of the male's song and drive sex-specific behaviors. We thus uncover neurons that are specifically tuned to an acoustic communication signal and that reside at the sensory-motor interface, flexibly linking auditory perception with sex-specific behavioral responses.
Collapse
Affiliation(s)
- David Deutsch
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Jan Clemens
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max-Planck Society, Grisebachstrasse 5, Göttingen 37077, Germany
| | - Stephan Y Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Bezos Center for Neural Circuit Dynamics, Princeton Neuroscience Institute, Princeton University, Princeton NJ 08540, USA
| | - Georgia Guan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Bezos Center for Neural Circuit Dynamics, Princeton Neuroscience Institute, Princeton University, Princeton NJ 08540, USA.
| |
Collapse
|
30
|
Cury KM, Prud'homme B, Gompel N. A short guide to insect oviposition: when, where and how to lay an egg. J Neurogenet 2019; 33:75-89. [PMID: 31164023 DOI: 10.1080/01677063.2019.1586898] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Egg-laying behavior is one of the most important aspects of female behavior, and has a profound impact on the fitness of a species. As such, it is controlled by several layers of regulation. Here, we review recent advances in our understanding of insect neural circuits that control when, where and how to lay an egg. We also outline outstanding open questions about the control of egg-laying decisions, and speculate on the possible neural underpinnings that can drive the diversification of oviposition behaviors through evolution.
Collapse
Affiliation(s)
- Kevin M Cury
- a Department of Neuroscience and the Mortimer B. Zuckerman Mind Brain Behavior Institute , Columbia University , New York , NY , USA
| | - Benjamin Prud'homme
- b Aix Marseille Université, CNRS , Institut de Biologie du Développement de Marseille (IBDM) , Marseille , France
| | - Nicolas Gompel
- c Fakultät für Biologie, Biozentrum , Ludwig-Maximilians Universität München , Munich , Germany
| |
Collapse
|
31
|
Tanimoto H, Wu CF. Comparative behavioral genetics: the Yamamoto approach. J Neurogenet 2019; 33:41-43. [PMID: 31142179 DOI: 10.1080/01677063.2019.1616720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Hiromu Tanimoto
- a Graduate School of Life Sciences , Tohoku University , Sendai , Japan
| | - Chun-Fang Wu
- b Department of Biology , University of Iowa , Iowa City , IA , USA
| |
Collapse
|
32
|
Asahina K. Sex differences in Drosophila behavior: Qualitative and Quantitative Dimorphism. CURRENT OPINION IN PHYSIOLOGY 2018; 6:35-45. [PMID: 30386833 PMCID: PMC6205217 DOI: 10.1016/j.cophys.2018.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The importance of sex as a biological variable is being recognized by more and more researchers, including those using Drosophila melanogaster as a model organism. Differences between the two sexes are not confined to well-known reproductive behaviors, but include other behaviors and physiological characteristics that are considered "common" to both sexes. It is possible to categorize sexual dimorphisms into "qualitative" and "quantitative" differences, and this review focuses on recent advances in elucidating genetic and neurophysiological basis of both qualitative and quantitative sex differences in Drosophila behavior. While sex-specific behaviors are often mediated by sexually dimorphic neural circuits, quantitative sexual dimorphism is caused by sex-specific modulation of a common neuronal substrate.
Collapse
Affiliation(s)
- Kenta Asahina
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, MNL-KA, La Jolla, California 92037, United States of America
| |
Collapse
|
33
|
Deciphering Drosophila female innate behaviors. Curr Opin Neurobiol 2018; 52:139-148. [PMID: 29940518 DOI: 10.1016/j.conb.2018.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/09/2018] [Indexed: 01/08/2023]
Abstract
Innate responses are often sexually dimorphic. Studies of female specific behaviors have remained niche, but the focus is changing as illustrated by the recent progress in understanding the female courtship responses and egg-laying decisions. In this review, we will cover our current knowledge about female behaviors in these two specific contexts. Recent studies elucidate on how females process the courtship song. They also show that egg-laying decisions are extremely complex, requiring the assessment of food, microbial, predator and social cues. Study of female responses will improve our understanding of how a nervous system processes different challenges.
Collapse
|
34
|
Monier M, Nöbel S, Isabel G, Danchin E, Handling editor: David Bierbach. Effects of a sex ratio gradient on female mate-copying and choosiness in Drosophila melanogaster. Curr Zool 2018; 64:251-258. [PMID: 30402066 PMCID: PMC5905535 DOI: 10.1093/cz/zoy014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/26/2018] [Indexed: 11/17/2022] Open
Abstract
In many sexually reproducing species, individuals can gather information about potential mates by observing their mating success. This behavioral pattern, that we call mate-copying, was reported in the fruit fly Drosophila melanogaster where females choosing between 2 males of contrasting phenotypes can build a preference for males of the phenotype they previously saw being chosen by a demonstrator female. As sex ratio is known to affect mate choice, our goal was to test whether mate-copying is also affected by encountered sex ratios. Thus, we created a gradient of sex ratio during demonstrations of mate-copying experiments by changing the number of females observing from a central arena 6 simultaneous demonstrations unfolding in 6 peripheral compartments of a hexagonal device. We also tested whether the sex ratio experienced by females during demonstrations affected their choosiness (male courtship duration and double courtship rate) in subsequent mate-choice tests. Experimental male:female sex ratio during demonstrations did not affect mate-copying indices, but positively affected the proportion of both males courting the female during mate-choice tests, as well as male courtship duration, the latter potentially explaining the former relationship. As expected, the sex ratio affected female choosiness positively, and Drosophila females seem to have evolved a mate-copying ability independently of sex ratio, and a capacity to adapt their choosiness to male availability. This suggests that, as in many animal species, individuals, especially females, can adapt their mate choice depending on the current sex ratio.
Collapse
Affiliation(s)
- Magdalena Monier
- UMR-5174, Laboratoire Évolution & Diversité Biologique (EDB), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université de Toulouse, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Sabine Nöbel
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Guillaume Isabel
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Etienne Danchin
- UMR-5174, Laboratoire Évolution & Diversité Biologique (EDB), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université de Toulouse, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | | |
Collapse
|
35
|
Garner SRC, Castellanos MC, Baillie KE, Lian T, Allan DW. Drosophila female-specific Ilp7 motoneurons are generated by Fruitless-dependent cell death in males and by a double-assurance survival role for Transformer in females. Development 2018; 145:dev.150821. [PMID: 29229771 DOI: 10.1242/dev.150821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 11/13/2017] [Indexed: 01/03/2023]
Abstract
Female-specific Ilp7 neuropeptide-expressing motoneurons (FS-Ilp7 motoneurons) are required in Drosophila for oviduct function in egg laying. Here, we uncover cellular and genetic mechanisms underlying their female-specific generation. We demonstrate that programmed cell death (PCD) eliminates FS-Ilp7 motoneurons in males, and that this requires male-specific splicing of the sex-determination gene fruitless (fru) into the FruMC isoform. However, in females, fru alleles that only generate FruM isoforms failed to kill FS-Ilp7 motoneurons. This blockade of FruM-dependent PCD was not attributable to doublesex gene function but to a non-canonical role for transformer (tra), a gene encoding the RNA splicing activator that regulates female-specific splicing of fru and dsx transcripts. In both sexes, we show that Tra prevents PCD even when the FruM isoform is expressed. In addition, we found that FruMC eliminated FS-Ilp7 motoneurons in both sexes, but only when Tra was absent. Thus, FruMC-dependent PCD eliminates female-specific neurons in males, and Tra plays a double-assurance function in females to establish and reinforce the decision to generate female-specific neurons.
Collapse
Affiliation(s)
- Sarah Rose C Garner
- Department of Cellular and Physiological Sciences, University of British Columbia, 2420 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Monica C Castellanos
- Department of Cellular and Physiological Sciences, University of British Columbia, 2420 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Katherine E Baillie
- Department of Cellular and Physiological Sciences, University of British Columbia, 2420 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Tianshun Lian
- Department of Cellular and Physiological Sciences, University of British Columbia, 2420 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Douglas W Allan
- Department of Cellular and Physiological Sciences, University of British Columbia, 2420 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
36
|
Ellendersen BE, von Philipsborn AC. Neuronal modulation of D. melanogaster sexual behaviour. CURRENT OPINION IN INSECT SCIENCE 2017; 24:21-28. [PMID: 29208219 DOI: 10.1016/j.cois.2017.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/20/2017] [Accepted: 08/24/2017] [Indexed: 06/07/2023]
Abstract
Drosophila melanogaster sexual behaviour relies on well-studied genetically determined neuronal circuits. At the same time, it can be flexible and is modulated by multiple external and internal factors. This review focuses on how physiological state, behavioural context and social experience impact sexual circuits in the two sexes. We discuss how females tune receptivity and other behaviours depending on mating status and how males adjust courtship intensity based on sexual satiety, age and the conflicting drive for aggression. Neuronal mechanisms for behavioural modulation include changes in sensory and central processing. Activity of modulatory neurons can enhance, suppress or reverse the behavioural response to sensory cues. In summary, fly sexual behaviour is an excellent model to study mechanisms of neuromodulation of complex innate behaviour on the circuit level.
Collapse
Affiliation(s)
- Bárður Eyjólfsson Ellendersen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus University, Ole Worms Alle 3, Building 1170, DK-8000 Aarhus C, Denmark
| | - Anne C von Philipsborn
- Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus University, Ole Worms Alle 3, Building 1170, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
37
|
Aribi N, Oulhaci MC, Kilani-Morakchi S, Sandoz JC, Kaiser L, Denis B, Joly D. Azadirachtin impact on mate choice, female sexual receptivity and male activity in Drosophila melanogaster (Diptera: Drosophilidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 143:95-101. [PMID: 29183617 DOI: 10.1016/j.pestbp.2017.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/05/2017] [Accepted: 09/02/2017] [Indexed: 06/07/2023]
Abstract
Azadirachtin, a neem compound (Azadirachta indica) with medical and anti-insect properties, is one the most successful botanical pesticides in agricultural use. However, its controversial impact on non-targeted species and its mechanism of action need to be clarified. In addition, Azadirachtin impact on pre- and post-mating traits remains largely undocumented. The current study examined the effects of Azadirachtin on Drosophila melanogaster as a non-target and model species. Azadirachtin was applied topically at its LD50 (0.63μg) on the day of adult emergence and its effect was evaluated on several traits of reproductive behavior: mate choice, male activity, female sexual receptivity, sperm storage and female sterility. In choice and no choice conditions, only male treatment reduced mating probability. Female treatment impaired mating probability only when males had the choice. Males' mating ability may have been impaired by an effect of the treatment on their mobility. Such an effect was observed in the actimeter, which revealed that treated males were less active than untreated ones, and this effect persisted over 8days. Azadirachtin treatment had, however, no effect on the nycthemeral rhythm of those males. Even when mating occurred, Azadirachtin treatment impaired post-mating responses especially when females or both sexes were treated: remating probability increases and female fertility (presence of larvae) decreases. No impairment was observed on the efficiency of mating, evaluated by the presence of sperm in the spermatheca or the ventral receptacle. Male treatment only had no significant effect on these post-mating responses. These findings provide clear evidence that Azadirachtin alters the reproductive behavior of both sexes in D. melanogaster via mating and post-mating processes.
Collapse
Affiliation(s)
- N Aribi
- Laboratoire de Biologie Animale Appliquée, Faculté des Sciences, Université Badji Mokhtar Annaba, BP12, 23000 Annaba, Algeria.
| | - M C Oulhaci
- Laboratoire de Biologie Animale Appliquée, Faculté des Sciences, Université Badji Mokhtar Annaba, BP12, 23000 Annaba, Algeria
| | - S Kilani-Morakchi
- Laboratoire de Biologie Animale Appliquée, Faculté des Sciences, Université Badji Mokhtar Annaba, BP12, 23000 Annaba, Algeria
| | - J C Sandoz
- Laboratoire Evolution, Génomes, Comportement, Ecologie, UMR 9191, CNRS, IRD, Université Paris-Sud et Université Paris-Saclay, Avenue de la Terrasse, F- 91198 Gif-sur-Yvette, France
| | - L Kaiser
- Laboratoire Evolution, Génomes, Comportement, Ecologie, UMR 9191, CNRS, IRD, Université Paris-Sud et Université Paris-Saclay, Avenue de la Terrasse, F- 91198 Gif-sur-Yvette, France
| | - B Denis
- Laboratoire Evolution, Génomes, Comportement, Ecologie, UMR 9191, CNRS, IRD, Université Paris-Sud et Université Paris-Saclay, Avenue de la Terrasse, F- 91198 Gif-sur-Yvette, France
| | - D Joly
- Laboratoire Evolution, Génomes, Comportement, Ecologie, UMR 9191, CNRS, IRD, Université Paris-Sud et Université Paris-Saclay, Avenue de la Terrasse, F- 91198 Gif-sur-Yvette, France
| |
Collapse
|
38
|
Aranha MM, Herrmann D, Cachitas H, Neto-Silva RM, Dias S, Vasconcelos ML. apterous Brain Neurons Control Receptivity to Male Courtship in Drosophila Melanogaster Females. Sci Rep 2017; 7:46242. [PMID: 28401905 PMCID: PMC5388873 DOI: 10.1038/srep46242] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/07/2017] [Indexed: 11/26/2022] Open
Abstract
Courtship behaviours allow animals to interact and display their qualities before committing to reproduction. In fly courtship, the female decides whether or not to mate and is thought to display receptivity by slowing down to accept the male. Very little is known on the neuronal brain circuitry controlling female receptivity. Here we use genetic manipulation and behavioural studies to identify a novel set of neurons in the brain that controls sexual receptivity in the female without triggering the postmating response. We show that these neurons, defined by the expression of the transcription factor apterous, affect the modulation of female walking speed during courtship. Interestingly, we found that the apterous neurons required for female receptivity are neither doublesex nor fruitless positive suggesting that apterous neurons are not specified by the sex-determination cascade. Overall, these findings identify a neuronal substrate underlying female response to courtship and highlight the central role of walking speed in the receptivity behaviour.
Collapse
Affiliation(s)
- Márcia M Aranha
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Dennis Herrmann
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Hugo Cachitas
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Ricardo M Neto-Silva
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Sophie Dias
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Maria Luísa Vasconcelos
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
39
|
Serotonergic neuronal death and concomitant serotonin deficiency curb copulation ability of Drosophila platonic mutants. Nat Commun 2016; 7:13792. [PMID: 27958269 PMCID: PMC5159827 DOI: 10.1038/ncomms13792] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 10/31/2016] [Indexed: 01/10/2023] Open
Abstract
Drosophila platonic (plt) males court females, but fail to copulate. Here we show that plt is an allele of scribbler (sbb), a BMP signalling component. sbb knockdown in larvae leads to the loss of approximately eight serotonergic neurons, which express the sex-determinant protein Doublesex (Dsx). Genetic deprivation of serotonin (5-HT) from dsx-expressing neurons results in copulation defects. Thus, sbb+ is developmentally required for the survival of a specific subset of dsx-expressing neurons, which support the normal execution of copulation in adults by providing 5-HT. Our study highlights the conserved involvement of serotonergic neurons in the control of copulatory mechanisms and the key role of BMP signalling in the formation of a sex-specific circuitry. Drosophila platonic (plt) mutant males court with females but fail to copulate. Here, the authors find plt is an allele of scribbler and may disrupt courtship behaviour via developmental disruption of a subgroup of serotonergic Doublesex+ neurons in the abdominal ganglion.
Collapse
|
40
|
Dagaeff AC, Pocheville A, Nöbel S, Loyau A, Isabel G, Danchin E. Drosophila mate copying correlates with atmospheric pressure in a speed learning situation. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.08.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Rezával C, Pattnaik S, Pavlou HJ, Nojima T, Brüggemeier B, D'Souza LAD, Dweck HKM, Goodwin SF. Activation of Latent Courtship Circuitry in the Brain of Drosophila Females Induces Male-like Behaviors. Curr Biol 2016; 26:2508-2515. [PMID: 27568592 PMCID: PMC5049544 DOI: 10.1016/j.cub.2016.07.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/13/2016] [Accepted: 07/12/2016] [Indexed: 12/02/2022]
Abstract
Courtship in Drosophila melanogaster offers a powerful experimental paradigm for the study of innate sexually dimorphic behaviors [1, 2]. Fruit fly males exhibit an elaborate courtship display toward a potential mate [1, 2]. Females never actively court males, but their response to the male’s display determines whether mating will actually occur. Sex-specific behaviors are hardwired into the nervous system via the actions of the sex determination genes doublesex (dsx) and fruitless (fru) [1]. Activation of male-specific dsx/fru+ P1 neurons in the brain initiates the male’s courtship display [3, 4], suggesting that neurons unique to males trigger this sex-specific behavior. In females, dsx+ neurons play a pivotal role in sexual receptivity and post-mating behaviors [1, 2, 5, 6, 7, 8, 9]. Yet it is still unclear how dsx+ neurons and dimorphisms in these circuits give rise to the different behaviors displayed by males and females. Here, we manipulated the function of dsx+ neurons in the female brain to investigate higher-order neurons that drive female behaviors. Surprisingly, we found that activation of female dsx+ neurons in the brain induces females to behave like males by promoting male-typical courtship behaviors. Activated females display courtship toward conspecific males or females, as well other Drosophila species. We uncovered specific dsx+ neurons critical for driving male courtship and identified pheromones that trigger such behaviors in activated females. While male courtship behavior was thought to arise from male-specific central neurons, our study shows that the female brain is equipped with latent courtship circuitry capable of inducing this male-specific behavioral program. Activation of brain dsx-pC1 neurons promote male-like courtship in females Activated females court conspecific males and females and other Drosophila species Methyl pheromones trigger male courtship behaviors in activated females The female brain is equipped with latent circuitry underlying male-like behavior
Collapse
Affiliation(s)
- Carolina Rezával
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK.
| | - Siddharth Pattnaik
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Hania J Pavlou
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Tetsuya Nojima
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Birgit Brüggemeier
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Luis A D D'Souza
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Hany K M Dweck
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| |
Collapse
|
42
|
Drosophila melanogaster females restore their attractiveness after mating by removing male anti-aphrodisiac pheromones. Nat Commun 2016; 7:12322. [PMID: 27484362 PMCID: PMC4976142 DOI: 10.1038/ncomms12322] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/22/2016] [Indexed: 01/27/2023] Open
Abstract
Males from many species ensure paternity by preventing their mates from copulating with other males. One mate-guarding strategy involves marking females with anti-aphrodisiac pheromones (AAPs), which reduces the females' attractiveness and dissuades other males from courting. Since females benefit from polyandry, sexual conflict theory predicts that females should develop mechanisms to counteract AAPs to achieve additional copulations, but no such mechanisms have been documented. Here we show that during copulation Drosophila melanogaster males transfer two AAPs: cis-Vaccenyl Acetate (cVA) to the females' reproductive tract, and 7-Tricosene (7-T) to the females' cuticle. A few hours after copulation, females actively eject cVA from their reproductive tract, which results in increased attractiveness and re-mating. Although 7-T remains on those females, we show that it is the combination of the two chemicals that reduces attractiveness. To our knowledge, female AAP ejection provides the first example of a female mechanism that counter-acts chemical mate-guarding. Male pheromones cis-vaccenyl acetate (cVA) and (Z)-7-Tricosene (7-T) mediate chemical mate-guarding in female D. melanogaster. Here, Laturney and Billeter show that females actively eject cVA from their reproductive tract post-copulation, and that cVA in concert with 7-T can reduce female attractiveness post-mating.
Collapse
|
43
|
Koganezawa M, Kimura KI, Yamamoto D. The Neural Circuitry that Functions as a Switch for Courtship versus Aggression in Drosophila Males. Curr Biol 2016; 26:1395-403. [PMID: 27185554 DOI: 10.1016/j.cub.2016.04.017] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/17/2016] [Accepted: 04/06/2016] [Indexed: 12/15/2022]
Abstract
Courtship and aggression are induced in a mutually exclusive manner in male Drosophila melanogaster, which quickly chooses one of these behavioral repertoires to run depending on whether the encountered conspecific is a female or male, yet the neural mechanism underlying this decision making remains obscure. By targeted excitation and synaptic blockage in a subset of brain neurons, we demonstrate here that the fruitless (fru)-negative subfraction (∼20 cells) of a doublesex-positive neural cluster, pC1, acts as the aggression-triggering center whereas the fru-positive subfraction (∼20 cells) of pC1 acts as the courtship-triggering center, and that the mutually exclusive activation of these two centers is attained by a double-layered inhibitory switch composed of two fru single-positive clusters, LC1 and mAL. To our knowledge, this is the first report to unravel the cellular identity of the neural switch that governs the alternative activation of aggression and courtship in the animal kingdom.
Collapse
Affiliation(s)
- Masayuki Koganezawa
- Tohoku University Graduate School of Life Sciences, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Ken-Ichi Kimura
- Hokkaido University of Education, Sapporo Campus, Sapporo 002-8502, Japan
| | - Daisuke Yamamoto
- Tohoku University Graduate School of Life Sciences, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| |
Collapse
|
44
|
Auer TO, Benton R. Sexual circuitry in Drosophila. Curr Opin Neurobiol 2016; 38:18-26. [PMID: 26851712 DOI: 10.1016/j.conb.2016.01.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 01/05/2016] [Indexed: 11/15/2022]
Abstract
The sexual behavior of Drosophila melanogaster is an outstanding paradigm to understand the molecular and neuronal basis of sophisticated animal actions. We discuss recent advances in our knowledge of the genetic hardwiring of the underlying neuronal circuitry, and how pertinent sensory cues are differentially detected and integrated in the male and female brain. We also consider how experience influences these circuits over short timescales, and the evolution of these pathways over longer timescales to endow species-specific sexual displays and responses.
Collapse
Affiliation(s)
- Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|