1
|
Morikis VA, Hernandez AA, Magnani JL, Sperandio M, Simon SI. Targeting Neutrophil Adhesive Events to Address Vaso-Occlusive Crisis in Sickle Cell Patients. Front Immunol 2021; 12:663886. [PMID: 33995392 PMCID: PMC8113856 DOI: 10.3389/fimmu.2021.663886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Neutrophils are essential to protect the host against invading pathogens but can promote disease progression in sickle cell disease (SCD) by becoming adherent to inflamed microvascular networks in peripheral tissue throughout the body. During the inflammatory response, leukocytes extravasate from the bloodstream using selectin adhesion molecules and migrate to sites of tissue insult through activation of integrins that are essential for combating pathogens. However, during vaso-occlusion associated with SCD, neutrophils are activated during tethering and rolling on selectins upregulated on activated endothelium that line blood vessels. Recently, we reported that recognition of sLex on L-selectin by E-selectin during neutrophil rolling initiates shear force resistant catch-bonds that facilitate tethering to endothelium and activation of integrin bond clusters that anchor cells to the vessel wall. Evidence indicates that blocking this important signaling cascade prevents the congestion and ischemia in microvasculature that occurs from neutrophil capture of sickled red blood cells, which are normally deformable ellipses that flow easily through small blood vessels. Two recently completed clinical trials of therapies targeting selectins and their effect on neutrophil activation in small blood vessels reveal the importance of mechanoregulation that in health is an immune adaption facilitating rapid and proportional leukocyte adhesion, while sustaining tissue perfusion. We provide a timely perspective on the mechanism underlying vaso-occlusive crisis (VOC) with a focus on new drugs that target selectin mediated integrin adhesive bond formation.
Collapse
Affiliation(s)
- Vasilios A. Morikis
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, United States
| | - Alfredo A. Hernandez
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, United States
| | | | - Markus Sperandio
- Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine Biomedical Center, Ludwig Maximilians University, Walter Brendel Center, Munich, Germany
| | - Scott I. Simon
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, United States
| |
Collapse
|
2
|
Guan X, Yuan Y, Wang G, Zheng R, Zhang J, Dong B, Ran N, Hsu ACY, Wang C, Wang F. Ginsenoside Rg3 ameliorates acute exacerbation of COPD by suppressing neutrophil migration. Int Immunopharmacol 2020; 83:106449. [PMID: 32278128 DOI: 10.1016/j.intimp.2020.106449] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Acute Exacerbation of Chronic Obstructive Pulmonary Disease (AECOPD) is an irreversible inflammatory airways disease responsible for global health burden, involved with a complex condition of immunological change. Exacerbation-mediated neutrophilia is an important factor in the pathogenesis of cigarette smoke-induced AECOPD. Ginsenoside Rg3, a red-ginseng-derived compound, has multiple pharmacological properties such as anti-inflammatory and antitumor activities. Here, we investigated a protective role of Rg3 against AECOPD, focusing on neutrophilia. 14-week-cigarette smoke (CS) exposure and non-typeable Haemophilus inflenzae (NTHi) infection were used to establish the AECOPD murine model. Rg3 (10, 20, 40 mg/kg) was administered intragastrically from the 12th week of CS exposure before infection, and this led to improved lung function and lung morphology, and reduced neutrophilic inflammation, indicating a suppressive effect on neutrophil infiltration by Rg3. Further investigations on the mechanism of Rg3 on neutrophils were carried out using bronchial epithelial cell (BEAS-2B) and neutrophil co-culture and transepithelial migration model. Pre-treatment of neutrophils with Rg3 reduced neutrophil migration, which seemed to be the result of inhibition of phosphatidylinositol (PtdIns) 3-kinases (PI3K) activation within neutrophils. Thus, Rg3 could inhibit exacerbation-induced neutrophilia in COPD by negatively regulating PI3K activities in neutrophils. This study provides a potential natural drug against AECOPD neutrophil inflammation.
Collapse
Affiliation(s)
- Xuewa Guan
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yuze Yuan
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Guoqiang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ruipeng Zheng
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Invasive Technology, First Hospital of Jilin University, Changchun 130021, China
| | - Jing Zhang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Intensive Care Unit, First Hospital of Jilin University, Changchun 130021, China
| | - Bing Dong
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Nan Ran
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Alan Chen-Yu Hsu
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute and the University of Newcastle, NSW, Australia
| | - Cuizhu Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Key laboratory of Zoonosis Research Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
3
|
Farzi B, Young D, Scrimgeour J, Cetinkaya C. Mechanical properties of P-selectin PSGL-1 bonds. Colloids Surf B Biointerfaces 2018; 173:529-538. [PMID: 30342396 DOI: 10.1016/j.colsurfb.2018.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/20/2018] [Accepted: 10/08/2018] [Indexed: 11/30/2022]
Abstract
The accurate determination of the mechanical properties of P-selectin and PSGL-1 is crucial for design and optimization of applications utilizing such bonds, e.g. biosensors and targeted drug delivery systems, as adhesion and mechanical interactions play a critical role in several key functions of biological cells. In current work, the spring constant and rupture force of a single P-selectin PSGL-1 ligand receptor bond and the Young's modulus of a layer made of these ligand receptors are reported. The work-of-adhesion of the P-selectin PSGL-1 interface is also characterized. In the reported experiments, PSGL-1 coated particles are deposited on a P-selectin coated substrate and their transient nanometer scale out-of-plane displacements are acquired employing a laser Doppler vibrometer as they are excited by an ultrasonic field. From the spectral response of a single particle, the resonance frequencies of its vibrational motion are identified, and with help of a particle adhesion model, the average rupture force and stiffness of a single P-selectin PSGL-1 ligand receptor are determined as Frupt = 171 ± 56 pN and kb = 0.56 ± 0.04 mN/m, respectively. Furthermore, the Young's modulus and work-of-adhesion of a layer of P-selectin PSGL-1 ligand receptors are extracted as E = 28.74 ± 3.96 MPa and WA = 70.0 ± 8.0 mJ/m2, respectively. Unlike Atomic Force Microscopy (AFM) and other probe-based techniques, the reported approach eliminates the need for direct contact with the sample, which could compromise the accuracy of the results by imposing unspecified additional contact interactions. Further, the current technique can be employed for measurements under various fluid flow conditions.
Collapse
Affiliation(s)
- Bahman Farzi
- Photo-Acoustics Research Laboratory, Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY, 13699-5725, USA
| | - Dylan Young
- Department of Physics, Clarkson University, Potsdam, NY, 13699-5820, USA
| | - Jan Scrimgeour
- Department of Physics, Clarkson University, Potsdam, NY, 13699-5820, USA
| | - Cetin Cetinkaya
- Photo-Acoustics Research Laboratory, Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY, 13699-5725, USA.
| |
Collapse
|
4
|
Subramaniam DR, Gee DJ. The influence of adherent cell morphology on hydrodynamic recruitment of leukocytes. Microvasc Res 2017; 115:68-74. [PMID: 28888910 DOI: 10.1016/j.mvr.2017.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/02/2017] [Accepted: 09/05/2017] [Indexed: 11/29/2022]
Abstract
Innate immunity is characterized by the coordinated activity of multiple leukocytes mobilizing at or near the site of tissue injury. Slow rolling and/or adherent leukocytes have been shown to hydrodynamically recruit free-stream leukocytes to a model of inflamed tissue. In this paper, we numerically investigate the hydrodynamic recruitment of free-stream leukocytes due to the presence of a nearby adherent, deformed leukocyte by using a computational model developed from first principles to simulate these types of interactions. For free-stream cells at least one diameter above the surface and subsequently involved in a glancing (out-of-plane) collision with one or more adherent cell, the simulation indicated that the free-stream cell was driven closer to the surface as a function of increasing glancing distance. Further, with increasing deformation of the adherent cell a similar effect was observed beginning at smaller glancing offsets. The influence of binary interactions on the trajectories of free-stream cells that were less than one diameter above the surface was also examined. For fixed glancing distance, increased adherent cell deformation led to enhanced recruiting effectiveness which was quantified by determining the time needed for the free-stream cell to enter the reactive zone; that is, a membrane separation distance such that receptor-ligand binding was possible. This effectiveness was only moderately influenced by variations in shear rate and cell buoyancy. Finally, for large glancing offset the domain of influence of the adherent cell diminished and the trajectory of the free-stream cell was unaffected by the adherent cell, with regard to hydrodynamic recruitment.
Collapse
Affiliation(s)
| | - David J Gee
- Department of Mechanical Engineering, Gannon University, Erie, PA, USA.
| |
Collapse
|
5
|
Shear force-based genetic screen reveals negative regulators of cell adhesion and protrusive activity. Proc Natl Acad Sci U S A 2017; 114:E7727-E7736. [PMID: 28847951 DOI: 10.1073/pnas.1616600114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The model organism Dictyostelium discoideum has greatly facilitated our understanding of the signal transduction and cytoskeletal pathways that govern cell motility. Cell-substrate adhesion is downstream of many migratory and chemotaxis signaling events. Dictyostelium cells lacking the tumor suppressor PTEN show strongly impaired migratory activity and adhere strongly to their substrates. We reasoned that other regulators of migration could be obtained through a screen for overly adhesive mutants. A screen of restriction enzyme-mediated integration mutagenized cells yielded numerous mutants with the desired phenotypes, and the insertion sites in 18 of the strains were mapped. These regulators of adhesion and motility mutants have increased adhesion and decreased motility. Characterization of seven strains demonstrated decreased directed migration, flatness, increased filamentous actin-based protrusions, and increased signal transduction network activity. Many of the genes share homology to human genes and demonstrate the diverse array of cellular networks that function in adhesion and migration.
Collapse
|
6
|
Morikis VA, Radecke C, Jiang Y, Heinrich V, Curry FR, Simon SI. Atrial natriuretic peptide down-regulates neutrophil recruitment on inflamed endothelium by reducing cell deformability and resistance to detachment force. Biorheology 2016; 52:447-63. [PMID: 26639357 DOI: 10.3233/bir-15067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Recombinant atrial natriuretic peptide (ANP) is administered in patients with acute heart failure in Japan to improve renal function and hemodynamics, but its anti-inflammatory effect on activated leukocytes may also contribute to its therapeutic efficacy. OBJECTIVE Examine unconventional role of ANP in neutrophil adhesion to inflamed endothelium. METHODS Human neutrophils were perfused over endothelial monolayers in a microfluidic lab-chip assay. Cell rheology was assessed by micropipette aspiration to assess changes in cortical tension and viscosity. Fluorescence microscopy was applied to measure adhesive contact area and β2-integrin focal bond formation. RESULTS ANP inhibited neutrophil rolling and firm adhesion without influencing the upregulation of cellular adhesion molecules on endothelium or the regulation of high affinity CD18 and shedding of L-selectin during neutrophil activation. Exposed to fluid shear, integrin mediated arrest was disrupted with ANP treatment, which elicited formation of long tethers and diminished cell spreading and contact. This correlated with a ∼40% increase in neutrophil viscosity and a reduction in the adhesive footprint. CONCLUSIONS A decrease in cell deformation and neutrophil flattening with ANP results in fewer integrin bond clusters, which translates to higher tensile forces and impaired adhesion strengthening and cell detachment.
Collapse
Affiliation(s)
- Vasilios A Morikis
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Chris Radecke
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Yanyan Jiang
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Volkmar Heinrich
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Fitz-Roy Curry
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA.,Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616, USA
| | - Scott I Simon
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| |
Collapse
|