1
|
McKay TB, Emmitte KA, German C, Karamichos D. Quercetin and Related Analogs as Therapeutics to Promote Tissue Repair. Bioengineering (Basel) 2023; 10:1127. [PMID: 37892857 PMCID: PMC10604618 DOI: 10.3390/bioengineering10101127] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Quercetin is a polyphenol of the flavonoid class of secondary metabolites that is widely distributed in the plant kingdom. Quercetin has been found to exhibit potent bioactivity in the areas of wound healing, neuroprotection, and anti-aging research. Naturally found in highly glycosylated forms, aglycone quercetin has low solubility in aqueous environments, which has heavily limited its clinical applications. To improve the stability and bioavailability of quercetin, efforts have been made to chemically modify quercetin and related flavonoids so as to improve aqueous solubility while retaining bioactivity. In this review, we provide an updated overview of the biological properties of quercetin and proposed mechanisms of actions in the context of wound healing and aging. We also provide a description of recent developments in synthetic approaches to improve the solubility and stability of quercetin and related analogs for therapeutic applications. Further research in these areas is expected to enable translational applications to improve ocular wound healing and tissue repair.
Collapse
Affiliation(s)
- Tina B. McKay
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Carrie German
- CFD Research Corporation, Computational Biology Division, Huntsville, AL 35806, USA;
| | - Dimitrios Karamichos
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
2
|
Li H, Zhang H, Zhao H. Apigenin attenuates inflammatory response in allergic rhinitis mice by inhibiting the TLR4/MyD88/NF-κB signaling pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:253-265. [PMID: 36350155 DOI: 10.1002/tox.23699] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Allergic rhinitis (AR) is an immunoglobulin E (IgE)-mediated immune inflammatory response that mainly affects the nasal mucosa. Currently, there is evidence that apigenin, as a flavonoid, has anti-allergic potential. MATERIAL/METHODS In vitro, compound 48/80 and lipopolysaccharide (LPS) were used to induce mast cell activation and inflammation in HMC-1 cells. In vivo, ovalbumin (OVA) induced and stimulated AR in BALB/c mice. ELISA was used to detect the contents of β-hexosaminidase, histamine, eosinophil cationic protein (ECP), OVA-specific IgE, IgG1, and IgG2a, inflammatory factors in cells and mouse serum. Cell viability and apoptosis were measured with MTT and flow cytometry. Toll like receptor 4 (TLR4)/myeloid differentiation factor88 (MyD88)/Nuclear transcription factor-κB (NF-κB) pathway-related proteins in cells and mouse nasal mucosa tissues were analyzed with Western blotting. The levels of Th1 (IFN-γ) and Th2 (IL-4, IL-5, and IL-13) cytokines and Th1 (T-bet) and Th2 (GATA-3) specific transcription factors were also assessed. The ratio of Th1 (CD4+ IFN-γ+ ) / Th2 (CD4+ IL-4+ ) cells in mouse peripheral blood mononuclear cells was evaluated by flow cytometry. RESULTS Apigenin significantly inhibited compound 48/80-induced secretion of β-hexosaminidase and histamine. Apigenin blocked LPS-induced decrease in cell viability and increase in cell apoptosis and inflammatory cytokine secretion by suppressing the activity of the TLR4/MyD88/NF-κB pathway. Apigenin treatment reduced the levels of OVA-specific IgE, IgG1 and IgG2a as well as β-hexosaminidase, histamine and ECP levels in mouse serum. Moreover, administration with apigenin decreased Th2 cytokine and transcription factor levels and increased Th1 cytokine and transcription factor levels, and promoted the ratio of Th1/Th2 cells in AR mice. Additionally, apigenin significantly alleviated nasal symptoms and nasal eosinophil infiltration in AR mice. CONCLUSIONS Apigenin alleviates the inflammatory response of allergic rhinitis by inhibiting the activity of the TLR4/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Huajing Li
- Department of Otolaryngology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongmei Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hua Zhao
- Department of Pharmacy, Affiliated Hospital of Medical College of Xi'an Jiaotong University, Shaanxi Provincial Cancer Hospital, Xi'an, China
| |
Collapse
|
3
|
Nageen B, Sarfraz I, Rasul A, Hussain G, Rukhsar F, Irshad S, Riaz A, Selamoglu Z, Ali M. Eupatilin: a natural pharmacologically active flavone compound with its wide range applications. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:1-16. [PMID: 29973097 DOI: 10.1080/10286020.2018.1492565] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Eupatilin (5,7-dihydroxy-3',4',6-trimethoxyflavone) is a pharmacologically active flavone which has been isolated from a variety of medicinal plants. Eupatilin is known to possess various pharmacological properties such as anti-cancer, anti-oxidant, and anti-inflammatory. It is speculated that eupatilin could be subjected to structural optimization for the synthesis of derivative analogs to reinforce its efficacy, to minimize toxicity, and to optimize absorption profiles, which will ultimately lead towards potent drug candidates. Although, reported data acclaim multiple pharmacological activities of eupatilin but further experimentations on its molecular mechanism of action are yet mandatory to elucidate full spectrum of its pharmacological activities.
Collapse
Affiliation(s)
- Bushra Nageen
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Iqra Sarfraz
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Azhar Rasul
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ghulam Hussain
- Faculty of Life Sciences, Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Fariha Rukhsar
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Somia Irshad
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad (Sub-campus Layyah), Layyah 31200, Pakistan
| | - Ammara Riaz
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Zeliha Selamoglu
- Faculty of Medicine, Department of Medical Biology, Nigde Ömer Halisdemir University, Nigde, Campus 51240, Turkey
| | - Muhammad Ali
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
4
|
Riaz A, Rasul A, Hussain G, Zahoor MK, Jabeen F, Subhani Z, Younis T, Ali M, Sarfraz I, Selamoglu Z. Astragalin: A Bioactive Phytochemical with Potential Therapeutic Activities. Adv Pharmacol Sci 2018; 2018:9794625. [PMID: 29853868 PMCID: PMC5954929 DOI: 10.1155/2018/9794625] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/05/2018] [Accepted: 04/12/2018] [Indexed: 12/26/2022] Open
Abstract
Natural products, an infinite treasure of bioactive chemical entities, persist as an inexhaustible resource for discovery of drugs. This review article intends to emphasize on one of the naturally occurring flavonoids, astragalin (kaempferol 3-glucoside), which is a bioactive constituent of various traditional medicinal plants such as Cuscuta chinensis. This multifaceted compound is well known for its diversified pharmacological applications such as anti-inflammatory, antioxidant, neuroprotective, cardioprotective, antiobesity, antiosteoporotic, anticancer, antiulcer, and antidiabetic properties. It carries out the aforementioned activities by the regulation and modulation of various molecular targets such as transcription factors (NF-κB, TNF-α, and TGF-β1), enzymes (iNOS, COX-2, PGE2, MMP-1, MMP-3, MIP-1α, COX-2, PGE-2, HK2, AChe, SOD, DRP-1, DDH, PLCγ1, and GPX), kinases (JNK, MAPK, Akt, ERK, SAPK, IκBα, PI3K, and PKCβ2), cell adhesion proteins (E-cadherin, vimentin PAR-2, and NCam), apoptotic and antiapoptotic proteins (Beclin-1, Bcl-2, Bax, Bcl-xL, cytochrome c, LC3A/B, caspase-3, caspase-9, procaspase-3, procaspase-8, and IgE), and inflammatory cytokines (SOCS-3, SOCS-5, IL-1β, IL-4, IL-6, IL-8, IL-13, MCP-1, CXCL-1, CXCL-2, and IFN-γ). Although researchers have reported multiple pharmacological applications of astragalin in various diseased conditions, further experimental investigations are still mandatory to fully understand its mechanism of action. It is contemplated that astragalin could be subjected to structural optimization to ameliorate its chemical accessibility, to optimize its absorption profiles, and to synthesize its more effective analogues which will ultimately lead towards potent drug candidates.
Collapse
Affiliation(s)
- Ammara Riaz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Kashif Zahoor
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Zinayyera Subhani
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Tahira Younis
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Ali
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde 51240, Turkey
| |
Collapse
|
5
|
Salmani JMM, Wu X, Jacob JA, Fu R, Chen B. Development of a new HPLC method for wogonin in rat plasma: Compatibility of standard and test samples. ACTA PHARMACEUTICA 2017; 67:373-384. [PMID: 28858841 DOI: 10.1515/acph-2017-0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 11/15/2022]
Abstract
In the current paper, an HPLC/UV method was developed and validated for determination of wogonin in plasma. Considerable attention was paid to the preparation of standard samples and factors affecting drug distribution. A preparation procedure was devised to simulate the conditions the drug is expected to experience in vivo while pointing to the shortcomings of previously published methods. The method was validated according to the FDA regulations and showed to be highly efficient and capable of extracting the drug and IS from the plasma accurately and precisely within the specified range of 50-500 ng mL-1. Further, the standard sample preparation of this method can be used as a guideline for other methods, particularly when highly hydrophobic drugs with considerable protein binding are involved and could be valuable in the field of bioanalysis to improve the reliability of methods.
Collapse
Affiliation(s)
- Jumah Masoud Mohammad Salmani
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine) , Zhongda Hospital, Medical School , Southeast University , Nanjing , People’s Republic of China
| | - Xue Wu
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine) , Zhongda Hospital, Medical School , Southeast University , Nanjing , People’s Republic of China
| | - Joe Antony Jacob
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine) , Zhongda Hospital, Medical School , Southeast University , Nanjing , People’s Republic of China
| | - Rong Fu
- State Key Laboratory of Natural Medicines , Jiangsu Key Laboratory of Carcinogenesis and Intervention China Pharmaceutical University , Nanjing , People’s Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine) , Zhongda Hospital, Medical School , Southeast University , Nanjing , People’s Republic of China
| |
Collapse
|