1
|
Yan Y, Yu C, Xie B, Zhou H, Zhang C, Tian L. Characterization and Early Response of the DEAD Gene Family to Heat Stress in Tomato. PLANTS (BASEL, SWITZERLAND) 2025; 14:1172. [PMID: 40284060 PMCID: PMC12030476 DOI: 10.3390/plants14081172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
The DEAD-box RNA helicase family, acting as a critical regulator in RNA metabolism, plays a vital role in plant growth, development, and adaptation to various stresses. Although a number of DEAD proteins have been reported to participate in heat stress response in several species, the response of DEAD-box RNA helicases to heat stress has not been comprehensively analyzed in tomato. In this study, 42 SlDEAD genes were identified from the tomato genome. Evolutionary analysis of DEAD family genes across different plant species reveals that DEAD family genes can be segregated into five groups. A comprehensive analysis of their physicochemical properties, gene structure, chromosome location, and conserved motifs unveils diversity among the members of the SlDEAD family. An investigation into the subcellular localization of seven SlDEAD proteins indicates that SlDEAD7, SlDEAD14, and SlDEAD26 are located in the endoplasmic reticulum, and SlDEAD40 is located in the endoplasmic reticulum and nucleus, whereas SlDEAD17, SlDEAD25, and SlDEAD35 are located in the chloroplast. The expression of 37 out of 42 SlDEAD genes was responsive to heat stress induction. During the early stage of high-temperature treatment, they exhibited five distinct expression patterns. These findings contribute to a deeper comprehension of the evolution, expansion complexity, and function of SlDEAD genes and provide insights into the potential role of SlDEAD genes in tomato tolerance to heat stress.
Collapse
Affiliation(s)
- Yanyan Yan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (C.Y.); (B.X.); (H.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Chao Yu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (C.Y.); (B.X.); (H.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Bolun Xie
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (C.Y.); (B.X.); (H.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Hui Zhou
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (C.Y.); (B.X.); (H.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Caiyu Zhang
- Institute of Agricultural Experiment Station of Changxing Substation, Zhejiang University, Hangzhou 310058, China;
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (C.Y.); (B.X.); (H.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
2
|
Hasan MK, Jeannine Brady L. Nucleic acid-binding KH domain proteins influence a spectrum of biological pathways including as part of membrane-localized complexes. J Struct Biol X 2024; 10:100106. [PMID: 39040530 PMCID: PMC11261784 DOI: 10.1016/j.yjsbx.2024.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
K-Homology domain (KH domain) proteins bind single-stranded nucleic acids, influence protein-protein interactions of proteins that harbor them, and are found in all kingdoms of life. In concert with other functional protein domains KH domains contribute to a variety of critical biological activities, often within higher order machineries including membrane-localized protein complexes. Eukaryotic KH domain proteins are linked to developmental processes, morphogenesis, and growth regulation, and their aberrant expression is often associated with cancer. Prokaryotic KH domain proteins are involved in integral cellular activities including cell division and protein translocation. Eukaryotic and prokaryotic KH domains share structural features, but are differentiated based on their structural organizations. In this review, we explore the structure/function relationships of known examples of KH domain proteins, and highlight cases in which they function within or at membrane surfaces. We also summarize examples of KH domain proteins that influence bacterial virulence and pathogenesis. We conclude the article by discussing prospective research avenues that could be pursued to better investigate this largely understudied protein category.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Kumari D, Jain A, Mukhopadhyay K. Comprehensive identification, characterization and expression analysis of genes underpinning heat acclimatization in Triticum durum and Aegilops tauschii. PLANT, CELL & ENVIRONMENT 2024; 47:3936-3952. [PMID: 38847343 DOI: 10.1111/pce.14992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 11/20/2024]
Abstract
Wheat (Triticum aestivum L.) is an important cereal crop cultivated and consumed worldwide. Global warming-induced escalation of temperature during the seedling and grain-filling phase adversely affects productivity. To survive under elevated temperatures, most crop plants develop natural mechanisms at molecular level by activating heat shock proteins. However, other heat stress-related proteins like heat acclimatization (HA) proteins are documented in hexaploid wheat but have not been explored in detail in its diploid and tetraploid progenitors, which might help to overcome elevated temperature regimes for short periods. Our study aims to explore the potential HA genes in progenitors Triticum durum and Aegilops tauschii that perform well at higher temperatures. Seven genes were identified and phylogenetically classified into three families: K homology (KH), Chloroplast protein-enhancing stress tolerance (CEST), and heat-stress-associated 32 kDa (HSA32). Protein-protein interaction network revealed partner proteins that aid mRNA translation, protein refolding, and reactive species detoxification. Syntenic analysis displayed highly conserved relationships. RT-qPCR-based expression profiling revealed HA genes to exhibit diverse and dynamic patterns under high-temperature regimes, suggesting their critical role in providing tolerance to heat stress. The present study furnishes genetic landscape of HA genes that might help in developing climate-resilient wheat with higher acclimatization potential.
Collapse
Affiliation(s)
- Dipti Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, India
| | - Alok Jain
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, India
| | - Kunal Mukhopadhyay
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, India
| |
Collapse
|
4
|
Laureano G, Matos AR, Figueiredo A. Eicosapentaenoic acid: New insights into an oomycete-driven elicitor to enhance grapevine immunity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108799. [PMID: 38857564 DOI: 10.1016/j.plaphy.2024.108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
The widespread use of pesticides in agriculture remains a matter of major concern, prompting a critical need for alternative and sustainable practices. To address this, the use of lipid-derived molecules as elicitors to induce defence responses in grapevine plants was accessed. A Plasmopara viticola fatty acid (FA), eicosapentaenoic acid (EPA) naturally present in oomycetes, but absent in plants, was applied by foliar spraying to the leaves of the susceptible grapevine cultivar (Vitis vinifera cv. Trincadeira), while a host lipid derived phytohormone, jasmonic acid (JA) was used as a molecule known to trigger host defence. Their potential as defence triggers was assessed by analysing the expression of a set of genes related to grapevine defence and evaluating the FA modulation upon elicitation. JA prompted grapevine immunity, altering lipid metabolism and up-regulating the expression of several defence genes. EPA also induced a myriad of responses to the levels typically observed in tolerant plants. Its application activated the transcription of defence gene's regulators, pathogen-related genes and genes involved in phytoalexins biosynthesis. Moreover, EPA application resulted in the alteration of the leaf FA profile, likely by impacting biosynthetic, unsaturation and turnover processes. Although both molecules were able to trigger grapevine defence mechanisms, EPA induced a more robust and prolonged response. This finding establishes EPA as a promising elicitor for an effectively managing grapevine downy mildew diseases.
Collapse
Affiliation(s)
- Gonçalo Laureano
- Grapevine Pathogen Systems lab, BioISI, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal; BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal.
| | - Ana Rita Matos
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Andreia Figueiredo
- Grapevine Pathogen Systems lab, BioISI, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal; BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal
| |
Collapse
|
5
|
Zhang D, Ma Y, Naz M, Ahmed N, Zhang L, Zhou JJ, Yang D, Chen Z. Advances in CircRNAs in the Past Decade: Review of CircRNAs Biogenesis, Regulatory Mechanisms, and Functions in Plants. Genes (Basel) 2024; 15:958. [PMID: 39062737 PMCID: PMC11276256 DOI: 10.3390/genes15070958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Circular RNA (circRNA) is a type of non-coding RNA with multiple biological functions. Whole circRNA genomes in plants have been identified, and circRNAs have been demonstrated to be widely present and highly expressed in various plant tissues and organs. CircRNAs are highly stable and conserved in plants, and exhibit tissue specificity and developmental stage specificity. CircRNAs often interact with other biomolecules, such as miRNAs and proteins, thereby regulating gene expression, interfering with gene function, and affecting plant growth and development or response to environmental stress. CircRNAs are less studied in plants than in animals, and their regulatory mechanisms of biogenesis and molecular functions are not fully understood. A variety of circRNAs in plants are involved in regulating growth and development and responding to environmental stress. This review focuses on the biogenesis and regulatory mechanisms of circRNAs, as well as their biological functions during growth, development, and stress responses in plants, including a discussion of plant circRNA research prospects. Understanding the generation and regulatory mechanisms of circRNAs is a challenging but important topic in the field of circRNAs in plants, as it can provide insights into plant life activities and their response mechanisms to biotic or abiotic stresses as well as new strategies for plant molecular breeding and pest control.
Collapse
Affiliation(s)
- Dongqin Zhang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Yue Ma
- College of Agriculture, Guizhou University, Guiyang 550025, China;
| | - Misbah Naz
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Nazeer Ahmed
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Libo Zhang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Jing-Jiang Zhou
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Ding Yang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Zhuo Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| |
Collapse
|
6
|
Xie Q, Zhang Y, Wu M, Chen Y, Wang Y, Zeng Q, Han Y, Zhang S, Zhang J, Chen T, Cai M. Identification and Functional Analysis of KH Family Genes Associated with Salt Stress in Rice. Int J Mol Sci 2024; 25:5950. [PMID: 38892138 PMCID: PMC11172612 DOI: 10.3390/ijms25115950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Salinity stress has a great impact on crop growth and productivity and is one of the major factors responsible for crop yield losses. The K-homologous (KH) family proteins play vital roles in regulating plant development and responding to abiotic stress in plants. However, the systematic characterization of the KH family in rice is still lacking. In this study, we performed genome-wide identification and functional analysis of KH family genes and identified a total of 31 KH genes in rice. According to the homologs of KH genes in Arabidopsis thaliana, we constructed a phylogenetic tree with 61 KH genes containing 31 KH genes in Oryza sativa and 30 KH genes in Arabidopsis thaliana and separated them into three major groups. In silico tissue expression analysis showed that the OsKH genes are constitutively expressed. The qRT-PCR results revealed that eight OsKH genes responded strongly to salt stresses, and OsKH12 exhibited the strongest decrease in expression level, which was selected for further study. We generated the Oskh12-knockout mutant via the CRISPR/Cas9 genome-editing method. Further stress treatment and biochemical assays confirmed that Oskh12 mutant was more salt-sensitive than Nip and the expression of several key salt-tolerant genes in Oskh12 was significantly reduced. Taken together, our results shed light on the understanding of the KH family and provide a theoretical basis for future abiotic stress studies in rice.
Collapse
Affiliation(s)
- Qinyu Xie
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Yutong Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Mingming Wu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Youheng Chen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Yingwei Wang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Qinzong Zeng
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuliang Han
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Siqi Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Juncheng Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Tao Chen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Maohong Cai
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
7
|
Bano Z, Westhoff P. A K homology (KH) domain protein identified by a forward genetic screen affects bundle sheath anatomy in Arabidopsis thaliana. PLANT DIRECT 2024; 8:e577. [PMID: 38576996 PMCID: PMC10990680 DOI: 10.1002/pld3.577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 04/06/2024]
Abstract
Because of their photosynthetic capacity, leaves function as solar panels providing the basis for the growth of the entire plant. Although the molecular mechanisms of leaf development have been well studied in model dicot and monocot species, a lot of information is still needed about the interplay of the genes that regulate cell division and differentiation and thereby affect the photosynthetic performance of the leaf. We were specifically interested in understanding the differentiation of mesophyll and bundle sheath cells in Arabidopsis thaliana and aimed to identify genes that are involved in determining bundle sheath anatomy. To this end, we established a forward genetic screen by using ethyl methanesulfonate (EMS) for mutagenizing a reporter line expressing a chloroplast-targeted green fluorescent protein (sGFP) under the control of a bundle sheath-specific promoter. Based on the GFP fluorescence phenotype, numerous mutants were produced, and by pursuing a mapping-by-sequencing approach, the genomic segments containing mutated candidate genes were identified. One of the lines with an enhanced GFP fluorescence phenotype (named ELEVATED BUNDLE SHEATH CELLS SIGNAL 1 [ebss1]) was selected for further study, and the responsible gene was verified by CRISPR/Cas9-based mutagenesis of candidate genes located in the mapped genomic segment. The verified gene, At2g25970, encodes a K homology (KH) domain-containing protein.
Collapse
Affiliation(s)
- Zahida Bano
- Institute of Plant Molecular and Developmental BiologyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Peter Westhoff
- Institute of Plant Molecular and Developmental BiologyHeinrich‐Heine‐UniversityDüsseldorfGermany
| |
Collapse
|
8
|
Marik D, Sharma P, Chauhan NS, Jangir N, Shekhawat RS, Verma D, Mukherjee M, Abiala M, Roy C, Yadav P, Sadhukhan A. Peribacillus frigoritolerans T7-IITJ, a potential biofertilizer, induces plant growth-promoting genes of Arabidopsis thaliana. J Appl Microbiol 2024; 135:lxae066. [PMID: 38486365 DOI: 10.1093/jambio/lxae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/28/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
AIMS This study aimed to isolate plant growth and drought tolerance-promoting bacteria from the nutrient-poor rhizosphere soil of Thar desert plants and unravel their molecular mechanisms of plant growth promotion. METHODS AND RESULTS Among our rhizobacterial isolates, Enterobacter cloacae C1P-IITJ, Kalamiella piersonii J4-IITJ, and Peribacillus frigoritolerans T7-IITJ, significantly enhanced root and shoot growth (4-5-fold) in Arabidopsis thaliana under PEG-induced drought stress. Whole genome sequencing and biochemical analyses of the non-pathogenic bacterium T7-IITJ revealed its plant growth-promoting traits, viz., solubilization of phosphate (40-73 µg/ml), iron (24 ± 0.58 mm halo on chrome azurol S media), and nitrate (1.58 ± 0.01 µg/ml nitrite), along with production of exopolysaccharides (125 ± 20 µg/ml) and auxin-like compounds (42.6 ± 0.05 µg/ml). Transcriptome analysis of A. thaliana inoculated with T7-IITJ and exposure to drought revealed the induction of 445 plant genes (log2fold-change > 1, FDR < 0.05) for photosynthesis, auxin and jasmonate signalling, nutrient uptake, redox homeostasis, and secondary metabolite biosynthesis pathways related to beneficial bacteria-plant interaction, but repression of 503 genes (log2fold-change < -1) including many stress-responsive genes. T7-IITJ enhanced proline 2.5-fold, chlorophyll 2.5-2.8-fold, iron 2-fold, phosphate 1.6-fold, and nitrogen 4-fold, and reduced reactive oxygen species 2-4.7-fold in plant tissues under drought. T7-IITJ also improved the germination and seedling growth of Tephrosia purpurea, Triticum aestivum, and Setaria italica under drought and inhibited the growth of two plant pathogenic fungi, Fusarium oxysporum, and Rhizoctonia solani. CONCLUSIONS P. frigoritolerans T7-IITJ is a potent biofertilizer that regulates plant genes to promote growth and drought tolerance.
Collapse
Affiliation(s)
- Debankona Marik
- Department of Bioscience and Bioengineering, IIT Jodhpur, Jodhpur 342030, India
| | - Pinki Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India
| | - Neelam Jangir
- Department of Bioscience and Bioengineering, IIT Jodhpur, Jodhpur 342030, India
| | | | - Devanshu Verma
- Department of Bioscience and Bioengineering, IIT Jodhpur, Jodhpur 342030, India
| | - Manasi Mukherjee
- Jodhpur City Knowledge and Innovation Foundation, IIT Jodhpur, Jodhpur 342030, India
| | - Moses Abiala
- Department of Biological Sciences, College of Basic and Applied Sciences, Mountain Top University, Prayer City 110106, Nigeria
| | - Chandan Roy
- Department of Genetics and Plant Breeding, Agriculture University Jodhpur, Jodhpur 342304, India
| | - Pankaj Yadav
- Department of Bioscience and Bioengineering, IIT Jodhpur, Jodhpur 342030, India
| | - Ayan Sadhukhan
- Department of Bioscience and Bioengineering, IIT Jodhpur, Jodhpur 342030, India
| |
Collapse
|
9
|
Fabian M, Gao M, Zhang XN, Shi J, Vrydagh L, Kim SH, Patel P, Hu AR, Lu H. The flowering time regulator FLK controls pathogen defense in Arabidopsis thaliana. PLANT PHYSIOLOGY 2023; 191:2461-2474. [PMID: 36662556 PMCID: PMC10069895 DOI: 10.1093/plphys/kiad021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 05/22/2023]
Abstract
Plant disease resistance is a complex process that is maintained in an intricate balance with development. Increasing evidence indicates the importance of posttranscriptional regulation of plant defense by RNA binding proteins. In a genetic screen for suppressors of Arabidopsis (Arabidopsis thaliana) accelerated cell death 6-1 (acd6-1), a small constitutive defense mutant whose defense level is grossly in a reverse proportion to plant size, we identified an allele of the canonical flowering regulatory gene FLOWERING LOCUS K HOMOLOGY DOMAIN (FLK) encoding a putative protein with triple K homology (KH) repeats. The KH repeat is an ancient RNA binding motif found in proteins from diverse organisms. The relevance of KH-domain proteins in pathogen resistance is largely unexplored. In addition to late flowering, the flk mutants exhibited decreased resistance to the bacterial pathogen Pseudomonas syringae and increased resistance to the necrotrophic fungal pathogen Botrytis cinerea. We further found that the flk mutations compromised basal defense and defense signaling mediated by salicylic acid (SA). Mutant analysis revealed complex genetic interactions between FLK and several major SA pathway genes. RNA-seq data showed that FLK regulates expression abundance of some major defense- and development-related genes as well as alternative splicing of a number of genes. Among the genes affected by FLK is ACD6, whose transcripts had increased intron retentions influenced by the flk mutations. Thus, this study provides mechanistic support for flk suppression of acd6-1 and establishes that FLK is a multifunctional gene involved in regulating pathogen defense and development of plants.
Collapse
Affiliation(s)
- Matthew Fabian
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | - Min Gao
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
- Biochemistry Program, Department of Biology, St Bonaventure University, St Bonaventure, New York 14778, USA
| | - Xiao-Ning Zhang
- Biochemistry Program, Department of Biology, St Bonaventure University, St Bonaventure, New York 14778, USA
| | - Jiangli Shi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
- Department of Biology Education, Korea National University of Education, Chungbuk 28644, Korea
| | - Leah Vrydagh
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | - Sung-Ha Kim
- Department of Biology Education, Korea National University of Education, Chungbuk 28644, Korea
| | - Priyank Patel
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | - Anna R Hu
- Biochemistry Program, Department of Biology, St Bonaventure University, St Bonaventure, New York 14778, USA
| | - Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| |
Collapse
|
10
|
Wang W, Wang S, Gong W, Lv L, Xu L, Nie J, Huang L. Valsa mali secretes an effector protein VmEP1 to target a K homology domain-containing protein for virulence in apple. MOLECULAR PLANT PATHOLOGY 2022; 23:1577-1591. [PMID: 35851537 PMCID: PMC9562843 DOI: 10.1111/mpp.13248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The K homology (KH) repeat is an RNA-binding motif that exists in various proteins, some of which participate in plant growth. However, the function of KH domain-containing proteins in plant defence is still unclear. In this study, we found that a KH domain-containing protein in apple (Malus domestica), HEN4-like (MdKRBP4), is involved in the plant immune response. Silencing of MdKRBP4 compromised reactive oxygen species (ROS) production and enhanced the susceptibility of apple to Valsa mali, whereas transient overexpression of MdKRBP4 stimulated ROS accumulation in apple leaves, indicating that MdKRBP4 is a positive immune regulator. Additionally, MdKRBP4 was proven to interact with the VmEP1 effector secreted by V. mali, which led to decreased accumulation of MdKRBP4. Coexpression of MdKRBP4 with VmEP1 inhibited cell death and ROS production induced by MdKRBP4 in Nicotiana benthamiana. These results indicate that MdKRBP4 functions as a novel positive regulatory factor in plant immunity in M. domestica and is a virulence target of the V. mali effector VmEP1.
Collapse
Affiliation(s)
- Weidong Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Shuaile Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Wan Gong
- State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Luqiong Lv
- State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jiajun Nie
- State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
11
|
Genome-Wide Characterization and Expression Analysis of KH Family Genes Response to ABA and SA in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23010511. [PMID: 35008936 PMCID: PMC8745409 DOI: 10.3390/ijms23010511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023] Open
Abstract
K-homologous (KH) family is a type of nucleic acid-binding protein containing the KH domain and has been found to affect splicing and transcriptional regulation. However, KH family genes haven’t been investigated in plant species systematically. In this study, we identified 30 genes that belonged to the KH family based on HMM of the KH domain in Arabidopsis thaliana. Phylogenetic tree analysis showed that the KH family is grouped into three subgroups. Synteny analysis showed that AtKH9 and AtKH29 have the conserved synteny relationship between A. thaliana and the other five species. The AtKH9 and AtKH29 were located in the cytoplasm and nucleus. The seed germination rates of the mutants atkh9 and atkh29 were higher than wild-type after abscisic acid (ABA) and salicylic acid (SA) treatments. In addition, the expression of ABA-related genes, such as ABRE-binding factor 2 (ABF2), ABRE-binding factor 4 (ABF4), and delta 1-pyrroline-5-carboxylate synthase (P5CS), and an SA-related gene pathogenesis-related proteins b (PR1b) were downregulated after ABA and SA treatments, respectively. These results suggested that atkh9 and atkh29 mutants inhibit the effect of ABA and SA on seed germination. In conclusion, our results provide valuable information for further exploration of the function of KH family genes and propose directions and ideas for the identification and characterization of KH family genes in other plants.
Collapse
|
12
|
Belt K, Foley RC, O'Sullivan CA, Roper MM, Singh KB, Thatcher LF. A Plant Stress-Responsive Bioreporter Coupled With Transcriptomic Analysis Allows Rapid Screening for Biocontrols of Necrotrophic Fungal Pathogens. Front Mol Biosci 2021; 8:708530. [PMID: 34540894 PMCID: PMC8446517 DOI: 10.3389/fmolb.2021.708530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Streptomyces are soil-borne Actinobacteria known to produce a wide range of enzymes, phytohormones, and metabolites including antifungal compounds, making these microbes fitting for use as biocontrol agents in agriculture. In this study, a plant reporter gene construct comprising the biotic stress-responsive glutathione S-transferase promoter GSTF7 linked to a luciferase output (GSTF7:luc) was used to screen a collection of Actinobacteria candidates for manipulation of plant biotic stress responses and their potential as biocontrol agents. We identified a Streptomyces isolate (KB001) as a strong candidate and demonstrated successful protection against two necrotrophic fungal pathogens, Sclerotinia sclerotiorum and Rhizoctonia solani, but not against a bacterial pathogen (Pseudomonas syringe). Treatment of Arabidopsis plants with either KB001 microbial culture or its secreted compounds induced a range of stress and defense response-related genes like pathogenesis-related (PR) and hormone signaling pathways. Global transcriptomic analysis showed that both treatments shared highly induced expression of reactive oxygen species and auxin signaling pathways at 6 and 24 h posttreatment, while some other responses were treatment specific. This study demonstrates that GSTF7 is a suitable marker for the rapid and preliminary screening of beneficial bacteria and selection of candidates with potential for application as biocontrols in agriculture, including the Streptomyces KB001 that was characterized here, and could provide protection against necrotrophic fungal pathogens.
Collapse
Affiliation(s)
- Katharina Belt
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Floreat, WA, Australia
| | - Rhonda C Foley
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Floreat, WA, Australia
| | - Cathryn A O'Sullivan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, St Lucia, QLD, Australia
| | - Margaret M Roper
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Floreat, WA, Australia
| | - Karam B Singh
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Floreat, WA, Australia
| | - Louise F Thatcher
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Acton, ACT, Australia
| |
Collapse
|
13
|
Boher P, Soler M, Fernández-Piñán S, Torrent X, Müller SY, Kelly KA, Serra O, Figueras M. Silencing of StRIK in potato suggests a role in periderm related to RNA processing and stress. BMC PLANT BIOLOGY 2021; 21:409. [PMID: 34493224 PMCID: PMC8424952 DOI: 10.1186/s12870-021-03141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The periderm is a protective barrier crucial for land plant survival, but little is known about genetic factors involved in its development and regulation. Using a transcriptomic approach in the cork oak (Q. suber) periderm, we previously identified an RS2-INTERACTING KH PROTEIN (RIK) homologue of unknown function containing a K homology (KH)-domain RNA-binding protein, as a regulatory candidate gene in the periderm. RESULTS To gain insight into the function of RIK in the periderm, potato (S. tuberosum) tuber periderm was used as a model: the full-length coding sequence of RIK, hereafter referred to as StRIK, was isolated, the transcript profile analyzed and gene silencing in potato performed to analyze the silencing effects on periderm anatomy and transcriptome. The StRIK transcript accumulated in all vegetative tissues studied, including periderm and other suberized tissues such as root and also in wounded tissues. Downregulation of StRIK in potato by RNA interference (StRIK-RNAi) did not show any obvious effects on tuber periderm anatomy but, unlike Wild type, transgenic plants flowered. Global transcript profiling of the StRIK-RNAi periderm did show altered expression of genes associated with RNA metabolism, stress and signaling, mirroring the biological processes found enriched within the in silico co-expression network of the Arabidopsis orthologue. CONCLUSIONS The ubiquitous expression of StRIK transcript, the flower associated phenotype and the differential expression of StRIK-RNAi periderm point out to a general regulatory role of StRIK in diverse plant developmental processes. The transcriptome analysis suggests that StRIK might play roles in RNA maturation and stress response in the periderm.
Collapse
Affiliation(s)
- Pau Boher
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| | - Marçal Soler
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| | - Sandra Fernández-Piñán
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| | - Xènia Torrent
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| | - Sebastian Y. Müller
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA UK
| | - Krystyna A. Kelly
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA UK
| | - Olga Serra
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| | - Mercè Figueras
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| |
Collapse
|
14
|
Plant RNA Binding Proteins as Critical Modulators in Drought, High Salinity, Heat, and Cold Stress Responses: An Updated Overview. Int J Mol Sci 2021; 22:ijms22136731. [PMID: 34201749 PMCID: PMC8269355 DOI: 10.3390/ijms22136731] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Plant abiotic stress responses are tightly regulated by different players at multiple levels. At transcriptional or post-transcriptional levels, several RNA binding proteins (RBPs) regulate stress response genes through RNA metabolism. They are increasingly recognized as critical modulators of a myriad of biological processes, including stress responses. Plant RBPs are heterogeneous with one or more conservative RNA motifs that constitute canonical/novel RNA binding domains (RBDs), which can bind to target RNAs to determine their regulation as per the plant requirements at given environmental conditions. Given its biological significance and possible consideration as a potential tool in genetic manipulation programs to improve key agronomic traits amidst frequent episodes of climate anomalies, studies concerning the identification and functional characterization of RBP candidate genes are steadily mounting. This paper presents a comprehensive overview of canonical and novel RBPs and their functions in major abiotic stresses including drought, heat, salt, and cold stress conditions. To some extent, we also briefly describe the basic motif structure of RBPs that would be useful in forthcoming studies. Additionally, we also collected RBP genes that were modulated by stress, but that lacked functional characterization, providing an impetus to conduct further research.
Collapse
|
15
|
Liu M, Jaber E, Zeng Z, Kovalchuk A, Asiegbu FO. Physiochemical and molecular features of the necrotic lesion in the Heterobasidion-Norway spruce pathosystem. TREE PHYSIOLOGY 2021; 41:791-800. [PMID: 33105481 DOI: 10.1093/treephys/tpaa141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/03/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
In the forest of Northern Hemisphere, the fungi Heterobasidion annosum (Fr.) Bref. s.l. causes severe root and stem rot diseases, dramatically reducing the wood quality of conifer trees. The hallmark of the host response during the infection process is the formation of necrotic lesions and reaction zones. To characterize physiochemical and molecular features of the necrotic lesion, we conducted artificial inoculations on Norway spruce plants at different developmental stages: seedlings, young and mature trees. The results were further compared against data available on the formation of reaction zones. Strong necrosis browning or enlarged necrotic lesions were observed in infected tissues. This was accompanied by elevated pH. However, the increased pH, around 6.0 in necrotic lesions, was not as high as that documented in reaction zones, above 7.0 as marked by the intensity of the blue colour in response to 2,6-dichlorophenol indophenol dye. Peroxidase activity increased in infected plants and RNA-seq analysis of necrotic lesions showed marked upregulation of defence-related genes. Our findings highlight similarities and differences between the reaction zone and necrotic lesion formation in response of conifer trees to biotic stress.
Collapse
Affiliation(s)
- Mengxia Liu
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, PO Box 27, FIN-00014, Helsinki, Finland
| | - Emad Jaber
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, PO Box 27, FIN-00014, Helsinki, Finland
| | - Zhen Zeng
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, PO Box 27, FIN-00014, Helsinki, Finland
| | - Andriy Kovalchuk
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, PO Box 27, FIN-00014, Helsinki, Finland
| | - Fred O Asiegbu
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, PO Box 27, FIN-00014, Helsinki, Finland
| |
Collapse
|
16
|
Noh SW, Seo RR, Park HJ, Jung HW. Two Arabidopsis Homologs of Human Lysine-Specific Demethylase Function in Epigenetic Regulation of Plant Defense Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:688003. [PMID: 34194459 PMCID: PMC8236864 DOI: 10.3389/fpls.2021.688003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 05/02/2023]
Abstract
Epigenetic marks such as covalent histone modification and DNA methylation are crucial for mitotically and meiotically inherited cellular memory-based plant immunity. However, the roles of individual players in the epigenetic regulation of plant immunity are not fully understood. Here we reveal the functions of two Arabidopsis thaliana homologs of human lysine-specific demethylase1-like1, LDL1 and LDL2, in the maintenance of methyl groups at lysine 4 of histone H3 and in plant immunity to Pseudomonas syringae infection. The growth of virulent P. syringae strains was reduced in ldl1 and ldl2 single mutants compared to wild-type plants. Local and systemic disease resistance responses, which coincided with the rapid, robust transcription of defense-related genes, were more stably expressed in ldl1 ldl2 double mutants than in the single mutants. At the nucleosome level, mono-methylated histone H3K4 accumulated in ldl1 ldl2 plants genome-wide and in the mainly promoter regions of the defense-related genes examined in this study. Furthermore, in silico comparative analysis of RNA-sequencing and chromatin immunoprecipitation data suggested that several WRKY transcription factors, e.g., WRKY22/40/70, might be partly responsible for the enhanced immunity of ldl1 ldl2. These findings suggest that LDL1 and LDL2 control the transcriptional sensitivity of a group of defense-related genes to establish a primed defense response in Arabidopsis.
Collapse
Affiliation(s)
- Seong Woo Noh
- Department of Applied Bioscience, Dong-A University, Busan, South Korea
| | - Ri-Ra Seo
- Department of Applied Bioscience, Dong-A University, Busan, South Korea
| | - Hee Jin Park
- Institute of Agricultural Life Science, Dong-A University, Busan, South Korea
- *Correspondence: Hee Jin Park,
| | - Ho Won Jung
- Institute of Agricultural Life Science, Dong-A University, Busan, South Korea
- Department of Molecular Genetics, Dong-A University, Busan, South Korea
- Ho Won Jung,
| |
Collapse
|
17
|
Dai GY, Chen DK, Sun YP, Liang WY, Liu Y, Huang LQ, Li YK, He JF, Yao N. The Arabidopsis KH-domain protein FLOWERING LOCUS Y delays flowering by upregulating FLOWERING LOCUS C family members. PLANT CELL REPORTS 2020; 39:1705-1717. [PMID: 32948902 DOI: 10.1007/s00299-020-02598-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
We identified FLY as a previously uncharacterized RNA-binding-family protein that controls flowering time by positively regulating the expression of FLC clade members. The ability of flowering plants to adjust the timing of the floral transition based on endogenous and environmental signals contributes to their adaptive success. In Arabidopsis thaliana, the MADS-domain protein FLOWERING LOCUS C (FLC) and the FLC clade members FLOWERING LOCUS M/MADS AFFECTING FLOWERING1 (FLM/MAF1), MAF2, MAF3, MAF4, and MAF5 form nuclear complexes that repress flowering under noninductive conditions. However, how FLM/MAF genes are regulated requires further study. Using a genetic strategy, we showed that the previously uncharacterized K-homology (KH) domain protein FLOWERING LOCUS Y (FLY) modulates flowering time. The fly-1 knockout mutant and FLY artificial microRNA knockdown line flowered earlier than the wild type under long- and short-day conditions. The knockout fly-1 allele, a SALK T-DNA insertion mutant, contains an ~ 110-kb genomic deletion induced by T-DNA integration. FLC clade members were downregulated in the fly-1 mutants and FLY artificial microRNA knockdown line, whereas the level of the FLC antisense transcript COOLAIR was similar to that of the wild type. Our results identify FLY as a regulator that affects flowering time through upregulation of FLC clade members.
Collapse
Affiliation(s)
- Guang-Yi Dai
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ding-Kang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yun-Peng Sun
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wei-Yi Liang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yu Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Li-Qun Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yong-Kang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jia-Fan He
- School of Agriculture, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
18
|
Ashtari Mahini R, Kumar A, Elias EM, Fiedler JD, Porter LD, McPhee KE. Analysis and Identification of QTL for Resistance to Sclerotinia sclerotiorum in Pea ( Pisum sativum L.). Front Genet 2020; 11:587968. [PMID: 33329732 PMCID: PMC7710873 DOI: 10.3389/fgene.2020.587968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
White mold caused by Sclerotinia sclerotiorum is an important constraint to field pea (Pisum sativum L.) production worldwide. To transfer white mold resistance into an adapted background, and study the genetics of the disease, two recombinant inbred line (RIL) populations (PRIL17 and PRIL19) were developed by crossing two partially resistant plant introductions with two susceptible pea cultivars. PRIL17 (Lifter × PI240515), and PRIL19 (PI169603 × Medora) were evaluated for resistance to white mold by measuring lesion expansion inhibition (LEI) and nodal transmission inhibition (NTI) at 3, 7, and 14 days post inoculation (dpi) under controlled environmental conditions. Lesion expansion inhibition percentage (LEIP), survival rate (SR), and area under disease progress curves (AUDPC) were also calculated accordingly. Because of a positive correlation between LEI and NTI with height, short and long internode individuals of each population were analyzed separately to avoid any confounding effect of height to pathogen response. A total of 22 short genotypes demonstrated partial resistance based on at least two Porter's resistance criteria. Only two pea genotypes with partial resistance to white mold (PRIL19-18 and PRIL19-124) had both semi-leafless (afila) and short internode traits. Both the RIL populations were genotyped using genotyping by sequencing (GBS). For PRIL17 and PRIL19, genetic maps were constructed from a total of 1,967 and 1,196 single nucleotide polymorphism (SNP) and spanned over 1,494 cM and 1,415 cM representing seven and nine linkage groups, respectively. A consensus map constructed using data from both populations, had 1,486 unique SNPs over 2,461 cM belonging to seven linkage groups. Inclusive composite interval mapping (ICIM) identified thirteen quantitative trait loci (QTL) associated with white mold resistance traits in both populations. Three of them were co-located with height genes (a morphological trait that reduces infection risk and acts as disease avoidance) and the other ten QTL were associated with two forms of physiological resistance (seven for LEI and three for NTI) with LOD and r2 ranging from 3.0 to 28.5 and 5.1 to 64.3, respectively. The development of resistance lines, genetic dissection and identification of markers associated will help accelerate breeding efforts for white mold resistance using molecular breeding approaches.
Collapse
Affiliation(s)
- Rahil Ashtari Mahini
- Plant Science Department, North Dakota State University, Fargo, ND, United States
| | - Ajay Kumar
- Plant Science Department, North Dakota State University, Fargo, ND, United States
| | - Elias M. Elias
- Plant Science Department, North Dakota State University, Fargo, ND, United States
| | - Jason D. Fiedler
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Lyndon D. Porter
- USDA-ARS, Grain Legume Genetics and Physiology Research Unit, Prosser, WA, United States
| | - Kevin E. McPhee
- Plant Sciences and Plant Pathology Department, Montana State University, Bozeman, MT, United States
| |
Collapse
|
19
|
Marondedze C. The increasing diversity and complexity of the RNA-binding protein repertoire in plants. Proc Biol Sci 2020; 287:20201397. [PMID: 32962543 PMCID: PMC7542812 DOI: 10.1098/rspb.2020.1397] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Post-transcriptional regulation has far-reaching implications on the fate of RNAs. It is gaining increasing momentum as a critical component in adjusting global cellular transcript levels during development and in response to environmental stresses. In this process, RNA-binding proteins (RBPs) are indispensable chaperones that naturally bind RNA via one or multiple globular RNA-binding domains (RBDs) changing the function or fate of the bound RNAs. Despite the technical challenges faced in plants in large-scale studies, several hundreds of these RBPs have been discovered and elucidated globally over the past few years. Recent discoveries have more than doubled the number of proteins implicated in RNA interaction, including identification of RBPs lacking classical RBDs. This review will discuss these new emerging classes of RBPs, focusing on the current state of the RBP repertoire in Arabidopsis thaliana, including the diverse functional roles derived from quantitative studies implicating RBPs in abiotic stress responses. Notably, this review highlights that 836 RBPs are enriched as Arabidopsis RBPs while 1865 can be classified as candidate RBPs. The review will also outline outstanding areas within this field that require addressing to advance our understanding and potential biotechnological applications of RBPs.
Collapse
Affiliation(s)
- C. Marondedze
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
- Biological and Environmental Sciences and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Department of Biochemistry, Midlands State University, P. Bag 9055, Gweru, Zimbabwe
| |
Collapse
|
20
|
Ding H, Mo S, Qian Y, Yuan G, Wu X, Ge C. Integrated proteome and transcriptome analyses revealed key factors involved in tomato (
Solanum lycopersicum
) under high temperature stress. Food Energy Secur 2020. [DOI: 10.1002/fes3.239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Haidong Ding
- Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology College of Bioscience and Biotechnology Yangzhou University Yangzhou China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Shuangrong Mo
- Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology College of Bioscience and Biotechnology Yangzhou University Yangzhou China
| | - Ying Qian
- Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology College of Bioscience and Biotechnology Yangzhou University Yangzhou China
| | - Guibo Yuan
- Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology College of Bioscience and Biotechnology Yangzhou University Yangzhou China
| | - Xiaoxia Wu
- Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology College of Bioscience and Biotechnology Yangzhou University Yangzhou China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Cailin Ge
- Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology College of Bioscience and Biotechnology Yangzhou University Yangzhou China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| |
Collapse
|
21
|
McLellan H, Chen K, He Q, Wu X, Boevink PC, Tian Z, Birch PR. The Ubiquitin E3 Ligase PUB17 Positively Regulates Immunity by Targeting a Negative Regulator, KH17, for Degradation. PLANT COMMUNICATIONS 2020; 1:100020. [PMID: 32715295 PMCID: PMC7371183 DOI: 10.1016/j.xplc.2020.100020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/08/2019] [Accepted: 01/02/2020] [Indexed: 05/12/2023]
Abstract
Ubiquitination is a post-translational modification that regulates many processes in plants. Several ubiquitin E3 ligases act as either positive or negative regulators of immunity by promoting the degradation of different substrates. StPUB17 is an E3 ligase that has previously been shown to positively regulate immunity to bacteria, fungi and oomycetes, including the late blight pathogen Phytophthora infestans. Silencing of StPUB17 promotes pathogen colonization and attenuates Cf4/avr4 cell death. Using yeast-2-hybrid and co-immunoprecipitation we identified the putative K-homology (KH) RNA-binding protein (RBP), StKH17, as a candidate substrate for degradation by StPUB17. StKH17 acts as a negative regulator of immunity that promotes P. infestans infection and suppresses specific immune pathways. A KH RBP domain mutant of StKH17 (StKH17GDDG) is no longer able to negatively regulate immunity, indicating that RNA binding is likely required for StKH17 function. As StPUB17 is a known target of the ubiquitin E3 ligase, StPOB1, we reveal an additional step in an E3 ligase regulatory cascade that controls plant defense.
Collapse
Affiliation(s)
- Hazel McLellan
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
| | - Kai Chen
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qin He
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xintong Wu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Petra C. Boevink
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Paul R.J. Birch
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
22
|
Tiwari M, Srivastava S, Singh PC, Mishra AK, Chakrabarty D. Functional characterization of tau class glutathione- S-transferase in rice to provide tolerance against sheath blight disease. 3 Biotech 2020; 10:84. [PMID: 32089979 PMCID: PMC6997320 DOI: 10.1007/s13205-020-2071-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/16/2020] [Indexed: 10/25/2022] Open
Abstract
Glutathione-S-transferase (GST) is an important defense gene that confers resistance against several abiotic and biotic stresses. The present study identifies a tau class GST in rice (Oryza sativa L.), OsGSTU5 (Os09g20220), which provided tolerance against sheath blight (SB) disease, caused by a necrotrophic fungus, Rhizoctonia solani (RS). Overexpression and knockdown rice transgenic lines of OsGSTU5 were generated and tested for the severity of infection during sheath blight disease. The results obtained after RS infection showed that the lesion cover area and hyphal penetration were more in knockdown line and lesser in the overexpression line. Analysis of reactive oxygen species (ROS) accumulation showed more spots of H2O2 and O2- in knockdown lines compared to overexpressed lines. Later, RS transcript level was analyzed in RS-infected transgenic lines, which manifested that the knockdown line had higher RS transcripts in comparison to the control line and least RS transcripts were observed in the overexpressed line. In conclusion, rice transgenic lines overexpressing OsGSTU5 were found to be more tolerant, while the knockdown lines were more prone to Rhizoctonia infection compared to control lines.
Collapse
Affiliation(s)
- Madhu Tiwari
- CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh India
- Banaras Hindu University, Varanasi, Uttar Pradesh India
| | - Suchi Srivastava
- CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh India
- Academy of Scientific and Innovative Research, Gaziabad, India
| | - Poonam C. Singh
- CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh India
- Academy of Scientific and Innovative Research, Gaziabad, India
| | | | - Debasis Chakrabarty
- CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh India
- Academy of Scientific and Innovative Research, Gaziabad, India
| |
Collapse
|
23
|
Bist V, Niranjan A, Ranjan M, Lehri A, Seem K, Srivastava S. Silicon-Solubilizing Media and Its Implication for Characterization of Bacteria to Mitigate Biotic Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:28. [PMID: 32194577 PMCID: PMC7061934 DOI: 10.3389/fpls.2020.00028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/13/2020] [Indexed: 05/31/2023]
Abstract
Silicon (Si), the second most abundant element on earth, remains unavailable for plants' uptake due to its poor solubility. Microbial interventions to convert it in soluble forms are well documented. However, studies on discrimination of Si and P solubilizing microbes due to common estimation method and sharing of solubilization mechanism are still obscure. A defined differential media, i.e. silicon-solubilizing media (NBRISSM) is developed to screen Si solubilizers. NBRISN13 (Bacillus amyloliquefaciens), a Si solubilizer, exhibiting antagonistic property against Rhizoctonia solani, was further validated for disease resistance. The key finding of the work is that NBRISSM is a novel differential media for screening Si solubilizers, distinct from P solubilizers. Dominance of Pseudomonas and Bacillus spp. for the function of Si solubilization was observed during diversity analysis of Si solubilizers isolated from different rhizospheres. Sphingobacterium sp., a different strain has been identified for silicon solubilization other than Pseudomonas and Bacillus sp. Role of acidic phosphatase during Si solubilization has been firstly reported in our study in addition to other pH dependent phenomenon. Study also showed the combinatorial effect of feldspar and NBRISN13 on elicited immune response through (i) increased Si uptake, (ii) reduced disease severity, (iii) modulation of cell wall degrading and antioxidative enzyme activities, and (iv) induced defense responsive gene expression.
Collapse
Affiliation(s)
- Vidisha Bist
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abhishek Niranjan
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, India
| | - Manish Ranjan
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, India
| | - Alok Lehri
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, India
| | - Karishma Seem
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, India
| | - Suchi Srivastava
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
24
|
Zhang Y, Yang N, Zhao L, Zhu H, Tang C. Transcriptome analysis reveals the defense mechanism of cotton against Verticillium dahliae in the presence of the biocontrol fungus Chaetomium globosum CEF-082. BMC PLANT BIOLOGY 2020; 20:89. [PMID: 32106811 PMCID: PMC7047391 DOI: 10.1186/s12870-019-2221-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/30/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND Verticillium wilt of cotton is a serious soil-borne disease that causes a substantial reduction in cotton yields. A previous study showed that the endophytic fungus Chaetomium globosum CEF-082 could control Verticillium wilt of cotton, and induce a defense response in cotton plants. However, the comprehensive molecular mechanism governing this response is not yet clear. RESULTS To study the signalling mechanism induced by CEF-082, the transcriptome of cotton seedlings pretreated with CEF-082 was sequenced. The results revealed 5638 DEGs at 24 h post inoculation with CEF-082, and 2921 and 2153 DEGs at 12 and 48 h post inoculation with Verticillium dahliae, respectively. At 24 h post inoculation with CEF-082, KEGG enrichment analysis indicated that the DEGs were enriched mainly in the plant-pathogen interaction, MAPK signalling pathway-plant, flavonoid biosynthesis, and phenylpropanoid biosynthesis pathways. There were 1209 DEGs specifically induced only in cotton plants inoculated with V. dahliae in the presence of the biocontrol fungus CEF-082, and not when cotton plants were only inoculated with V. dahliae. GO analysis revealed that these DEGs were enriched mainly in the following terms: ROS metabolic process, H2O2 metabolic process, defense response, superoxide dismutase activity, and antioxidant activity. Moreover, many genes, such as ERF, CNGC, FLS2, MYB, GST and CML, that regulate crucial points in defense-related pathways were identified and may contribute to V. dahliae resistance in cotton. These results provide a basis for understanding the molecular mechanism by which the biocontrol fungus CEF-082 increases the resistance of cotton to Verticillium wilt. CONCLUSIONS The results of this study showed that CEF-082 could regulate multiple metabolic pathways in cotton. After treatment with V. dahliae, the defense response of cotton plants preinoculated with CEF-082 was strengthened.
Collapse
Affiliation(s)
- Yun Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People’s Republic of China
| | - Na Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People’s Republic of China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan People’s Republic of China
| | - Heqin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan People’s Republic of China
| | - Canming Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People’s Republic of China
| |
Collapse
|
25
|
Yan Z, Shi H, Liu Y, Jing M, Han Y. KHZ1 and KHZ2, novel members of the autonomous pathway, repress the splicing efficiency of FLC pre-mRNA in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1375-1386. [PMID: 31701139 PMCID: PMC7031081 DOI: 10.1093/jxb/erz499] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/06/2019] [Indexed: 05/03/2023]
Abstract
As one of the most important events during the life cycle of flowering plants, the floral transition is of crucial importance for plant propagation and requires the precise coordination of multiple endogenous and external signals. There have been at least four flowering pathways (i.e. photoperiod, vernalization, gibberellin, and autonomous) identified in Arabidopsis. We previously reported that two Arabidopsis RNA-binding proteins, KHZ1 and KHZ2, redundantly promote flowering. However, the underlying mechanism was unclear. Here, we found that the double mutant khz1 khz2 flowered late under both long-day and short-day conditions, but responded to vernalization and gibberellin treatments. The late-flowering phenotype was almost completely rescued by mutating FLOWERING LOCUS C (FLC) and fully rescued by overexpressing FLOWERING LOCUS T (FT). Additional experiments demonstrated that the KHZs could form homodimers or interact to form heterodimers, localized to nuclear dots, and repressed the splicing efficiency of FLC pre-mRNA. Together, these data indicate that the KHZs could promote flowering via the autonomous pathway by repressing the splicing efficiency of FLC pre-mRNA.
Collapse
Affiliation(s)
- Zongyun Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huiying Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yanan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Meng Jing
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuzhen Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- Correspondence:
| |
Collapse
|
26
|
Qasim MU, Zhao Q, Shahid M, Samad RA, Ahmar S, Wu J, Fan C, Zhou Y. Identification of QTLs Containing Resistance Genes for Sclerotinia Stem Rot in Brassica napus Using Comparative Transcriptomic Studies. FRONTIERS IN PLANT SCIENCE 2020; 11:776. [PMID: 32655594 PMCID: PMC7325899 DOI: 10.3389/fpls.2020.00776] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/15/2020] [Indexed: 05/21/2023]
Abstract
Sclerotinia stem rot is a major disease in Brassica napus that causes yield losses of 10-20% and reaching 80% in severely infected fields. SSR not only causes yield reduction but also causes low oil quality by reducing fatty acid content. There is a need to identify resistant genetic sources with functional significance for the breeding of SSR-resistant cultivars. In this study, we identified 17 QTLs involved in SSR resistance in three different seasons using SNP markers and disease lesion development after artificial inoculation. There were no common QTLs in all 3 years, but there were three QTLs that appeared in two seasons covering all seasons with a shared QTL. The QTLs identified in the 2 years were SRA9a, SRC2a and SRC3a with phenotypic effect variances of 14.75 and 11.57% for SRA9a, 7.49 and 10.38% for SRC3a and 7.73 and 6.81% for SRC2a in their 2 years, respectively. The flowering time was also found to have a negative correlation with disease resistance, i.e., early-maturing lines were more susceptible to disease. The stem width has shown a notably weak effect on disease development, causing researchers to ignore its effect. Given that flowering time is an important factor in disease resistance, we used comparative RNA-sequencing analysis of resistant and susceptible lines with consistent performance in 3 years with almost the same flowering time to identify the resistance genes directly involved in resistance within the QTL regions. Overall, there were more genes differentially expressed in resistant lines 19,970 than in susceptible lines 3936 compared to their mock-inoculated lines, demonstrating their tendency to cope with disease. We identified 36 putative candidate genes from the resistant lines that were upregulated in resistant lines compared to resistant mock and susceptible lines that might be involved in resistance to SSR.
Collapse
Affiliation(s)
- Muhammad Uzair Qasim
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qing Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Shahid
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rana Abdul Samad
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sunny Ahmar
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Yongming Zhou,
| |
Collapse
|
27
|
Iquebal MA, Sharma P, Jasrotia RS, Jaiswal S, Kaur A, Saroha M, Angadi UB, Sheoran S, Singh R, Singh GP, Rai A, Tiwari R, Kumar D. RNAseq analysis reveals drought-responsive molecular pathways with candidate genes and putative molecular markers in root tissue of wheat. Sci Rep 2019; 9:13917. [PMID: 31558740 PMCID: PMC6763491 DOI: 10.1038/s41598-019-49915-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 08/12/2019] [Indexed: 01/08/2023] Open
Abstract
Drought is one of the major impediments in wheat productivity. Traditional breeding and marker assisted QTL introgression had limited success. Available wheat genomic and RNA-seq data can decipher novel drought tolerance mechanisms with putative candidate gene and marker discovery. Drought is first sensed by root tissue but limited information is available about how roots respond to drought stress. In this view, two contrasting genotypes, namely, NI5439 41 (drought tolerant) and WL711 (drought susceptible) were used to generate ~78.2 GB data for the responses of wheat roots to drought. A total of 45139 DEGs, 13820 TF, 288 miRNAs, 640 pathways and 435829 putative markers were obtained. Study reveals use of such data in QTL to QTN refinement by analysis on two model drought-responsive QTLs on chromosome 3B in wheat roots possessing 18 differentially regulated genes with 190 sequence variants (173 SNPs and 17 InDels). Gene regulatory networks showed 69 hub-genes integrating ABA dependent and independent pathways controlling sensing of drought, root growth, uptake regulation, purine metabolism, thiamine metabolism and antibiotics pathways, stomatal closure and senescence. Eleven SSR markers were validated in a panel of 18 diverse wheat varieties. For effective future use of findings, web genomic resources were developed. We report RNA-Seq approach on wheat roots describing the drought response mechanisms under field drought conditions along with genomic resources, warranted in endeavour of wheat productivity.
Collapse
Affiliation(s)
- Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012, India
| | - Pradeep Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Rahul Singh Jasrotia
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012, India
| | - Amandeep Kaur
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Monika Saroha
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - U B Angadi
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012, India
| | - Sonia Sheoran
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Rajender Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - G P Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012, India
| | - Ratan Tiwari
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India.
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012, India.
| |
Collapse
|
28
|
Horváth E, Bela K, Holinka B, Riyazuddin R, Gallé Á, Hajnal Á, Hurton Á, Fehér A, Csiszár J. The Arabidopsis glutathione transferases, AtGSTF8 and AtGSTU19 are involved in the maintenance of root redox homeostasis affecting meristem size and salt stress sensitivity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:366-374. [PMID: 31128707 DOI: 10.1016/j.plantsci.2019.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 05/28/2023]
Abstract
The tau (U) and phi (F) classes of glutathione transferase (GST) enzymes reduce the glutathione (GSH) pool using GSH as a co-substrate, thus influence numerous redox-dependent processes including hormonal and stress responses. We performed detailed analysis of the redox potential and reactive oxygen species levels in longitudinal zones of 7-day-old roots of Arabidopsis thaliana L. Col-0 wild type and Atsgtf8 and Atgstu19 insertional mutants. Using redox-sensitive cytosolic green fluorescent protein (roGFP2) the redox status of the meristematic, transition, and elongation zones was determined under control and salt stress (3-hour of 75 or 150 mM NaCl treatment) conditions. The Atgstu19 mutant had the most oxidized redox status in all root zones throughout the experiments. Using fluorescent dyes significantly higher superoxide radical (O2-) levels was detected in both Atgst mutants than in the Col-0 control. Salt treatment resulted in the highest O2- increase in the Atgstf8 root, while the amount of H2O2 elevated most in the case of Atgstu19. Moreover, vitality decreased in Atgstu19 roots more than in wild type under salt stress. Our results indicate that AtGSTF8 and especially the AtGSTU19 proteins function in the root fine-tuning the redox homeostasis both under control and salt stress conditions.
Collapse
Affiliation(s)
- Edit Horváth
- Institute of Plant Biology, Biological Research Centre of HAS, Temesvári krt. 62., H-6726, Szeged, Hungary.
| | - Krisztina Bela
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726, Szeged, Hungary
| | - Botond Holinka
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726, Szeged, Hungary
| | - Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726, Szeged, Hungary; Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ágnes Gallé
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726, Szeged, Hungary
| | - Ádám Hajnal
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726, Szeged, Hungary
| | - Ágnes Hurton
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726, Szeged, Hungary
| | - Attila Fehér
- Institute of Plant Biology, Biological Research Centre of HAS, Temesvári krt. 62., H-6726, Szeged, Hungary; Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726, Szeged, Hungary
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726, Szeged, Hungary
| |
Collapse
|
29
|
Thatcher LF, Singh KB. The Arabidopsis altered in stress response2 is Impaired in Resistance to Root and Leaf Necrotrophic Fungal Pathogens. PLANTS (BASEL, SWITZERLAND) 2019; 8:E60. [PMID: 30862010 PMCID: PMC6473459 DOI: 10.3390/plants8030060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
The Arabidopsis thaliana Glutathione S-transferase Phi8 (GSTF8) gene is recognised as a marker for early defence and stress responses. To identify regulators of these responses, a forward genetic screen for Arabidopsis mutants with up-regulated GSTF8 promoter activity was conducted by screening a mutagenized population containing a GSTF8 promoter fragment fused to the luciferase reporter gene (GSTF8:LUC). We previously identified several enhanced stress response (esr) mutants from this screen that conferred constitutive GSTF8:LUC activity and increased resistance to several pathogens and/or insects pests. Here we identified a further mutant constitutively expressing GSTF8:LUC and termed altered in stress response2 (asr2). Unlike the esr mutants, asr2 was more susceptible to disease symptom development induced by two necrotrophic fungal pathogens; the root pathogen Fusarium oxysporum, and the leaf pathogen Alternaria brassicicola. The asr2 allele was mapped to a 2.1 Mbp region of chromosome 2 and narrowed to four candidate loci.
Collapse
Affiliation(s)
- Louise F Thatcher
- CSIRO Agriculture and Food, Centre for Environment and Life Sciences, Wembley, Western Australia 6913, Australia.
| | - Karam B Singh
- CSIRO Agriculture and Food, Centre for Environment and Life Sciences, Wembley, Western Australia 6913, Australia.
- The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia 6102, Australia.
| |
Collapse
|
30
|
Sylvestre-Gonon E, Law SR, Schwartz M, Robe K, Keech O, Didierjean C, Dubos C, Rouhier N, Hecker A. Functional, Structural and Biochemical Features of Plant Serinyl-Glutathione Transferases. FRONTIERS IN PLANT SCIENCE 2019; 10:608. [PMID: 31191562 PMCID: PMC6540824 DOI: 10.3389/fpls.2019.00608] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/25/2019] [Indexed: 05/04/2023]
Abstract
Glutathione transferases (GSTs) belong to a ubiquitous multigenic family of enzymes involved in diverse biological processes including xenobiotic detoxification and secondary metabolism. A canonical GST is formed by two domains, the N-terminal one adopting a thioredoxin (TRX) fold and the C-terminal one an all-helical structure. The most recent genomic and phylogenetic analysis based on this domain organization allowed the classification of the GST family into 14 classes in terrestrial plants. These GSTs are further distinguished based on the presence of the ancestral cysteine (Cys-GSTs) present in TRX family proteins or on its substitution by a serine (Ser-GSTs). Cys-GSTs catalyze the reduction of dehydroascorbate and deglutathionylation reactions whereas Ser-GSTs catalyze glutathione conjugation reactions and eventually have peroxidase activity, both activities being important for stress tolerance or herbicide detoxification. Through non-catalytic, so-called ligandin properties, numerous plant GSTs also participate in the binding and transport of small heterocyclic ligands such as flavonoids including anthocyanins, and polyphenols. So far, this function has likely been underestimated compared to the other documented roles of GSTs. In this review, we compiled data concerning the known enzymatic and structural properties as well as the biochemical and physiological functions associated to plant GSTs having a conserved serine in their active site.
Collapse
Affiliation(s)
- Elodie Sylvestre-Gonon
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
| | - Simon R. Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Mathieu Schwartz
- Centre National de la Recherche Scientifique, Cristallographie, Résonance Magnétique et Modélisations, Université de Lorraine, Nancy, France
| | - Kevin Robe
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), INRA, CNRS, SupAgro-M, Université de Montpellier, Montpellier, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Claude Didierjean
- Centre National de la Recherche Scientifique, Cristallographie, Résonance Magnétique et Modélisations, Université de Lorraine, Nancy, France
| | - Christian Dubos
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), INRA, CNRS, SupAgro-M, Université de Montpellier, Montpellier, France
| | - Nicolas Rouhier
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
- *Correspondence: Nicolas Rouhier, Arnaud Hecker,
| | - Arnaud Hecker
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
- *Correspondence: Nicolas Rouhier, Arnaud Hecker,
| |
Collapse
|
31
|
Gullner G, Komives T, Király L, Schröder P. Glutathione S-Transferase Enzymes in Plant-Pathogen Interactions. FRONTIERS IN PLANT SCIENCE 2018; 9:1836. [PMID: 30622544 PMCID: PMC6308375 DOI: 10.3389/fpls.2018.01836] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/27/2018] [Indexed: 05/18/2023]
Abstract
Plant glutathione S-transferases (GSTs) are ubiquitous and multifunctional enzymes encoded by large gene families. A characteristic feature of GST genes is their high inducibility by a wide range of stress conditions including biotic stress. Early studies on the role of GSTs in plant biotic stress showed that certain GST genes are specifically up-regulated by microbial infections. Later numerous transcriptome-wide investigations proved that distinct groups of GSTs are markedly induced in the early phase of bacterial, fungal and viral infections. Proteomic investigations also confirmed the accumulation of multiple GST proteins in infected plants. Furthermore, functional studies revealed that overexpression or silencing of specific GSTs can markedly modify disease symptoms and also pathogen multiplication rates. However, very limited information is available about the exact metabolic functions of disease-induced GST isoenzymes and about their endogenous substrates. The already recognized roles of GSTs are the detoxification of toxic substances by their conjugation with glutathione, the attenuation of oxidative stress and the participation in hormone transport. Some GSTs display glutathione peroxidase activity and these GSTs can detoxify toxic lipid hydroperoxides that accumulate during infections. GSTs can also possess ligandin functions and participate in the intracellular transport of auxins. Notably, the expression of multiple GSTs is massively activated by salicylic acid and some GST enzymes were demonstrated to be receptor proteins of salicylic acid. Furthermore, induction of GST genes or elevated GST activities have often been observed in plants treated with beneficial microbes (bacteria and fungi) that induce a systemic resistance response (ISR) to subsequent pathogen infections. Further research is needed to reveal the exact metabolic functions of GST isoenzymes in infected plants and to understand their contribution to disease resistance.
Collapse
Affiliation(s)
- Gábor Gullner
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamas Komives
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Lóránt Király
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Peter Schröder
- Research Unit for Comparative Microbiome Analyses, Department of Environmental Sciences, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
32
|
The Arabidopsis RNA Polymerase II Carboxyl Terminal Domain (CTD) Phosphatase-Like1 (CPL1) is a biotic stress susceptibility gene. Sci Rep 2018; 8:13454. [PMID: 30194343 PMCID: PMC6128934 DOI: 10.1038/s41598-018-31837-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/28/2018] [Indexed: 11/09/2022] Open
Abstract
Crop breeding for improved disease resistance may be achieved through the manipulation of host susceptibility genes. Previously we identified multiple Arabidopsis mutants known as enhanced stress response1 (esr1) that have defects in a KH-domain RNA-binding protein and conferred increased resistance to the root fungal pathogen Fusarium oxysporum. Here, screening the same mutagenized population we discovered two further enhanced stress response mutants that also conferred enhanced resistance to F. oxysporum. These mutants also have enhanced resistance to a leaf fungal pathogen (Alternaria brassicicola) and an aphid pest (Myzus persicae), but not to the bacterial leaf pathogen Pseudomonas syringae. The causal alleles in these mutants were found to have defects in the ESR1 interacting protein partner RNA Polymerase II Carboxyl Terminal Domain (CTD) Phosphatase-Like1 (CPL1) and subsequently given the allele symbols cpl1-7 and cpl1-8. These results define a new role for CPL1 as a pathogen and pest susceptibility gene. Global transcriptome analysis and oxidative stress assays showed these cpl1 mutants have increased tolerance to oxidative stress. In particular, components of biotic stress responsive pathways were enriched in cpl1 over wild-type up-regulated gene expression datasets including genes related to defence, heat shock proteins and oxidative stress/redox state processes.
Collapse
|
33
|
Draft Genome Sequences of Streptomyces sp. Strains MH60 and 111WW2. GENOME ANNOUNCEMENTS 2018; 6:6/18/e00356-18. [PMID: 29724840 PMCID: PMC5940951 DOI: 10.1128/genomea.00356-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We report here the draft genome sequences, annotations, and predictions of secondary metabolite gene clusters of two endophytic Streptomyces species isolated from wheat plants growing in the Western Australian wheat belt. These strains, Streptomyces sp. strains MH60 and 111WW2, possess antifungal and/or plant growth-promoting activities.
Collapse
|
34
|
Rodríguez-Cazorla E, Ortuño-Miquel S, Candela H, Bailey-Steinitz LJ, Yanofsky MF, Martínez-Laborda A, Ripoll JJ, Vera A. Ovule identity mediated by pre-mRNA processing in Arabidopsis. PLoS Genet 2018; 14:e1007182. [PMID: 29329291 PMCID: PMC5785034 DOI: 10.1371/journal.pgen.1007182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/25/2018] [Accepted: 01/02/2018] [Indexed: 11/18/2022] Open
Abstract
Ovules are fundamental for plant reproduction and crop yield as they are the precursors of seeds. Therefore, ovule specification is a critical developmental program. In Arabidopsis thaliana, ovule identity is redundantly conferred by the homeotic D-class genes SHATTERPROOF1 (SHP1), SHP2 and SEEDSTICK (STK), phylogenetically related to the MADS-domain regulatory gene AGAMOUS (AG), essential in floral organ specification. Previous studies have shown that the HUA-PEP activity, comprised of a suite of RNA-binding protein (RBP) encoding genes, regulates AG pre-mRNA processing and thus flower patterning and organ identity. Here, we report that the HUA-PEP activity additionally governs ovule morphogenesis. Accordingly, in severe hua-pep backgrounds ovules transform into flower organ-like structures. These homeotic transformations are most likely due to the dramatic reduction in SHP1, SHP2 and STK activity. Our molecular and genome-wide profiling strategies revealed the accumulation of prematurely terminated transcripts of D-class genes in hua-pep mutants and reduced amounts of their respective functional messengers, which points to pre-mRNA processing misregulation as the origin of the ovule developmental defects in such backgrounds. RNA processing and transcription are coordinated by the RNA polymerase II (RNAPII) carboxyl-terminal domain (CTD). Our results show that HUA-PEP activity members can interact with the CTD regulator C-TERMINAL DOMAIN PHOSPHATASE-LIKE1 (CPL1), supporting a co-transcriptional mode of action for the HUA-PEP activity. Our findings expand the portfolio of reproductive developmental programs in which HUA-PEP activity participates, and further substantiates the importance of RNA regulatory mechanisms (pre-mRNA co-transcriptional regulation) for correct gene expression during plant morphogenesis.
Collapse
Affiliation(s)
| | - Samanta Ortuño-Miquel
- Área de Genética, Universidad Miguel Hernández, Campus de Sant Joan d’Alacant, Sant Joan d’Alacant, Alicante, Spain
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Alicante, Spain
| | - Lindsay J. Bailey-Steinitz
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Martin F. Yanofsky
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Antonio Martínez-Laborda
- Área de Genética, Universidad Miguel Hernández, Campus de Sant Joan d’Alacant, Sant Joan d’Alacant, Alicante, Spain
| | - Juan-José Ripoll
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (AV); (JJR)
| | - Antonio Vera
- Área de Genética, Universidad Miguel Hernández, Campus de Sant Joan d’Alacant, Sant Joan d’Alacant, Alicante, Spain
- * E-mail: (AV); (JJR)
| |
Collapse
|
35
|
Islam MT, Hussain HI, Rookes JE, Cahill DM. Transcriptome analysis, using RNA-Seq of Lomandra longifolia roots infected with Phytophthora cinnamomi reveals the complexity of the resistance response. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:130-142. [PMID: 28881083 DOI: 10.1111/plb.12624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/30/2017] [Indexed: 05/05/2023]
Abstract
The plant pathogen Phytophthora cinnamon the causal agent of disease in numerous species, is a major threat to natural vegetation and has economic impacts in agriculture. The pathogen principally invades the root system, which, in susceptible species, is rapidly colonised and functionally destroyed. Few species are resistant, however, where resistance is expressed the pathogen is restricted to small, localised lesions. The molecular mechanisms that underpin this response in resistant species are not well understood. Lomandra longifolia, an Australian native species, is highly resistant to P. cinnamomi. In an earlier study, we showed induction of resistance-related components such as callose, lignin and hydrogen peroxide (H2 O2 ) in L. longifolia roots that had been inoculated with P. cinnamomi. Here, in order to further identify, during the very early stages of infection, the molecular components and regulatory networks that may trigger resistance, a comprehensive root transcriptome analysis was performed using next generation sequencing. Overall, 18 cDNA libraries were produced generating 52.8 GB 126 base pair reads, which were de novo assembled into contigs. Differentially expressed genes (DEGs) were identified allowing the identification of infection-responsive candidate genes that were putatively related to resistance, and from this set ten were selected for qRT-PCR to validate the RNA-Seq expression value. Further analysis of individual candidates revealed that many were involved in PAMP-triggered immunity (PTI; pattern recognition receptors, glutathione S-transferase, callose synthases, pathogenesis-related protein-1, mitogen activated protein kinases) and effector-triggered immunity (ETI) (NBS-LRR, signalling genes, transcription factors and anti-pathogenic compound synthase genes). As these candidate genes or mediated components activate different defence signalling systems, they may have potential for investigation of novel approaches to disease control and in transgenic approaches for improvement, in susceptible species, of resistance to P. cinnamomi.
Collapse
Affiliation(s)
- M T Islam
- School of Life and Environmental Sciences, Centre for Chemistry and Biotechnology, Deakin University, Geelong, Vic., Australia
- Department of Plant Pathology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, Bangladesh
| | - H I Hussain
- School of Life and Environmental Sciences, Centre for Chemistry and Biotechnology, Deakin University, Geelong, Vic., Australia
| | - J E Rookes
- School of Life and Environmental Sciences, Centre for Chemistry and Biotechnology, Deakin University, Geelong, Vic., Australia
| | - D M Cahill
- School of Life and Environmental Sciences, Centre for Chemistry and Biotechnology, Deakin University, Geelong, Vic., Australia
| |
Collapse
|
36
|
|
37
|
Yan Z, Jia J, Yan X, Shi H, Han Y. Arabidopsis KHZ1 and KHZ2, two novel non-tandem CCCH zinc-finger and K-homolog domain proteins, have redundant roles in the regulation of flowering and senescence. PLANT MOLECULAR BIOLOGY 2017; 95:549-565. [PMID: 29076025 DOI: 10.1007/s11103-017-0667-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 10/07/2017] [Indexed: 05/19/2023]
Abstract
The two novel CCCH zinc-finger and K-homolog (KH) proteins, KHZ1 and KHZ2, play important roles in regulating flowering and senescence redundantly in Arabidopsis. The CCCH zinc-finger proteins and K-homolog (KH) proteins play important roles in plant development and stress responses. However, the biological functions of many CCCH zinc-finger proteins and KH proteins remain uncharacterized. In Arabidopsis, KHZ1 and KHZ2 are characterized as two novel CCCH zinc-finger and KH domain proteins which belong to subfamily VII in CCCH family. We obtained khz1, khz2 mutants and khz1 khz2 double mutants, as well as overexpression (OE) lines of KHZ1 and KHZ2. Compared with the wild type (WT), the khz2 mutants displayed no defects in growth and development, and the khz1 mutants were slightly late flowering, whereas the khz1 khz2 double mutants showed a pronounced late flowering phenotype. In contrast, artificially overexpressing KHZ1 and KHZ2 led to the early flowering. Consistent with the late flowering phenotype, the expression of flowering repressor gene FLC was up-regulated, while the expression of flowering integrator and floral meristem identity (FMI) genes were down-regulated significantly in khz1 khz2. In addition, we also observed that the OE plants of KHZ1 and KHZ2 showed early leaf senescence significantly, whereas the khz1 khz2 double mutants showed delayed senescence of leaf and the whole plant. Both KHZ1 and KHZ2 were ubiquitously expressed throughout the tissues of Arabidopsis. KHZ1 and KHZ2 were localized to the nucleus, and possessed both transactivation activities and RNA-binding abilities. Taken together, we conclude that KHZ1 and KHZ2 have redundant roles in the regulation of flowering and senescence in Arabidopsis.
Collapse
Affiliation(s)
- Zongyun Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jianheng Jia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoyuan Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Huiying Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuzhen Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
38
|
Paul AL, Sng NJ, Zupanska AK, Krishnamurthy A, Schultz ER, Ferl RJ. Genetic dissection of the Arabidopsis spaceflight transcriptome: Are some responses dispensable for the physiological adaptation of plants to spaceflight? PLoS One 2017; 12:e0180186. [PMID: 28662188 PMCID: PMC5491145 DOI: 10.1371/journal.pone.0180186] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/12/2017] [Indexed: 12/21/2022] Open
Abstract
Experimentation on the International Space Station has reached the stage where repeated and nuanced transcriptome studies are beginning to illuminate the structural and metabolic differences between plants grown in space compared to plants on the Earth. Genes that are important in establishing the spaceflight responses are being identified, their roles in spaceflight physiological adaptation are increasingly understood, and the fact that different genotypes adapt differently is recognized. However, the basic question of whether these spaceflight responses are actually required for survival has yet to be posed, and the fundamental notion that spaceflight responses may be non-adaptive has yet to be explored. Therefore the experiments presented here were designed to ask if portions of the plant spaceflight response can be genetically removed without causing loss of spaceflight survival and without causing increased stress responses. The CARA experiment compared the spaceflight transcriptome responses in the root tips of two Arabidopsis ecotypes, Col-0 and WS, as well as that of a PhyD mutant of Col-0. When grown with the ambient light of the ISS, phyD plants displayed a significantly reduced spaceflight transcriptome response compared to Col-0, suggesting that altering the activity of a single gene can actually improve spaceflight adaptation by reducing the transcriptome cost of physiological adaptation. The WS genotype showed an even simpler spaceflight transcriptome response in the ambient light of the ISS, more broadly indicating that the plant genotype can be manipulated to reduce the cost of spaceflight adaptation, as measured by transcriptional response. These differential genotypic responses suggest that genetic manipulation could further reduce, or perhaps eliminate the metabolic cost of spaceflight adaptation. When plants were germinated and then left in the dark on the ISS, the WS genotype actually mounted a larger transcriptome response than Col-0, suggesting that the in-space light environment affects physiological adaptation, which implies that manipulating the local habitat can also substantially impact the metabolic cost of spaceflight adaptation.
Collapse
Affiliation(s)
- Anna-Lisa Paul
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Natasha J. Sng
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Agata K. Zupanska
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Aparna Krishnamurthy
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Eric R. Schultz
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Robert J. Ferl
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, United States of America
- Interdisciplinary Center for Biotechnology and Research, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
39
|
Abstract
We report here the draft genome sequence and annotation of Rhodococcus sp. strain 66b isolated from the soil of southwest Western Australia. This strain exhibits a range of bioactivities, including plant growth promotion, biosurfactant production, and wax degradation. Whole-genome sequencing was conducted to uncover the underlying mechanisms.
Collapse
|
40
|
Fallath T, Kidd BN, Stiller J, Davoine C, Björklund S, Manners JM, Kazan K, Schenk PM. MEDIATOR18 and MEDIATOR20 confer susceptibility to Fusarium oxysporum in Arabidopsis thaliana. PLoS One 2017; 12:e0176022. [PMID: 28441405 PMCID: PMC5404846 DOI: 10.1371/journal.pone.0176022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/04/2017] [Indexed: 12/29/2022] Open
Abstract
The conserved protein complex known as Mediator conveys transcriptional signals by acting as an intermediary between transcription factors and RNA polymerase II. As a result, Mediator subunits play multiple roles in regulating developmental as well as abiotic and biotic stress pathways. In this report we identify the head domain subunits MEDIATOR18 and MEDIATOR20 as important susceptibility factors for Fusarium oxysporum infection in Arabidopsis thaliana. Mutants of MED18 and MED20 display down-regulation of genes associated with jasmonate signaling and biosynthesis while up-regulation of salicylic acid associated pathogenesis related genes and reactive oxygen producing and scavenging genes. We propose that MED18 and MED20 form a sub-domain within Mediator that controls the balance of salicylic acid and jasmonate associated defense pathways.
Collapse
Affiliation(s)
- Thorya Fallath
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Australia
| | - Brendan N. Kidd
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Australia
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Australia
| | - Jiri Stiller
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Australia
| | - Celine Davoine
- Department of Medical Biochemistry and Biophysics, Umeå Plant Science Center, Umeå University Umeå Sweden
| | - Stefan Björklund
- Department of Medical Biochemistry and Biophysics, Umeå Plant Science Center, Umeå University Umeå Sweden
| | - John M. Manners
- CSIRO Agriculture and Food, Black Mountain, Canberra, Australia
| | - Kemal Kazan
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Australia
- Queensland Alliance for Agriculture & Food Innovation (QAAFI), University of Queensland, St Lucia, Australia
| | - Peer M. Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Australia
- Queensland Alliance for Agriculture & Food Innovation (QAAFI), University of Queensland, St Lucia, Australia
- * E-mail:
| |
Collapse
|
41
|
Thatcher LF, Cevik V, Grant M, Zhai B, Jones JDG, Manners JM, Kazan K. Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2367-86. [PMID: 26896849 PMCID: PMC4809290 DOI: 10.1093/jxb/erw040] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, jasmonate (JA)-signaling plays a key role in mediating Fusarium oxysporum disease outcome. However, the roles of JASMONATE ZIM-domain (JAZ) proteins that repress JA-signaling have not been characterized in host resistance or susceptibility to this pathogen. Here, we found most JAZ genes are induced following F. oxysporum challenge, and screening T-DNA insertion lines in Arabidopsis JAZ family members identified a highly disease-susceptible JAZ7 mutant (jaz7-1D). This mutant exhibited constitutive JAZ7 expression and conferred increased JA-sensitivity, suggesting activation of JA-signaling. Unlike jaz7 loss-of-function alleles, jaz7-1D also had enhanced JA-responsive gene expression, altered development and increased susceptibility to the bacterial pathogen PstDC3000 that also disrupts host JA-responses. We also demonstrate that JAZ7 interacts with transcription factors functioning as activators (MYC3, MYC4) or repressors (JAM1) of JA-signaling and contains a functional EAR repressor motif mediating transcriptional repression via the co-repressor TOPLESS (TPL). We propose through direct TPL recruitment, in wild-type plants JAZ7 functions as a repressor within the JA-response network and that in jaz7-1D plants, misregulated ectopic JAZ7 expression hyper-activates JA-signaling in part by disturbing finely-tuned COI1-JAZ-TPL-TF complexes.
Collapse
Affiliation(s)
- Louise F Thatcher
- CSIRO Agriculture, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia
| | - Volkan Cevik
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Murray Grant
- College of Life and Environmental Sciences, University of Exeter, UK
| | - Bing Zhai
- College of Biological Sciences, China Agricultural University, Beijing 100093, China
| | | | - John M Manners
- CSIRO Agriculture, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia
| | - Kemal Kazan
- CSIRO Agriculture, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia The Queensland Alliance for Agriculture & Food Innovation (QAAFI), The University of Queensland, Queensland Bioscience Precinct, Brisbane, Queensland 4072, Australia
| |
Collapse
|
42
|
Thatcher LF, Gao LL, Singh KB. Jasmonate Signalling and Defence Responses in the Model Legume Medicago truncatula-A Focus on Responses to Fusarium Wilt Disease. PLANTS (BASEL, SWITZERLAND) 2016; 5:E11. [PMID: 27135231 PMCID: PMC4844425 DOI: 10.3390/plants5010011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 12/05/2022]
Abstract
Jasmonate (JA)-mediated defences play important roles in host responses to pathogen attack, in particular to necrotrophic fungal pathogens that kill host cells in order to extract nutrients and live off the dead plant tissue. The root-infecting fungal pathogen Fusarium oxysporum initiates a necrotrophic growth phase towards the later stages of its lifecycle and is responsible for devastating Fusarium wilt disease on numerous legume crops worldwide. Here we describe the use of the model legume Medicago truncatula to study legume-F. oxysporum interactions and compare and contrast this against knowledge from other model pathosystems, in particular Arabidopsis thaliana-F. oxysporum interactions. We describe publically-available genomic, transcriptomic and genetic (mutant) resources developed in M. truncatula that enable dissection of host jasmonate responses and apply aspects of these herein during the M. truncatula--F. oxysporum interaction. Our initial results suggest not all components of JA-responses observed in M. truncatula are shared with Arabidopsis in response to F. oxysporum infection.
Collapse
Affiliation(s)
- Louise F Thatcher
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, Western Australia 6913, Australia.
| | - Ling-Ling Gao
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, Western Australia 6913, Australia.
| | - Karam B Singh
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, Western Australia 6913, Australia.
- The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.
| |
Collapse
|
43
|
Belowground Defence Strategies Against Fusarium oxysporum. BELOWGROUND DEFENCE STRATEGIES IN PLANTS 2016. [DOI: 10.1007/978-3-319-42319-7_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|