1
|
Ahmadi M, Ghafouri-Fard S, Najari-Hanjani P, Morshedzadeh F, Malakoutian T, Abbasi M, Akbari H, Amoli MM, Saffarzadeh N. "Hyperglycemic Memory": Observational Evidence to Experimental Inference. Curr Diabetes Rev 2025; 21:64-78. [PMID: 38369731 DOI: 10.2174/0115733998279869231227091944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 02/20/2024]
Abstract
Several epidemiological studies have appreciated the impact of "duration" and "level" of hyperglycemia on the initiation and development of chronic complications of diabetes. However, glycemic profiles could not fully explain the presence/absence and severity of diabetic complications. Genetic issues and concepts of "hyperglycemic memory" have been introduced as additional influential factors involved in the pathobiology of late complications of diabetes. In the extended phase of significant diabetes randomized, controlled clinical trials, including DCCT/EDIC and UKPDS, studies have concluded that the quality of glycemic or metabolic control at the early time around the diabetes onset could maintain its protective or detrimental impact throughout the following diabetes course. There is no reliable indication of the mechanism by which the transient exposure to a given glucose concentration level could evoke a consistent cellular response at target tissues at the molecular levels. Some biological phenomena, such as the production and the concentration of advanced glycation end products (AGEs), reactive oxygen species (ROS) and protein kinase C (PKC) pathway activations, epigenetic changes, and finally, the miRNAs-mediated pathways, may be accountable for the development of hyperglycemic memory. This work summarizes evidence from previous experiments that may substantiate the hyperglycemic memory soundness by its justification in molecular terms.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Najari-Hanjani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Firouzeh Morshedzadeh
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Tahereh Malakoutian
- Department of Nephrology, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Abbasi
- Department of Emergency Medicine, Iran University of Medical Sciences, Tehran, Iran
- Hasheminejad Kidney Centre, Iran University of Medical Sciences, Anesthesiology Section, Tehran, Iran
| | - Hounaz Akbari
- Department of Nephrology, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mohammad Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Saffarzadeh
- Department of Nephrology, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Ju CC, Liu XX, Liu LH, Guo N, Guan LW, Wu JX, Liu DW. Epigenetic modification: A novel insight into diabetic wound healing. Heliyon 2024; 10:e28086. [PMID: 38533007 PMCID: PMC10963386 DOI: 10.1016/j.heliyon.2024.e28086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Wound healing is an intricate and fine regulatory process. In diabetic patients, advanced glycation end products (AGEs), excessive reactive oxygen species (ROS), biofilm formation, persistent inflammation, and angiogenesis regression contribute to delayed wound healing. Epigenetics, the fast-moving science in the 21st century, has been up to date and associated with diabetic wound repair. In this review, we go over the functions of epigenetics in diabetic wound repair in retrospect, covering transcriptional and posttranscriptional regulation. Among these, we found that histone modification is widely involved in inflammation and angiogenesis by affecting macrophages and endothelial cells. DNA methylation is involved in factors regulation in wound repair but also affects the differentiation phenotype of cells in hyperglycemia. In addition, noncodingRNA regulation and RNA modification in diabetic wound repair were also generalized. The future prospects for epigenetic applications are discussed in the end. In conclusion, the study suggests that epigenetics is an integral regulatory mechanism in diabetic wound healing.
Collapse
Affiliation(s)
- Cong-Cong Ju
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Xiao-Xiao Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Li-hua Liu
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Nan Guo
- Nanchang University, Nanchang, Jiangxi, PR China
| | - Le-wei Guan
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Jun-xian Wu
- Nanchang University, Nanchang, Jiangxi, PR China
| | - De-Wu Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| |
Collapse
|
3
|
Sidgwick GP, Weston R, Mahmoud AM, Schiro A, Serracino-Inglott F, Tandel SM, Skeoch S, Bruce IN, Jones AM, Alexander MY, Wilkinson FL. Novel Glycomimetics Protect against Glycated Low-Density Lipoprotein-Induced Vascular Calcification In Vitro via Attenuation of the RAGE/ERK/CREB Pathway. Cells 2024; 13:312. [PMID: 38391925 PMCID: PMC10887290 DOI: 10.3390/cells13040312] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Heparan sulphate (HS) can act as a co-receptor on the cell surface and alterations in this process underpin many pathological conditions. We have previously described the usefulness of mimics of HS (glycomimetics) in protection against β-glycerophosphate-induced vascular calcification and in the restoration of the functional capacity of diabetic endothelial colony-forming cells in vitro. This study aims to investigate whether our novel glycomimetic compounds can attenuate glycated low-density lipoprotein (g-LDL)-induced calcification by inhibiting RAGE signalling within the context of critical limb ischemia (CLI). We used an established osteogenic in vitro vascular smooth muscle cell (VSMC) model. Osteoprotegerin (OPG), sclerostin and glycation levels were all significantly increased in CLI serum compared to healthy controls, while the vascular calcification marker osteocalcin (OCN) was down-regulated in CLI patients vs. controls. Incubation with both CLI serum and g-LDL (10 µg/mL) significantly increased VSMC calcification vs. controls after 21 days, with CLI serum-induced calcification apparent after only 10 days. Glycomimetics (C2 and C3) significantly inhibited g-LDL and CLI serum-induced mineralisation, as shown by a reduction in alizarin red (AR) staining and alkaline phosphatase (ALP) activity. Furthermore, secretion of the osteogenic marker OCN was significantly reduced in VSMCs incubated with CLI serum in the presence of glycomimetics. Phosphorylation of cyclic AMP response element-binding protein (CREB) was significantly increased in g-LDL-treated cells vs. untreated controls, which was attenuated with glycomimetics. Blocking CREB activation with a pharmacological inhibitor 666-15 replicated the protective effects of glycomimetics, evidenced by elevated AR staining. In silico molecular docking simulations revealed the binding affinity of the glycomimetics C2 and C3 with the V domain of RAGE. In conclusion, these findings demonstrate that novel glycomimetics, C2 and C3 have potent anti-calcification properties in vitro, inhibiting both g-LDL and CLI serum-induced VSMC mineralisation via the inhibition of LDLR, RAGE, CREB and subsequent expression of the downstream osteogenic markers, ALP and OCN.
Collapse
Affiliation(s)
- Gary P. Sidgwick
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| | - Ria Weston
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| | - Ayman M. Mahmoud
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| | - Andrew Schiro
- Cardiovascular Research Institute, University of Manchester, Manchester M13 9PL, UK;
- Vascular Unit, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Ferdinand Serracino-Inglott
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
- Cardiovascular Research Institute, University of Manchester, Manchester M13 9PL, UK;
- Vascular Unit, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Shikha M. Tandel
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| | - Sarah Skeoch
- Centre for Epidemiology Versus Arthritis, University of Manchester, Manchester M13 9PL, UK; (S.S.); (I.N.B.)
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
- Royal National Hospital for Rheumatic Diseases, Bath BA1 1RL, UK
| | - Ian N. Bruce
- Centre for Epidemiology Versus Arthritis, University of Manchester, Manchester M13 9PL, UK; (S.S.); (I.N.B.)
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Alan M. Jones
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
- School of Pharmacy, University of Birmingham, Birmingham B15 2TT, UK
| | - M. Yvonne Alexander
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| | - Fiona L. Wilkinson
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| |
Collapse
|
4
|
Amaya-Garrido A, Brunet M, Buffin-Meyer B, Piedrafita A, Grzesiak L, Agbegbo E, Del Bello A, Ferrandiz I, Ardeleanu S, Bermudez-Lopez M, Fedou C, Camus M, Burlet-Schiltz O, Massines J, Buléon M, Feuillet G, Alves M, Neau E, Casemayou A, Breuil B, Saulnier-Blache JS, Denis C, Voelkl J, Glorieux G, Hobson S, Arefin S, Rahman A, Kublickiene K, Stenvinkel P, Bascands JL, Faguer S, Valdivielso JM, Schanstra JP, Klein J. Calprotectin is a contributor to and potential therapeutic target for vascular calcification in chronic kidney disease. Sci Transl Med 2023; 15:eabn5939. [PMID: 37672568 DOI: 10.1126/scitranslmed.abn5939] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
Vascular calcification is an important risk factor for cardiovascular (CV) mortality in patients with chronic kidney disease (CKD). It is also a complex process involving osteochondrogenic differentiation of vascular smooth muscle cells (VSMCs) and abnormal deposition of minerals in the vascular wall. In an observational, multicenter European study, including 112 patients with CKD from Spain and 171 patients on dialysis from France, we used serum proteome analysis and further validation by ELISA to identify calprotectin, a circulating damage-associated molecular pattern protein, as being independently associated with CV outcome and mortality. This was confirmed in an additional cohort of 170 patients with CKD from Sweden, where increased serum calprotectin concentrations correlated with increased vascular calcification. In primary human VSMCs and mouse aortic rings, calprotectin exacerbated calcification. Treatment with paquinimod, a calprotectin inhibitor, as well as pharmacological inhibition of the receptor for advanced glycation end products and Toll-like receptor 4 inhibited the procalcifying effect of calprotectin. Paquinimod also ameliorated calcification induced by the sera of uremic patients in primary human VSMCs. Treatment with paquinimod prevented vascular calcification in mice with chronic renal failure induced by subtotal nephrectomy and in aged apolipoprotein E-deficient mice as well. These observations identified calprotectin as a key contributor of vascular calcification, and increased circulating calprotectin was strongly and independently associated with calcification, CV outcome, and mortality in patients with CKD. Inhibition of calprotectin might therefore be a promising strategy to prevent vascular calcification in patients with CKD.
Collapse
Affiliation(s)
- Ana Amaya-Garrido
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Manon Brunet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Bénédicte Buffin-Meyer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Alexis Piedrafita
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Lucile Grzesiak
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Ezechiel Agbegbo
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Arnaud Del Bello
- Département de Néphrologie et Transplantation d'organes, Hôpital Rangueil, Centre Hospitalo-Universitaire de Toulouse, 31400 Toulouse, France
| | - Inés Ferrandiz
- Département de Néphrologie et Transplantation d'organes, Hôpital Rangueil, Centre Hospitalo-Universitaire de Toulouse, 31400 Toulouse, France
| | - Serban Ardeleanu
- AURAR Saint Louis Dialysis Center, 97421 Saint Louis, La Réunion, France
| | - Marcelino Bermudez-Lopez
- Vascular and Renal Translational Research Group, UDETMA, REDinREN del ISCIII, IRBLleida, 25198 Lleida, Spain
| | - Camille Fedou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Mylène Camus
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Jean Massines
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Marie Buléon
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Guylène Feuillet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Melinda Alves
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Eric Neau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Audrey Casemayou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
- Département de Néphrologie et Transplantation d'organes, Hôpital Rangueil, Centre Hospitalo-Universitaire de Toulouse, 31400 Toulouse, France
| | - Benjamin Breuil
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Jean-Sébastien Saulnier-Blache
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Colette Denis
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, 4040 Linz, Austria
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Gent, Belgium
| | - Sam Hobson
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Samsul Arefin
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Awahan Rahman
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Jean-Loup Bascands
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97491 Sainte Clotilde, La Réunion, France
| | - Stanislas Faguer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
- Département de Néphrologie et Transplantation d'organes, Hôpital Rangueil, Centre Hospitalo-Universitaire de Toulouse, 31400 Toulouse, France
| | - José M Valdivielso
- Vascular and Renal Translational Research Group, UDETMA, REDinREN del ISCIII, IRBLleida, 25198 Lleida, Spain
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| |
Collapse
|
5
|
Li H, Li M, Dong S, Dong A, Wang J, Zhu Y, Deng Y, Chen S, Zhang M. Preliminary study of the interactive effects of coronary heart disease and lacunar infarction on renal function in patients with type 2 diabetes mellitus by gender. J Diabetes Complications 2023; 37:108477. [PMID: 37121118 DOI: 10.1016/j.jdiacomp.2023.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Coronary heart disease (CHD) and lacunar infarction (LI) are the most common cardio- cerebrovascular complications of type 2 diabetes mellitus (T2DM) and a recognized risk factor for renal injury. Although a unidirectional association of CHD or LI with T2DM or the kidney has been demonstrated, however, it remains unknown whether there is an interactive effect of the coexistence of CHD and LI on renal function in T2DM patients. The aim of our study was to investigate the interaction between CHD and LI on renal function in gender-specific patients with T2DM and the association between cardio-cerebrovascular disease-related conventional serum markers and the estimated glomerular filtration rate (eGFR). METHODS We conducted a cross-sectional study in Beijing and Tianjin from April 2019 to August 2021. Participants with T2DM aged ≥18 years were asked to complete a one-to-one questionnaire and physical examination. RESULTS In this study, 389 eligible patients with T2DM were included, with a mean age of 63.04 ± 9.41 years, of whom 200 (51.41 %) were male. The proportions of patients with CHD, LI, and both CHD and LI were 28.53 %, 24.42 %, and 11.05 %, respectively. Compared to T2DM patients without either CHD or LI, those with both CHD and LI were found to have a significantly greater risk of reduced eGFR (OR: 12.82, 95 % CI 5.06-32.52, P < 0.001) than those with CHD alone (OR: 2.42, 95 % CI 1.37-3.00, P = 0.004) or LI alone (OR: 1.15, 95 % CI 0.61-2.18, P = 0.664). The combined presence of CHD and LI is associated with a significantly greater risk of decreased eGFR in female T2DM patients compared to their male counterparts. We found both multiplicative and additive effects in all T2DM patients; however, when stratified by sex, only multiplicative effects were observed. After controlling for interference from CHD, LI, and age, we found that total cholesterol (TC) was negatively correlated with eGFR in females (r = -0.156, P = 0.034), and low-density lipoprotein cholesterol (LDL-C) was negatively correlated with eGFR in males (r = -0.229, P = 0.001). CONCLUSION This study provides novel evidence that the synergistic effect of CHD and LI on renal injury in patients with T2DM is significantly greater than their individual effects. Women with T2DM who have both CHD and LI are at a 4.85-fold higher risk of decreased eGFR than men. Therefore, increased clinical attention should be given to preventing and treating vascular complications in T2DM patients, as well as aggressively reducing lipid levels, particularly TC and LDL-C, to delay or prevent renal dysfunction in T2DM patients.
Collapse
Affiliation(s)
- Hongdian Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mingxuan Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Shaoning Dong
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Ao Dong
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanyuan Zhu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanyuan Deng
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shu Chen
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mianzhi Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China; Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China.
| |
Collapse
|
6
|
Jang EJ, Kim H, Baek SE, Jeon EY, Kim JW, Kim JY, Kim CD. HMGB1 increases RAGE expression in vascular smooth muscle cells via ERK and p-38 MAPK-dependent pathways. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:389-396. [PMID: 36039739 PMCID: PMC9437367 DOI: 10.4196/kjpp.2022.26.5.389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/15/2022]
Abstract
The increased expression of receptors for advanced glycation end-product (RAGE) is known as a key player in the progression of vascular remodeling. However, the precise signal pathways regulating RAGE expression in vascular smooth muscle cells (VSMCs) in the injured vasculatures are unclear. Given the importance of mitogen-activated protein kinase (MAPK) signaling in cell proliferation, we investigated the importance of MAPK signaling in high-mobility group box 1 (HMGB1)-induced RAGE expression in VSMCs. In HMGB1 (100 ng/ml)-stimulated human VSMCs, the expression of RAGE mRNA and protein was increased in association with an increase in AGE-induced VSMC proliferation. The HMGB1-induced RAGE expression was attenuated in cells pretreated with inhibitors for ERK (PD98059, 10 μM) and p38 MAPK (SB203580, 10 μM) as well as in cells deficient in ERK and p38 MAPK using siRNAs, but not in cells deficient of JNK signaling. In cells stimulated with HMGB1, the phosphorylation of ERK, JNK, and p38 MAPK was increased. This increase in ERK and p38 MAPK phosphorylation was inhibited by p38 MAPK and ERK inhibitors, respectively, but not by JNK inhibitor. Moreover, AGE-induced VSMC proliferation in HMGB1-stimulated cells was attenuated in cells treated with ERK and p38 MAPK inhibitors. Taken together, our results indicate that ERK and p38 MAPK signaling are involved in RAGE expression in HMGB1-stimulated VSMCs. Thus, the ERK/p38 MAPK-RAGE signaling axis in VSMCs was suggested as a potential therapeutic target for vascular remodeling in the injured vasculatures.
Collapse
Affiliation(s)
- Eun Jeong Jang
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Heejeong Kim
- Department of Laboratory Medicine, Pusan National University Hospital, Busan 49241, Korea
| | - Seung Eun Baek
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Eun Yeong Jeon
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Ji Won Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Ju Yeon Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
7
|
Sabbatinelli J, Castiglione S, Macrì F, Giuliani A, Ramini D, Vinci MC, Tortato E, Bonfigli AR, Olivieri F, Raucci A. Circulating levels of AGEs and soluble RAGE isoforms are associated with all-cause mortality and development of cardiovascular complications in type 2 diabetes: a retrospective cohort study. Cardiovasc Diabetol 2022; 21:95. [PMID: 35668468 PMCID: PMC9169316 DOI: 10.1186/s12933-022-01535-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Advanced glycation end-products (AGEs) and their interaction with the receptor for advanced glycation end-products (RAGE) play a pivotal role in the development and progression of type 2 diabetes. In this retrospective cohort study, we explored the association of circulating levels of soluble RAGE (sRAGE) isoforms, i.e., endogenous secretory esRAGE and cleaved cRAGE, AGEs and their respective ratios with 15-year all-cause mortality in type 2 diabetes. METHODS Baseline AGEs and sRAGE isoforms concentration were measured by ELISA in 362 patients with type 2 diabetes and in 125 age- and gender-matched healthy control subjects (CTR). Independent predictors of mortality were determined using Cox proportional-hazards models and used to build and validate a nomogram for all-cause mortality prediction in type 2 diabetes. RESULTS AGEs, total sRAGE, cRAGE and the AGEs/sRAGE and AGEs/esRAGE ratios were significantly increased in patients with type 2 diabetes compared to CTR (p < 0.001). In CTR subjects, but not in type 2 diabetes patients, a significant negative correlation between cRAGE and age was confirmed (p = 0.003), whereas the AGEs/sRAGE (p = 0.032) and AGEs/cRAGE (p = 0.006) ratios were positively associated with age. At an average follow-up of 15 years (4,982 person-years), 130 deaths were observed. The increase in the AGEs/cRAGE ratio was accompanied by a higher risk of all-cause mortality in patients with type 2 diabetes (HR per each SD increment = 1.30, 95% CI 1.15-1.47; p < 0.001). Moreover, sRAGE was associated with the development of major adverse cardiovascular events (MACE) in type 2 diabetes patients without previous MACE (OR for each SD increase: 1.48, 95% CI 1.11-1.89). A nomogram based on age, sex, HbA1c, systolic blood pressure, and the AGEs/cRAGE ratio was built to predict 5-, 10- and 15-year survival in type 2 diabetes. Patients were categorized into quartiles of the monogram scores and Kaplan-Meier survival curves confirmed the prognostic accuracy of the model (log-rank p = 6.5 × 10- 13). CONCLUSIONS The ratio between AGEs and the cRAGE isoform is predictive of 15-year survival in patients with type 2 diabetes. Our data support the assessment of circulating AGEs and soluble RAGE isoforms in patients with type 2 diabetes as predictors of MACE and all-cause mortality.
Collapse
Affiliation(s)
- Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
- Laboratory Medicine Unit, Azienda Ospedaliero Universitaria "Ospedali Riuniti", Ancona, Italy
| | - Stefania Castiglione
- Experimental Cardio-Oncology and Cardiovascular Aging Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Federica Macrì
- Experimental Cardio-Oncology and Cardiovascular Aging Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, 60126, Ancona, Italy.
| | - Deborah Ramini
- Clinical Laboratory and Molecular Diagnostic, IRCCS INRCA, Ancona, Italy
| | - Maria Cristina Vinci
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Elena Tortato
- Metabolic Diseases and Diabetology Department, IRCCS INRCA, Ancona, Italy
| | | | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
- Clinical Laboratory and Molecular Diagnostic, IRCCS INRCA, Ancona, Italy
| | - Angela Raucci
- Experimental Cardio-Oncology and Cardiovascular Aging Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| |
Collapse
|
8
|
Burr SD, Dorroh CC, Stewart JA. Rap1a Activity Elevated the Impact of Endogenous AGEs in Diabetic Collagen to Stimulate Increased Myofibroblast Transition and Oxidative Stress. Int J Mol Sci 2022; 23:ijms23094480. [PMID: 35562872 PMCID: PMC9101126 DOI: 10.3390/ijms23094480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/07/2022] Open
Abstract
Diabetics have an increased risk for heart failure due to cardiac fibroblast functional changes occurring as a result of AGE/RAGE signaling. Advanced glycation end products (AGEs) levels are higher in diabetics and stimulate elevated RAGE (receptor for AGE) signaling. AGE/RAGE signaling can alter the expression of proteins linked to extracellular matrix (ECM) remodeling and oxidative stressors. Our lab has identified a small GTPase, Rap1a, that may overlap the AGE/RAGE signaling pathway. We sought to determine the role Rap1a plays in mediating AGE/RAGE changes and to assess the impact of isolated collagen on further altering these changes. Primary cardiac fibroblasts from non-diabetic and diabetic mice with and without RAGE expression and from mice lacking Rap1a were cultured on tail collagen extracted from non-diabetic or diabetic mice, and in addition, cells were treated with Rap1a activator, EPAC. Protein analyses were performed for changes in RAGE-associated signaling proteins (RAGE, PKC-ζ, ERK1/2) and downstream RAGE signaling outcomes (α-SMA, NF-κB, SOD-2). Increased levels of endogenous AGEs within the diabetic collagen and increased Rap1a activity promoted myofibroblast transition and oxidative stress, suggesting Rap1a activity elevated the impact of AGEs in the diabetic ECM to stimulate myofibroblast transition and oxidative stress.
Collapse
|
9
|
Riches-Suman K, Hussain A. Identifying and targeting the molecular signature of smooth muscle cells undergoing early vascular ageing. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166403. [DOI: 10.1016/j.bbadis.2022.166403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
|
10
|
Janjusevic M, Fluca AL, Gagno G, Pierri A, Padoan L, Sorrentino A, Beltrami AP, Sinagra G, Aleksova A. Old and Novel Therapeutic Approaches in the Management of Hyperglycemia, an Important Risk Factor for Atherosclerosis. Int J Mol Sci 2022; 23:ijms23042336. [PMID: 35216451 PMCID: PMC8878509 DOI: 10.3390/ijms23042336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
Hyperglycemia is considered one of the main risk factors for atherosclerosis, since high glucose levels trigger multiple pathological processes, such as oxidative stress and hyperproduction of pro-inflammatory mediators, leading to endothelial dysfunction. In this context, recently approved drugs, such as glucagon-like-peptide-1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter-2 inhibitors (SGLT2i), could be considered a powerful tool for to reduce glucose concentration and cardiovascular risk. Interestingly, many patients with type 2 diabetes mellitus (T2DM) and insulin resistance have been found to be deficient in vitamin D. Recent studies pointed out the unfavorable prognostic values of T2DM and vitamin D deficiency in patients with cardiac dysfunction, either when considered individually or together, which shed light on the role of vitamin D in general health status. New evidence suggests that SGLT2i could adversely affect the production of vitamin D, thereby increasing the risk of fractures, which are common in patients with T2DM. Therefore, given the biological effects of vitamin D as an anti-inflammatory mediator and a regulator of endothelial function and calcium equilibrium, these new findings should be taken into consideration as well. The aim of this review is to gather the latest advancements regarding the use of antidiabetic and antiplatelet drugs coupled with vitamin D supplementation to control glucose levels, therefore reducing the risk of coronary artery disease (CAD).
Collapse
Affiliation(s)
- Milijana Janjusevic
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
| | - Alessandra Lucia Fluca
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
| | - Giulia Gagno
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
| | - Alessandro Pierri
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
| | - Laura Padoan
- Cardiology and Cardiovascular Physiopathology, Azienda Ospedaliero-Universitaria S. Maria Della Misericordia, 06156 Perugia, Italy;
| | - Annamaria Sorrentino
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
| | | | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
| | - Aneta Aleksova
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
- Correspondence: or ; Tel.: +39-3405507762; Fax: +39-040-3994878
| |
Collapse
|
11
|
Matsumoto T, Taguchi K, Kobayashi T. Relationships between advanced glycation end products (AGEs), vasoactive substances, and vascular function. J Smooth Muscle Res 2022; 57:94-107. [PMID: 35095032 PMCID: PMC8795595 DOI: 10.1540/jsmr.57.94] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) are major cell types that control vascular function, and hence dysfunction of these cells plays a key role in the development and progression of vasculopathies. Abnormal vascular responsiveness to vasoactive substances including vasoconstrictors and vasodilators has been observed in various arteries in diseases including diabetes, hypertension, chronic kidney diseases, and atherosclerosis. Several substances derived from ECs tightly control vascular function, such as endothelium-derived relaxing and contracting factors, and it is known that abnormal vascular signaling of these endothelium-derived substances is often observed in various diseases. Derangement of signaling in VSMCs and altered function influence vascular reactivity to vasoactive substances and tone, which are important determinants of vascular resistance and blood pressure. However, understanding the molecular mechanisms underlying abnormalities of vascular functions in pathological states is difficult because multiple substances interact in the development of these processes. Advanced glycation end products (AGEs), a heterogeneous group of bioactive compounds, are thought to contribute to vascular dysfunction, which in turn cause the development of several diseases including diabetes, hypertension, stroke, and atherosclerosis. A growing body of evidence suggests that AGEs could affect these cells and modulate vascular function. This study is focused on the link between AGEs and functions of ECs and VSMCs, particularly the modulative effects of AGEs on vascular reactivities to vasoactive substances.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
12
|
In Vitro Methodologies to Study the Role of Advanced Glycation End Products (AGEs) in Neurodegeneration. Nutrients 2022; 14:nu14020363. [PMID: 35057544 PMCID: PMC8777776 DOI: 10.3390/nu14020363] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023] Open
Abstract
Advanced glycation end products (AGEs) can be present in food or be endogenously produced in biological systems. Their formation has been associated with chronic neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis. The implication of AGEs in neurodegeneration is related to their ability to bind to AGE-specific receptors and the ability of their precursors to induce the so-called “dicarbonyl stress”, resulting in cross-linking and protein damage. However, the mode of action underlying their role in neurodegeneration remains unclear. While some research has been carried out in observational clinical studies, further in vitro studies may help elucidate these underlying modes of action. This review presents and discusses in vitro methodologies used in research on the potential role of AGEs in neuroinflammation and neurodegeneration. The overview reveals the main concepts linking AGEs to neurodegeneration, the current findings, and the available and advisable in vitro models to study their role. Moreover, the major questions regarding the role of AGEs in neurodegenerative diseases and the challenges and discrepancies in the research field are discussed.
Collapse
|
13
|
High Glucose and Advanced Glycation End Products Induce CD147-Mediated MMP Activity in Human Adipocytes. Cells 2021; 10:cells10082098. [PMID: 34440867 PMCID: PMC8392673 DOI: 10.3390/cells10082098] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 02/06/2023] Open
Abstract
Basigin (CD147) is a transmembrane glycoprotein that regulates several physiological processes, including the production and activity of matrix metalloproteinases (MMPs). The activity of CD147 depends mainly on its glycosylation, which varies among pathophysiological conditions. However, it is unknown whether CD147 activity or its function in MMP regulation are affected by the diabetic environment, which is characterized by high glucose (HG) levels and an excess of glycation end products (AGEs). In this study, we investigated the effect of HG and AGEs on CD147 expression in human adipocytes. We also examined the mediating role of nuclear factor kappa B (NFκB) and receptor of AGE (RAGE) to this effect. Our findings show that carboxymethyl lysine and HG increased CD147 expression and glycosylation, which was accompanied by increases in MMP2 and MMP9 expression and activity, as well as upregulations of the N-acetylglucosaminyltransferase, MGAT5. These effects were abolished by NFκB and RAGE inhibition, CD147 gene silencing, and by the glycosylation inhibitor, tunicamycin. In conclusion, the current findings indicate that AGEs and HG induce CD147 expression and glycosylation in adipocytes, with possible mediation by NFκB and RAGE. One of the critical outcomes of this pathway is augmented MMP activity known to contribute to cardiovascular complications in diabetes.
Collapse
|
14
|
Kennon AM, Stewart JA. RAGE Differentially Altered in vitro Responses in Vascular Smooth Muscle Cells and Adventitial Fibroblasts in Diabetes-Induced Vascular Calcification. Front Physiol 2021; 12:676727. [PMID: 34163373 PMCID: PMC8215351 DOI: 10.3389/fphys.2021.676727] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
The Advanced Glycation End-Products (AGE)/Receptor for AGEs (RAGE) signaling pathway exacerbates diabetes-mediated vascular calcification (VC) in vascular smooth muscle cells (VSMCs). Other cell types are involved in VC, such as adventitial fibroblasts (AFBs). We hope to elucidate some of the mechanisms responsible for differential signaling in diabetes-mediated VC with this work. This work utilizes RAGE knockout animals and in vitro calcification to measure calcification and protein responses. Our calcification data revealed that VSMCs calcification was AGE/RAGE dependent, yet AFBs calcification was not an AGE-mediated RAGE response. Protein expression data showed VSMCs lost their phenotype marker, α-smooth muscle actin, and had a higher RAGE expression over non-diabetics. RAGE knockout (RKO) VSMCs did not show changes in phenotype markers. P38 MAPK, a downstream RAGE-associated signaling molecule, had significantly increased activation with calcification in both diabetic and diabetic RKO VSMCs. AFBs showed a loss in myofibroblast marker, α-SMA, due to calcification treatment. RAGE expression decreased in calcified diabetic AFBs, and P38 MAPK activation significantly increased in diabetic and diabetic RKO AFBs. These findings point to potentially an alternate receptor mediating the calcification response in the absence of RAGE. Overall, VSMCs and AFBs respond differently to calcification and the application of AGEs.
Collapse
Affiliation(s)
- Amber M Kennon
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Mississippi, MS, United States
| | - James A Stewart
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Mississippi, MS, United States
| |
Collapse
|
15
|
Rap1a Regulates Cardiac Fibroblast Contraction of 3D Diabetic Collagen Matrices by Increased Activation of the AGE/RAGE Cascade. Cells 2021; 10:cells10061286. [PMID: 34067282 PMCID: PMC8224555 DOI: 10.3390/cells10061286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular disease is a common diabetic complication that can arise when cardiac fibroblasts transition into myofibroblasts. Myofibroblast transition can be induced by advanced glycated end products (AGEs) present in the extracellular matrix (ECM) activating RAGE (receptor for advanced glycated end products) to elicit intracellular signaling. The levels of AGEs are higher under diabetic conditions due to the hyperglycemic conditions present in diabetics. AGE/RAGE signaling has been shown to alter protein expression and ROS production in cardiac fibroblasts, resulting in changes in cellular function, such as migration and contraction. Recently, a small GTPase, Rap1a, has been identified to overlap the AGE/RAGE signaling cascade and mediate changes in protein expression. While Rap1a has been shown to impact AGE/RAGE-induced protein expression, there are currently no data examining the impact Rap1a has on AGE/RAGE-induced cardiac fibroblast function. Therefore, we aimed to determine the impact of Rap1a on AGE/RAGE-mediated cardiac fibroblast contraction, as well as the influence isolated diabetic ECM has on facilitating these effects. In order to address this idea, genetically different cardiac fibroblasts were embedded in 3D collagen matrices consisting of collagen isolated from either non-diabetic of diabetic mice. Fibroblasts were treated with EPAC and/or exogenous AGEs, which was followed by assessment of matrix contraction, protein expression (α-SMA, SOD-1, and SOD-2), and hydrogen peroxide production. The results showed Rap1a overlaps the AGE/RAGE cascade to increase the myofibroblast population and generation of ROS production. The increase in myofibroblasts and oxidative stress appeared to contribute to increased matrix contraction, which was further exacerbated by diabetic conditions. Based off these results, we determined that Rap1a was essential in mediating the response of cardiac fibroblasts to AGEs within diabetic collagen.
Collapse
|
16
|
Burr SD, Stewart JA. Rap1a Overlaps the AGE/RAGE Signaling Cascade to Alter Expression of α-SMA, p-NF-κB, and p-PKC-ζ in Cardiac Fibroblasts Isolated from Type 2 Diabetic Mice. Cells 2021; 10:cells10030557. [PMID: 33806572 PMCID: PMC8000763 DOI: 10.3390/cells10030557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease, specifically heart failure, is a common complication for individuals with type 2 diabetes mellitus. Heart failure can arise with stiffening of the left ventricle, which can be caused by “active” cardiac fibroblasts (i.e., myofibroblasts) remodeling the extracellular matrix (ECM). Differentiation of fibroblasts to myofibroblasts has been demonstrated to be an outcome of AGE/RAGE signaling. Hyperglycemia causes advanced glycated end products (AGEs) to accumulate within the body, and this process is greatly accelerated under chronic diabetic conditions. AGEs can bind and activate their receptor (RAGE) to trigger multiple downstream outcomes, such as altering ECM remodeling, inflammation, and oxidative stress. Previously, our lab has identified a small GTPase, Rap1a, that possibly overlaps the AGE/RAGE signaling cascade to affect the downstream outcomes. Rap1a acts as a molecular switch connecting extracellular signals to intracellular responses. Therefore, we hypothesized that Rap1a crosses the AGE/RAGE cascade to alter the expression of AGE/RAGE associated signaling proteins in cardiac fibroblasts in type 2 diabetic mice. To delineate this cascade, we used genetically different cardiac fibroblasts from non-diabetic, diabetic, non-diabetic RAGE knockout, diabetic RAGE knockout, and Rap1a knockout mice and treated them with pharmacological modifiers (exogenous AGEs, EPAC, Rap1a siRNA, and pseudosubstrate PKC-ζ). We examined changes in expression of proteins implicated as markers for myofibroblasts (α-SMA) and inflammation/oxidative stress (NF-κB and SOD-1). In addition, oxidative stress was also assessed by measuring hydrogen peroxide concentration. Our results indicated that Rap1a connects to the AGE/RAGE cascade to promote and maintain α-SMA expression in cardiac fibroblasts. Moreover, Rap1a, in conjunction with activation of the AGE/RAGE cascade, increased NF-κB expression as well as hydrogen peroxide concentration, indicating a possible oxidative stress response. Additionally, knocking down Rap1a expression resulted in an increase in SOD-1 expression suggesting that Rap1a can affect oxidative stress markers independently of the AGE/RAGE signaling cascade. These results demonstrated that Rap1a contributes to the myofibroblast population within the heart via AGE/RAGE signaling as well as promotes possible oxidative stress. This study offers a new potential therapeutic target that could possibly reduce the risk for developing diabetic cardiovascular complications attributed to AGE/RAGE signaling.
Collapse
|
17
|
A differentiated Ca 2+ signalling phenotype has minimal impact on myocardin expression in an automated differentiation assay using A7r5 cells. Cell Calcium 2021; 96:102369. [PMID: 33677175 DOI: 10.1016/j.ceca.2021.102369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 01/12/2023]
Abstract
Vascular smooth muscle cells are unusual in that differentiated, contractile cells possess the capacity to "de-differentiate" into a synthetic phenotype that is characterized by being replicative, secretory, and migratory. One aspect of this phenotypic modulation is a shift from voltage-gated Ca2+ signalling in electrically coupled, differentiated cells to increased dependence on store-operated Ca2+ entry and sarcoplasmic reticulum Ca2+ release in synthetic cells. Conversely, an increased voltage-gated Ca2+ entry is seen when proliferating A7r5 smooth muscle cells quiesce. We asked whether this change in Ca2+ signalling was linked to changes in the expression of the phenotype-regulating transcriptional co-activator myocardin or α-smooth muscle actin, using correlative epifluorescence Ca2+ imaging and immunocytochemistry. Cells were cultured in growth media (DMEM, 10% serum, 25 mM glucose) or differentiation media (DMEM, 1% serum, 5 mM glucose). Coinciding with growth arrest, A7r5 cells became electrically coupled, and spontaneous Ca2+ signalling showed increasing dependence on L-type voltage-gated Ca2+ channels that were blocked with nifedipine (5 μM). These synchronized oscillations were modulated by ryanodine receptors, based on their sensitivity to dantrolene (5 μM). Actively growing cultures had spontaneous Ca2+ transients that were insensitive to nifedipine and dantrolene but were blocked by inhibition of the sarco-endoplasmic reticulum ATPase with cyclopiazonic acid (10 μM). In cells treated with differentiation media, myocardin and αSMA immunoreactivity increased prior to changes in the Ca2+ signalling phenotype, while chronic inhibition of voltage-gated Ca2+ entry modestly increased immunoreactivity of myocardin. Stepwise regression analyses suggested that changes in myocardin expression had a weak relationship with Ca2+ signalling synchronicity, but not frequency or amplitude. In conclusion, we report a 96-well assay and analytical pipeline to study the link between Ca2+ signalling and smooth muscle differentiation. This assay showed that changes in the expression of two molecular differentiation markers (myocardin and αSMA) tended to precede changes in the Ca2+ signalling phenotype.
Collapse
|
18
|
Attenuating Effects of Pyrogallol-Phloroglucinol-6,6-Bieckol on Vascular Smooth Muscle Cell Phenotype Changes to Osteoblastic Cells and Vascular Calcification Induced by High Fat Diet. Nutrients 2020; 12:nu12092777. [PMID: 32932908 PMCID: PMC7551448 DOI: 10.3390/nu12092777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Advanced glycation end products/receptor for AGEs (AGEs/RAGEs) or Toll like receptor 4 (TLR4) induce vascular smooth muscle cell (VSMC) phenotype changes in osteoblast-like cells and vascular calcification. We analyzed the effect of Ecklonia cava extract (ECE) or pyrogallol-phloroglucinol-6,6-bieckol (PPB) on VSMC phenotype changes and vascular calcification prompted by a high-fat diet (HFD). HFD unregulated RAGE, TLR4, transforming growth factor beta (TGFβ), bone morphogenetic protein 2 (BMP2), protein kinase C (PKC), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signals in the aorta of mice. ECE and PPB restored the increase of those signal pathways. AGE- or palmitate-treated VSMC indicated similar changes with the animal. HFD increased osteoblast-like VSMC, which was evaluated by measuring core-binding factor alpha-1 (CBFα-1) and osteocalcin expression and alkaline phosphatase (ALP) activity in the aorta. ECE and PPB reduced vascular calcification, which was analyzed by the calcium deposition ratio, and Alizarin red S stain was increased by HFD. PPB and ECE reduced systolic, diastolic, and mean blood pressure, which increased by HFD. PPB and ECE reduced the phenotype changes of VSMC to osteoblast-like cells and vascular calcification and therefore lowered the blood pressure.
Collapse
|
19
|
Haesen S, Cöl Ü, Schurgers W, Evens L, Verboven M, Driesen RB, Bronckaers A, Lambrichts I, Deluyker D, Bito V. Glycolaldehyde-modified proteins cause adverse functional and structural aortic remodeling leading to cardiac pressure overload. Sci Rep 2020; 10:12220. [PMID: 32699285 PMCID: PMC7376068 DOI: 10.1038/s41598-020-68974-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Growing evidence supports the role of advanced glycation end products (AGEs) in the development of diabetic vascular complications and cardiovascular diseases (CVDs). We have shown that high-molecular-weight AGEs (HMW-AGEs), present in our Western diet, impair cardiac function. Whether HMW-AGEs affect vascular function remains unknown. In this study, we aimed to investigate the impact of chronic HMW-AGEs exposure on vascular function and structure. Adult male Sprague Dawley rats were daily injected with HMW-AGEs or control solution for 6 weeks. HMW-AGEs animals showed intracardiac pressure overload, characterized by increased systolic and mean pressures. The contraction response to PE was increased in aortic rings from the HMW-AGEs group. Relaxation in response to ACh, but not SNP, was impaired by HMW-AGEs. This was associated with reduced plasma cyclic GMP levels. SOD restored ACh-induced relaxation of HMW-AGEs animals to control levels, accompanied by a reduced half-maximal effective dose (EC50). Finally, collagen deposition and intima-media thickness of the aortic vessel wall were increased with HMW-AGEs. Our data demonstrate that chronic HMW-AGEs exposure causes adverse vascular remodelling. This is characterised by disturbed vasomotor function due to increased oxidative stress and structural changes in the aorta, suggesting an important contribution of HMW-AGEs in the development of CVDs.
Collapse
Affiliation(s)
- Sibren Haesen
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Ümare Cöl
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Wouter Schurgers
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Lize Evens
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Maxim Verboven
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Ronald B Driesen
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Dorien Deluyker
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Virginie Bito
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium.
| |
Collapse
|
20
|
Matsumoto T, Takayanagi K, Kojima M, Taguchi K, Kobayashi T. Mechanisms underlying suppression of noradrenaline-induced contraction by prolonged treatment with advanced glycation end-products in organ-cultured rat carotid artery. Pflugers Arch 2020; 472:355-366. [DOI: 10.1007/s00424-020-02349-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/30/2019] [Accepted: 01/14/2020] [Indexed: 01/11/2023]
|
21
|
Ma W, Xu J, Zhang Y, Zhang H, Zhang Z, Zhou L, Wang X, Liu H, Chen Y, Du P, Min N, Liu Z, Yin Y. Matrine pre-treatment suppresses AGEs- induced HCSMCs fibrotic responses by regulating Poldip2/mTOR pathway. Eur J Pharmacol 2019; 865:172746. [DOI: 10.1016/j.ejphar.2019.172746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 11/27/2022]
|
22
|
Wang Z, Zhang L, Sun Z, Shao C, Li Y, Bao Z, Jing L, Geng Y, Gu W, Pang Q, Li L, Yan J. Mechanisms of Matrix Vesicles Mediating Calcification Transition in Diabetic Plaque. Heart Lung Circ 2019; 29:112-117. [PMID: 31230870 DOI: 10.1016/j.hlc.2019.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/06/2019] [Accepted: 04/22/2019] [Indexed: 01/11/2023]
Abstract
Vascular calcification is a key character of advanced plaque in diabetic atherosclerosis. Microcalcification induces plaque rupture, whereas macrocalcification contributes to plaque stability. However, there is still no clear explanation for the formation and transition of these two types of calcification. Based on existing work and the latest international progress, this article provides a brief review of four aspects: calcification transition in plaque; matrix vesicle-mediated calcification transition in plaque; regulation mechanism of matrix vesicle-mediated calcification transition in diabetic plaque; and proposal of a new hypothesis, which may offer a new perspective on the study of the mechanism of calcification transition in plaque.
Collapse
Affiliation(s)
- Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yukun Li
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Zhengyang Bao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Lele Jing
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yue Geng
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Wen Gu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Qiwen Pang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
23
|
Eleazu C, Omar N, Lim OZ, Yeoh BS, Nik Hussain NH, Mohamed M. Obesity and Comorbidity: Could Simultaneous Targeting of esRAGE and sRAGE Be the Panacea? Front Physiol 2019; 10:787. [PMID: 31293451 PMCID: PMC6603218 DOI: 10.3389/fphys.2019.00787] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/04/2019] [Indexed: 02/05/2023] Open
Abstract
Obesity, a chronic multifaceted disease, predisposes its patients to increased risk of metabolic disorders such as: diabetes mellitus, cardiovascular diseases, dyslipidemia, etc. Recent studies reported it to be amongst the leading causes of deaths in the world. Although several treatment options for obesity abound, many of them have not been able to successfully reverse the existing obesity and metabolic dysregulation. This has therefore warranted the need for either alternative therapies or diversification of the treatment approach for obesity and its comorbidity. When the receptor for advanced glycation end products (RAGE) interacts with its ligand, RAGE-ligand activates an inflammatory signaling cascade, that leads to the activation of nuclear factor kappa B (NF-κB) and transcription of inflammatory cytokines. This action has been associated with the development of obesity and its mediated metabolic dysregulation. In view of the increasing prevalence of obesity globally and the potential threat it places on life expectancy, this article reviewed the promising potentials of targeting endogenous secretory receptor for advanced glycation end products/soluble receptors for advanced glycation end products signaling as a treatment approach for obesity. We carried out a literature search in several electronic data bases such as: Pubmed, Pubmed Central, Google, Google Scholar, Scopus, and Medline from 1980 to 2019 to acquire the status of information concerning this. The article suggests the need for the development of an esRAGE/sRAGE targeted pharmacotherapy as a treatment approach for obesity and its comorbidity.
Collapse
Affiliation(s)
- Chinedum Eleazu
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Department of Chemistry/Biochemistry/Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| | - Norsuhana Omar
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Oon Zhi Lim
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Boon Seng Yeoh
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
24
|
Feng Z, Hou X, Zhu C, Zhu J, Jiang C. Retracted: Epigallocatechin gallate ameliorates morphological changes of pancreatic islets in diabetic mice and downregulates blood sugar level by inhibiting the accumulation of AGE-RAGE. J Cell Biochem 2019; 120:8510-8520. [PMID: 30582209 DOI: 10.1002/jcb.28139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/05/2018] [Indexed: 02/02/2023]
Abstract
This study aimed to elucidate the key mechanisms and effects of the functional component of green tea, epigallocatechin gallate (EGCG) on a diabetic mouse model. The detected relationship between compounds and genes recorded in the STITCH database highlighted an interaction network between the direct target genes of EGCG and the known diabetes-related genes, which was made apparent through the analysis of gene-gene interactions and signaling pathways, revealing that a key AGE-RAGE signaling pathway in diabetes was enriched in the network. By means of systematic supplementary analyses on diabetic mice, provided evidence suggested that EGCG could significantly enhance the morphology of pancreatic tissues in diabetic mice and downregulate the blood glucose level in a clear dose effect manner, and increased insulin receptor (IR), insulin receptor substrate (IRS1 and IRS2) expression in the liver. Through the detection of protein expression, EGCG was observed to possess the ability to downregulate the accumulation of AGE-RAGE in pancreatic tissues as well as in the transcription factor nuclear factor-κB (NF-κB), which represents a potentially significant method by which EGCG influences diabetes. The results of this study provided evidence indicating that EGCG can effectively improve the morphology of pancreatic tissues, but notably reduce blood glucose levels in diabetic mice, which may be related to its inhibition of AGE-RAGE signaling pathway and activation of transcription factor NF-κB pathway.
Collapse
Affiliation(s)
- Zhongtao Feng
- Department of Clinical Laboratory, Jining No.1 People's Hospital, Affiliated Jining NO. 1 People's Hospital of Jining Medical University, Jining Medical University, Shandong Province, China
| | - Xiumei Hou
- Nursing Department, Jining Psychiatric Hospital, Jining, China
| | - Chuanan Zhu
- Department of Clinical Laboratory, Jining No. 1 People's Hospital, Jining, China
| | - Jiabin Zhu
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Chunxiao Jiang
- Department of Clinical Laboratory, Jining No. 1 People's Hospital, Jining, China
| |
Collapse
|
25
|
Jang EJ, Baek SE, Kim EJ, Park SY, Kim CD. HMGB1 enhances AGE-mediated VSMC proliferation via an increase in 5-LO-linked RAGE expression. Vascul Pharmacol 2019; 118-119:106559. [PMID: 30954689 DOI: 10.1016/j.vph.2019.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/28/2019] [Accepted: 04/02/2019] [Indexed: 01/11/2023]
Abstract
Receptors for advanced glycation end-product (RAGE) play a pivotal role in the progression of proliferative vascular diseases. However, the precise mechanisms regulating RAGE expression in vascular smooth muscle cells (VSMCs) of the injured vasculatures is unclear. Given the potential importance of 5-lipoxygenase (5-LO) derived mediators in cellular responses mediated by RAGE, this study aimed to evaluate in VSMCs treated with high mobility group box 1 (HMGB1): 1) the RAGE expression; 2) the AGE-induced VSMC proliferation; 3) the role of 5-LO signaling in HMGB1-induced RAGE expression. In cultured human VSMCs stimulated with HMGB1 (100 ng/ml), RAGE mRNA and protein expression were markedly increased along with an increase in AGE-mediated VSMC proliferation. Both of these effects were markedly attenuated in cells pretreated with zileuton (1-10 μM), a 5-LO inhibitor, as well as in cells transfected with 5-LO siRNA, suggesting a potential involvement of 5-LO signaling in HMGB1-mediated RAGE expression in VSMCs. Moreover, 5-LO expression, accompanied by production of leukotrienes was markedly increased in HMGB1-stimulated VSMCs, which was attenuated in cells deficient of TLR2 or RAGE. Taken together, our results suggest that HMGB1-induced increase in 5-LO expression enhances RAGE expression in VSMCs, which stimulates AGE-mediated VSMC proliferation. Thus, the 5-LO-RAGE signaling axis in VSMCs might serve as a potential therapeutic target for vascular remodeling in the injured vasculature.
Collapse
Affiliation(s)
- Eun Jeong Jang
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Seung Eun Baek
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Eun Jung Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - So Youn Park
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Gyeongnam 50612, Republic of Korea.
| |
Collapse
|
26
|
Huang L, Li L, Yang T, Li W, Song L, Meng X, Gu Q, Xiong C, He J. Transgelin as a potential target in the reversibility of pulmonary arterial hypertension secondary to congenital heart disease. J Cell Mol Med 2018; 22:6249-6261. [PMID: 30338626 PMCID: PMC6237561 DOI: 10.1111/jcmm.13912] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The reversibility of pulmonary arterial hypertension (PAH) in congenital heart disease (CHD) is of great importance for the operability of CHD. Proteomics analysis found that transgelin was significantly up-regulated in the lung tissue of CHD-PAH patients, especially in the irreversible group. However, how exactly it participated in CHD-PAH development is unknown. METHODS Immunohistochemical staining and Western blot were performed for further qualitative and quantitative analysis of transgelin in the lung tissues of CHD-PAH patients. The mechanism of transgelin in CHD-PAH development was explored in vitro. Primary human pulmonary arterial smooth muscle cells (hPASMCs) were cultured and infected with TAGLN siRNA or TAGLN lentiviral vector. Cell morphologic change (Coomassie Brilliant Blue staining), proliferation (cell count and EdU assay), apoptosis (terminal deoxyribonucleotidyl transferase mediated dUTP nick end labeling assay and Annexin-V flow cytometry) and migration (transwell) were evaluated following the cell treatment. The mRNA and protein expression levels were detected in real-time PCR and Western blot. RESULTS In line with the proteomic findings, transgelin was obviously expressed in PASMC of the middle pulmonary arterioles, especially in the irreversible PAH group. Also, transgelin expression showed positive relation with pathological grading. Experiment in vitro demonstrated that transgelin overexpression promoted PASMC proliferation and migration, strengthened cytoskeleton and was accompanied by increased expression of synthetic phenotype markers (osteopontin, proliferating cell nuclear antigen) and anti-apoptotic protein (bcl-2). On the other hand, suppression of transgelin expression activated PASMC apoptosis, reducing cell proliferation and migration. CONCLUSIONS Transgelin may be a potential target in the development of irreversible CHD-PAH through inducing PASMC phenotype change, proliferation, migration and reducing cell apoptosis.
Collapse
Affiliation(s)
- Li Huang
- Center of Pulmonary Vascular DiseaseState Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Li Li
- Department of PathologyState Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tao Yang
- Center of Pulmonary Vascular DiseaseState Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wen Li
- Center of Pulmonary Vascular DiseaseState Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Li Song
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xianmin Meng
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qing Gu
- Center of Pulmonary Vascular DiseaseState Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Changming Xiong
- Center of Pulmonary Vascular DiseaseState Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jianguo He
- Center of Pulmonary Vascular DiseaseState Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
27
|
Oxytocin and vasopressin modulation of social anxiety following adolescent intermittent ethanol exposure. Psychopharmacology (Berl) 2018; 235:3065-3077. [PMID: 30141056 PMCID: PMC6456069 DOI: 10.1007/s00213-018-5003-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/16/2018] [Indexed: 02/08/2023]
Abstract
RATIONALE Adolescent intermittent ethanol exposure (AIE) produces lasting, sex-specific social anxiety-like alterations in male, but not female rats. Oxytocin (OXT) and vasopressin (AVP) brain systems play opposite roles in regulating social preference/avoidance, with OXT increasing approach to, and AVP increasing avoidance of social stimuli. OBJECTIVES To test the hypothesis that social anxiety-like alterations seen in adult males after AIE are associated with a shift in the balance between OXT and AVP toward AVP, effectiveness of pharmacological activation of the OXT system and blockade of endogenous activity at AVP receptors for reversing AIE-induced social anxiety-like alterations was assessed, along with examination of the effects of AIE on OXT, vasopressin V1a, and V1b receptor (OXT-R, V1a-R, and V1b-R) surface expression in the hypothalamus. METHODS Sprague-Dawley male and female rats were given 4 g/kg ethanol (AIE) or water intragastrically every 48 h for a total of 11 exposures during postnatal days (P) 25-45. On P70-72, animals were given a social interaction test following administration of a selective OXT-R agonist WAY-267464, selective V1a-R antagonist SR-49059, or V1b-R antagonist SSR-149415, and hypothalamic tissue was collected. RESULTS Social anxiety-like behavior was induced by AIE in males but not females, and was selectively reversed by the selective OXT-R agonist and V1b-R antagonist, but not V1a-R antagonist. AIE was also found to decrease OXT-R, but increase V1b-R neuronal surface expression relative to water-exposed controls in the hypothalamus of males, but not females. CONCLUSIONS These findings demonstrate that AIE induces changes in OXT-R and AVP-R surface expression in the hypothalamus along with social anxiety-like alterations in male rats. These social anxiety-like alterations can be reversed either by activation of the OXT system or by suppression of the AVP system, data that support the hypothesis that social anxiety-like alterations induced by adolescent alcohol exposure in male rats are associated at least in part with an OXT/AVP imbalance.
Collapse
|
28
|
Walker A, Nissen E, Geiger A. Migratory, metabolic and functional alterations of fibrocytes in type 2 diabetes. IUBMB Life 2018; 70:1122-1132. [PMID: 30184318 DOI: 10.1002/iub.1920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/16/2022]
Abstract
Fibrocytes are bloodborne mesenchymal progenitor cells that are recruited to injured tissue sites and contribute to the repair process by acquiring a myofibroblast-like phenotype and producing extracellular matrix components and growth factors. Treatment with normal fibrocytes or their exosomes restores the ability of genetically diabetic mice to heal skin wounds, suggesting the existence of dysfunctional alterations in diabetic fibrocytes. This study compared the migratory, metabolic and functional characteristics of fibrocytes from patients with type 2 diabetes (T2DPs) and healthy controls (HCs). It was found that the frequency of these cells was abnormally low in the peripheral blood of T2DPs. Diabetic fibrocytes showed reduced expression of the C-X-C motif and C-C motif chemokine receptors (CXCR)4, (CCR)5, and CCR7, and demonstrated reduced migration in response to their ligands (CXCL)12, (CCL)5, and CCL21. They exhibited increased expression of the receptor for advanced glycation end product, suppression of the alternative AGE receptor 1, increased intracellular concentrations of AGEs, decreased expression of sirtuin-1 and elevated oxidative stress. In short-term cultures, fibrocytes from T2DPs released larger amounts of proinflammatory cytokines than those from HCs. Unlike normal fibrocytes, diabetic fibrocytes did not exhibit increased expression of type I collagen and α-smooth muscle actin on stimulation with transforming growth factor (TGF)-β1 and this abnormal response was associated with downregulation of TGF-β1 type II receptor on the cell surface. Study findings uncover multiple migratory and functional alterations of diabetic fibrocytes that may contribute to explain why T2DPs experience impaired wound healing and chronic ulcers. © 2018 IUBMB Life, 70(11):1122-1132, 2018.
Collapse
Affiliation(s)
- Audrey Walker
- Proteomics & Metabolomics Laboratory, DreiRosen Pharma GmbH, Berlin, Germany
| | - Erwin Nissen
- Proteomics & Metabolomics Laboratory, DreiRosen Pharma GmbH, Berlin, Germany
| | - Adolf Geiger
- Technology Development, DreiRosen Pharma GmbH, Berlin, Germany
| |
Collapse
|
29
|
Dhar S, Sun Z, Meininger GA, Hill MA. Nonenzymatic glycation interferes with fibronectin-integrin interactions in vascular smooth muscle cells. Microcirculation 2018; 24. [PMID: 28005306 DOI: 10.1111/micc.12347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 12/19/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE We aimed to investigate whether advanced nonenzymatic glycation of the ECM protein, fibronectin, impacts its normal integrin-mediated interaction with arteriolar VSMC. METHODS AFM was performed on cultured VSMC from rat cremaster arterioles to study native and glycated fibronectin (FN and gFN) interactions with cellular integrins. AFM probes were functionalized with FN or gFN or with native or glycated albumin (gAlb) as controls. RESULTS VSMC showed increased adhesion probability to gFN (72.9±3.5%) compared with native FN (63.0±1.6%). VSMC similarly showed increased probability of adhesion (63.8±1.7%) to gAlb compared with native Alb (40.1±4.7%). Adhesion of native FN to VSMC was α5 and β1 integrin dependent whereas adhesion of gFN to VSMC was integrin independent. The RAGE-selective inhibitor, FPS-ZM1, blocked gFN (and gAlb) adhesion, suggesting that adhesion of glycated proteins was RAGE dependent. Interaction of FN with VSMC was not altered by soluble gFN while soluble native FN did not inhibit adhesion of gFN to VSMC. In contrast, gAlb inhibited adhesion of gFN to VSMC in a concentration-dependent manner. CONCLUSIONS Glycation of FN shifts the nature of cellular adhesion from integrin- to RAGE-dependent mechanisms.
Collapse
Affiliation(s)
- Srijita Dhar
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Gerald A Meininger
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
30
|
Chi J, Meng L, Pan S, Lin H, Zhai X, Liu L, Zhou C, Jiang C, Guo H. Primary Culture of Rat Aortic Vascular Smooth Muscle Cells: A New Method. Med Sci Monit 2017; 23:4014-4020. [PMID: 28822209 PMCID: PMC5572779 DOI: 10.12659/msm.902816] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/01/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Developing a simple and efficient method of obtaining primary cultured VSMCs is necessary for basic cardiovascular research. MATERIAL AND METHODS The procedure of our new method mainly includes 6 steps: isolation of the aortic artery, removal of the fat tissue around the artery, separation of the media, cutting the media into small tissue blocks, transferring the tissue blocks to cell culture plates, and incubation until the cells reach confluence. The cells were identified as VSMCs by morphology and immunofluorescence. Then, VSMCs obtained by this new tissue explants method, the traditional tissue explants method, the enzyme digestion method, and A7r5 cell line were divided into 4 groups. The purity of cells was test by multiple fluorescent staining. Western blotting was used to investigate the phenotype of VSMCs obtained by different methods. RESULTS Cells began to grow out at about 8 days and became relatively confluent within 16 days. Compared with VSMCs from the traditional tissue explants method and enzyme digestion method or A7r5 cell line, VSMCs obtained by our method showed higher purity and manifested a more "contractile" phenotype characteristic. CONCLUSIONS We have conquered the disadvantages in the previous primary culture methods and established a simple and reliable way to isolate and culture rat aortic VSMCs with high purity and stability.
Collapse
Affiliation(s)
- Jufang Chi
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang, P.R. China
| | - Liping Meng
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang, P.R. China
| | - Sunlei Pan
- The 1 Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Hui Lin
- The 1 Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Xiaoya Zhai
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang, P.R. China
| | - Longbin Liu
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang, P.R. China
| | - Changzuan Zhou
- The 1 Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Chengjian Jiang
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang, P.R. China
| | - Hangyuan Guo
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang, P.R. China
- The 1 Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|
31
|
Li C, Chang Y, Li Y, Chen S, Chen Y, Ye N, Dai D, Sun Y. Advanced glycation end products promote the proliferation and migration of primary rat vascular smooth muscle cells via the upregulation of BAG3. Int J Mol Med 2017; 39:1242-1254. [PMID: 28350077 PMCID: PMC5403185 DOI: 10.3892/ijmm.2017.2938] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/24/2017] [Indexed: 12/31/2022] Open
Abstract
The present study was aimed to investigate the role of reactive oxygen species (ROS) on advanced glycation end product (AGE)-induced proliferation and migration of vascular smooth muscle cells (VSMCs) and whether Bcl-2‑associated athanogene 3 (BAG3) is involved in the process. Primary rat VSMCs were extracted and cultured in vitro. Cell viability was detected by MTT assay and cell proliferation was detected by EdU incorporation assay. Cell migration was detected by wound healing and Transwell assays. BAG3 was detected using qPCR and western blot analysis. Transcriptional and translational inhibitors (actinomycin D and cycloheximide, respectively) were used to study the effect of AGEs on the expression of BAG3 in VSMCs. Lentiviral plasmids containing short hairpin RNA (shRNA) against rat BAG3 or control shRNA were transduced into VSMCs. Cellular ROS were detected by 2',7'-dichlorofluorescein diacetate (DCFH-DA) staining. Mitochondrial membrane potential was detected by tetramethylrhodamine methyl ester (TMRE) staining. AGEs significantly increased the expression of BAG3 in a dose-and time-dependent manner. Furthermore, AGEs mainly increased the expression of BAG3 mRNA by increasing the RNA synthesis rather than inhibiting the RNA translation. BAG3 knockdown reduced the proliferation and migration of VSMCs induced by AGEs. BAG3 knockdown reduced the generation of ROS and sustained the mitochondrial membrane potential of VSMCs. Reduction of ROS production by N-acetylcysteine (NAC), a potent antioxidant, also reduced the proliferation and migration of VSMCs. On the whole, the present study demonstrated for the first time that AGEs could increase ROS production and promote the proliferation and migration of VSMCs by upregulating BAG3 expression. This study indicated that BAG3 should be considered as a potential target for the prevention and/or treatment of vascular complications of diabetes.
Collapse
Affiliation(s)
- Cunshu Li
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ye Chang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuan Li
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shuang Chen
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yintao Chen
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ning Ye
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Dongxue Dai
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW The objective of this literature review is to determine whether there are indications that microvascular complications occur in diabetic bone. Evidence definitively linking diabetic skeletal fragility with microvascular complications in bone remains elusive. RECENT FINDINGS Circumstantial evidence, some recent and some lost to time, suggests that atherosclerotic vascular diseases such as peripheral arterial disease cause poor blood perfusion of bone and subsequent hypoxia and contribute to low bone density and high cortical porosity, patterns similar to some recently observed in diabetic subjects. Evidence also exists to suggest that potentially anti-angiogenic conditions, such as impaired vascular endothelial growth factor (VEGF) signaling, predominate in diabetic bone. Microvascular complications may contribute, in part, to diabetic skeletal fragility but data supporting this interpretation are primarily circumstantial at this time. This review highlights gaps in our knowledge and hopefully spurs further discussions and research on this topic.
Collapse
Affiliation(s)
- Roberto Jose Fajardo
- Department of Orthopaedics, University of Texas Health Science Center at San Antonio, Med 518C, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA.
| |
Collapse
|
33
|
Yu T, Zheng Y, Wang Y, Xiong W, Lin L. Advanced glycation end products interfere with gastric smooth muscle contractile marker expression via the AGE/RAGE/NF-κB pathway. Exp Mol Pathol 2017; 102:7-14. [PMID: 27939576 DOI: 10.1016/j.yexmp.2016.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/25/2016] [Accepted: 12/05/2016] [Indexed: 11/23/2022]
Abstract
Excessive production of advanced glycation end products (AGE) has been implicated in the pathogenesis of diabetic complications. Smooth muscle (SM) phenotype transition is involved in diabetes-associated gastric motility dysfunction. We investigated whether AGE interfere with gastric antral SM contractile marker expression. Sixteen Sprague-Dawley rats were randomly divided into control and streptozotocin-induced diabetic groups. Sixteen weeks after streptozotocin administration, gastric antral SM strip contractility in the groups were measured. The gastric tissue expression of AGE was tested. Primary cultured gastric smooth muscle cells (SMCs) were used in complementary in vitro studies. In the presence and absence of AGE, SMCs were transfected with myocardin plasmid or treated with nuclear factor-κB (NF-κB) inhibitor or anti-RAGE antibody. Diabetic rats showed weakness of SM strip contractility and decreased expression of SM contractile marker genes (myosin heavy chains [MHC], α-actin, calponin) as compared with the control group. Gastric antral SM layer Nε-(carboxymethyl) lysine (CML) level, the major AGE compound, were increased in the diabetic rats. AGE downregulated SM contractile markers and myocardin expression in a concentration-dependent manner. Myocardin overexpression prevented these results. AGE treatment activated NF-κB in SMCs. The NF-κB inhibitor BAY 11-7082 and anti-RAGE antibody blocked the effects of AGE on myocardin downregulation. AGE may induce the development of gastric dysmotility by downregulating SM contractile proteins and myocardin expression via the AGE/RAGE/NF-κB pathway.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Animals
- Biomarkers/metabolism
- Blotting, Western
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cells, Cultured
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Dose-Response Relationship, Drug
- Gastric Emptying
- Gene Expression/drug effects
- Glycation End Products, Advanced/pharmacology
- Male
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Muscle Contraction
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- Muscle, Smooth/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- NF-kappa B/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Pyloric Antrum/metabolism
- Pyloric Antrum/physiopathology
- Random Allocation
- Rats, Sprague-Dawley
- Receptor for Advanced Glycation End Products/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Calponins
Collapse
Affiliation(s)
- Ting Yu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, China
| | - Yongping Zheng
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, China
| | - Yun Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, China
| | - Wenjie Xiong
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, China
| | - Lin Lin
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, China.
| |
Collapse
|
34
|
Koike S, Yano S, Tanaka S, Sheikh AM, Nagai A, Sugimoto T. Advanced Glycation End-Products Induce Apoptosis of Vascular Smooth Muscle Cells: A Mechanism for Vascular Calcification. Int J Mol Sci 2016; 17:ijms17091567. [PMID: 27649164 PMCID: PMC5037835 DOI: 10.3390/ijms17091567] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/27/2016] [Accepted: 09/08/2016] [Indexed: 02/08/2023] Open
Abstract
Vascular calcification, especially medial artery calcification, is associated with cardiovascular death in patients with diabetes mellitus and chronic kidney disease (CKD). To determine the underlying mechanism of vascular calcification, we have demonstrated in our previous report that advanced glycation end-products (AGEs) stimulated calcium deposition in vascular smooth muscle cells (VSMCs) through excessive oxidative stress and phenotypic transition into osteoblastic cells. Since AGEs can induce apoptosis, in this study we investigated its role on VSMC apoptosis, focusing mainly on the underlying mechanisms. A rat VSMC line (A7r5) was cultured, and treated with glycolaldehyde-derived AGE-bovine serum albumin (AGE3-BSA). Apoptotic cells were identified by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. To quantify apoptosis, an enzyme-linked immunosorbent assay (ELISA) for histone-complexed DNA fragments was employed. Real-time PCR was performed to determine the mRNA levels. Treatment of A7r5 cells with AGE3-BSA from 100 µg/mL concentration markedly increased apoptosis, which was suppressed by Nox inhibitors. AGE3-BSA significantly increased the mRNA expression of NAD(P)H oxidase components including Nox4 and p22phox, and these findings were confirmed by protein levels using immunofluorescence. Dihydroethidisum assay showed that compared with cBSA, AGE3-BSA increased reactive oxygen species level in A7r5 cells. Furthermore, AGE3-induced apoptosis was significantly inhibited by siRNA-mediated knockdown of Nox4 or p22phox. Double knockdown of Nox4 and p22phox showed a similar inhibitory effect on apoptosis as single gene silencing. Thus, our results demonstrated that NAD(P)H oxidase-derived oxidative stress are involved in AGEs-induced apoptosis of VSMCs. These findings might be important to understand the pathogenesis of vascular calcification in diabetes and CKD.
Collapse
Affiliation(s)
- Sayo Koike
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, Shimane 693-8501, Japan.
| | - Shozo Yano
- Department of Laboratory Medicine, Shimane University Faculty of Medicine, Shimane 693-8501, Japan.
| | - Sayuri Tanaka
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, Shimane 693-8501, Japan.
| | - Abdullah M Sheikh
- Department of Laboratory Medicine, Shimane University Faculty of Medicine, Shimane 693-8501, Japan.
| | - Atsushi Nagai
- Department of Laboratory Medicine, Shimane University Faculty of Medicine, Shimane 693-8501, Japan.
| | - Toshitsugu Sugimoto
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, Shimane 693-8501, Japan.
| |
Collapse
|
35
|
Kay AM, Simpson CL, Stewart JA. The Role of AGE/RAGE Signaling in Diabetes-Mediated Vascular Calcification. J Diabetes Res 2016; 2016:6809703. [PMID: 27547766 PMCID: PMC4980539 DOI: 10.1155/2016/6809703] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/19/2016] [Indexed: 11/26/2022] Open
Abstract
AGE/RAGE signaling has been a well-studied cascade in many different disease states, particularly diabetes. Due to the complex nature of the receptor and multiple intersecting pathways, the AGE/RAGE signaling mechanism is still not well understood. The purpose of this review is to highlight key areas of AGE/RAGE mediated vascular calcification as a complication of diabetes. AGE/RAGE signaling heavily influences both cellular and systemic responses to increase bone matrix proteins through PKC, p38 MAPK, fetuin-A, TGF-β, NFκB, and ERK1/2 signaling pathways in both hyperglycemic and calcification conditions. AGE/RAGE signaling has been shown to increase oxidative stress to promote diabetes-mediated vascular calcification through activation of Nox-1 and decreased expression of SOD-1. AGE/RAGE signaling in diabetes-mediated vascular calcification was also attributed to increased oxidative stress resulting in the phenotypic switch of VSMCs to osteoblast-like cells in AGEs-induced calcification. Researchers found that pharmacological agents and certain antioxidants decreased the level of calcium deposition in AGEs-induced diabetes-mediated vascular calcification. By understanding the role the AGE/RAGE signaling cascade plays diabetes-mediated vascular calcification will allow for pharmacological intervention to decrease the severity of this diabetic complication.
Collapse
Affiliation(s)
- Amber M. Kay
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - C. LaShan Simpson
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS 39762, USA
| | - James A. Stewart
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
36
|
Sun Y, Kang L, Li J, Liu H, Wang Y, Wang C, Zou Y. Advanced glycation end products impair the functions of saphenous vein but not thoracic artery smooth muscle cells through RAGE/MAPK signalling pathway in diabetes. J Cell Mol Med 2016; 20:1945-55. [PMID: 27297874 PMCID: PMC5020631 DOI: 10.1111/jcmm.12886] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/26/2016] [Indexed: 11/30/2022] Open
Abstract
Saphenous vein (SV) and internal thoracic artery (ITA) are commonly used bypass conduits. However, graft failure occurs in SV rather than in ITA, especially in diabetes (DM). The mechanism for this difference has not been fully understood. Accumulation of advanced glycation end products (AGEs) and activation of AGEs receptor (RAGE) could accelerate smooth muscle cells (SMC) proliferation in DM, we thus asked whether AGEs-RAGE could mediate the differences between SMC from SV (SMCV ) and from ITA (SMCA ). Twenty-five patients with DM and other 25 patients without DM were enclosed in DM and control group, respectively. AGEs (100 μg/ml) were added to cultured SMCA and SMCV obtained at coronary artery bypass graft (CABG) and proliferative rates were determined. Transcript expression, phosphorylation or protein expression levels of MAP kinase family (ERK, p38 and JNK), matrix metalloproteinases (MMP)-2 and MMP-9 were analysed by real-time PCR, Western-blot or immunofluorescence staining, respectively. Compared with paired SMCA , SMCV showed significantly increased proliferation rate, MAP kinase family phosphorylation, and MMP-2/9 expression in both groups, especially in DM group. The responses of SMCV induced by AGEs were significantly larger in DM than in control group, which could be suppressed by inhibition of RAGE and ERK. However, all the cellular events of SMCV were not found in paired SMCA . This study suggests that AGEs-RAGE could induce the proliferation of SMCV but not SMCA via MAP kinase pathway in DM. It is the intrinsic 'inactive' tendency of SMCA that contributes to the different rates of graft disease between SV and ITA after CABG.
Collapse
Affiliation(s)
- Yongxin Sun
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Le Kang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Li
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huan Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yulin Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
37
|
Siegman MJ, Eto M, Butler TM. Remodeling of the rat distal colon in diabetes: function and ultrastructure. Am J Physiol Cell Physiol 2016; 310:C151-60. [PMID: 26561639 PMCID: PMC4719031 DOI: 10.1152/ajpcell.00253.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/10/2015] [Indexed: 01/08/2023]
Abstract
This study seeks to define and explain remodeling of the distal colon in the streptozotocin (STZ)-treated rat model of diabetes through analysis of resting and active length dependence of force production, chemical composition, and ultrastructure. Compared with untreated controls, the passive stiffness on extension of the diabetic muscle is high, and active force produced at short muscle lengths is amplified but is limited by an internal resistance to shortening. The latter are accounted for by a significant increase in collagen type 1, with no changes in types 3 and 4. In the diabetic colon, ultrastructural studies show unique, conspicuous pockets of collagen among muscle cells, in addition to a thickened basement membrane and an extracellular space filled with collagen fibers and various fibrils. Measurements of DNA and total protein content revealed that the diabetic colon underwent hypertrophy, along with a proportional increase in actin and myosin contents, with no change in the actin-to-myosin ratio. Active force production per cross-sectional area was not different in the diabetic and normal muscles, consistent with the proportionality of changes in contractile proteins. The stiffness and the limit to shortening of the diabetic colon were significantly reduced by treatment with the glycation breaker alagebrium chloride (ALT-711), with no change in collagen contents. Functionally, this study shows that, in diabetes, the production of collagen type 1 and glycation increase stiffness, which limits distensibility on filling and limits shortening and expulsion of contents, both of which can be alleviated by treatment with ALT-711.
Collapse
Affiliation(s)
- Marion J Siegman
- Department of Molecular Physiology and Biophysics, Sidney Kimmel College of Medicine at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Masumi Eto
- Department of Molecular Physiology and Biophysics, Sidney Kimmel College of Medicine at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Thomas M Butler
- Department of Molecular Physiology and Biophysics, Sidney Kimmel College of Medicine at Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Maltais JS, Simard E, Froehlich U, Denault JB, Gendron L, Grandbois M. iRAGE as a novel carboxymethylated peptide that prevents advanced glycation end product-induced apoptosis and endoplasmic reticulum stress in vascular smooth muscle cells. Pharmacol Res 2015; 104:176-85. [PMID: 26707030 DOI: 10.1016/j.phrs.2015.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/06/2015] [Accepted: 12/15/2015] [Indexed: 01/11/2023]
Abstract
Advanced glycation end-products (AGE) and the receptor for AGE (RAGE) have been linked to numerous diabetic vascular complications. RAGE activation promotes a self-sustaining state of chronic inflammation and has been shown to induce apoptosis in various cell types. Although previous studies in vascular smooth muscle cells (VSMC) showed that RAGE activation increases vascular calcification and interferes with their contractile phenotype, little is known on the potential of RAGE to induce apoptosis in VSMC. Using a combination of apoptotic assays, we showed that RAGE stimulation with its ligand CML-HSA promotes apoptosis of VSMC. The formation of stress granules and the increase in the level of the associated protein HuR point toward RAGE-dependent endoplasmic reticulum (ER) stress, which is proposed as a key contributor of RAGE-induced apoptosis in VSMC as it has been shown to promote cell death via numerous mechanisms, including up-regulation of caspase-9. Chronic NF-κB activation and modulation of Bcl-2 homologs are also suspected to contribute to RAGE-dependent apoptosis in VSMC. With the goal of reducing RAGE signaling and its detrimental impact on VSMC, we designed a RAGE antagonist (iRAGE) derived from the primary amino acid sequence of HSA. The resulting CML peptide was selected for the high glycation frequency of the primary sequence in the native protein in vivo. Pretreatment with iRAGE blocked 69.6% of the increase in NF-κB signaling caused by RAGE activation with CML-HSA after 48h. Preincubation with iRAGE was successful in reducing RAGE-induced apoptosis, as seen through enhanced cell survival by SPR and reduced PARP cleavage. Activation of executioner caspases was 63.5% lower in cells treated with iRAGE before stimulation with CML-HSA. To our knowledge, iRAGE is the first antagonist shown to block AGE-RAGE interaction and we propose the molecule as an initial candidate for drug discovery.
Collapse
Affiliation(s)
- Jean-Sébastien Maltais
- Département de pharmacologie et physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Elie Simard
- Département de pharmacologie et physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Ulrike Froehlich
- Département de pharmacologie et physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Jean-Bernard Denault
- Département de pharmacologie et physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Louis Gendron
- Département de pharmacologie et physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Michel Grandbois
- Département de pharmacologie et physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada.
| |
Collapse
|
39
|
Simultaneous Increases in Proliferation and Apoptosis of Vascular Smooth Muscle Cells Accelerate Diabetic Mouse Venous Atherosclerosis. PLoS One 2015; 10:e0141375. [PMID: 26488175 PMCID: PMC4619075 DOI: 10.1371/journal.pone.0141375] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/06/2015] [Indexed: 12/20/2022] Open
Abstract
Aims This study was designed to demonstrate simultaneous increases in proliferation and apoptosis of vascular smooth muscle cells (VSMCs) leading to accelerated vein graft remodeling and to explore the underlying mechanisms. Methods Vein grafts were performed in non-diabetic and diabetic mice. The cultured quiescent VSMCs were subjected to mechanical stretch stress (SS) and/or advanced glycosylation end products (AGEs). Harvested vein grafts and treated VSMCs were used to detect cell proliferation, apoptosis, mitogen-activated protein kinases (MAPKs) activation and SM-α-actin expression. Results Significantly thicker vessel walls and greater increases in proliferation and apoptosis were observed in diabetic vein grafts than those in non-diabetic. Both SS and AGEs were found to induce different activation of three members of MAPKs and simultaneous increases in proliferation and apoptosis of VSMCs, and combined treatment with both had a synergistic effect. VSMCs with strong SM-α-actin expression represented more activated JNKs or p38MAPK, and cell apoptosis, while the cells with weak SM-α-actin expression demonstrated preferential activation of ERKs and cell proliferation. In contrast, inhibition of MAPKs signals triggered significant decreases in VSMC proliferation, and apoptosis. Treatment of the cells with RNA interference of receptor of AGEs (RAGE) also resulted in significant decreases in both proliferation and apoptosis. Conclusions Increased pressure-induced SS triggers simultaneous increases in proliferation and apoptosis of VSMCs in the vein grafts leading to vein arterializations, which can be synergistically accelerated by high glucose-induced AGEs resulting in vein graft atherosclerosis. Either SS or AGEs and their combination induce simultaneous increases in proliferation and apoptosis of VSMCs via different activation of three members of MAPKs resulting from different VSMC subtypes classified by SM-α-actin expression levels.
Collapse
|