1
|
Beldean AC, Moldovan RC, Sorițău O, Strilciuc Ș, Ciortea R, Mureșanu FD, Blesneag AV, Florian Ș, Bolunduț AC, Șușman S. Composition and Neurogenetic Effects of Embryonic Cerebrospinal Fluid: A Systematic Review. Neuromolecular Med 2025; 27:33. [PMID: 40348857 PMCID: PMC12065756 DOI: 10.1007/s12017-025-08829-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/02/2025] [Indexed: 05/14/2025]
Abstract
Embryonic cerebrospinal fluid (E-CSF) has an important role in neurological development. Due to limited availability, the composition and properties of E-CSF are not known to the present. Our review aims to offer a comprehensive perspective over the studies published to date regarding the composition and effects of E-CSF. We performed a systematic search of four databases for studies regarding normal E-CSF, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We screened 725 records for eligibility criteria, resulting in 44 studies included in the narrative synthesis. Of these, four compared E-CSF with postnatal CSF, and three studies used human E-CSF for composition description. The most comprehensive set of molecular analyses was performed via mass spectrometry, in four studies. We observed a decrease in the number of published studies in the last 5 years. All included studies showed better results when cells were cultured in E-CSF than basal medium. Research on E-CSF remains sparse, particularly concerning its role in human developmental neurobiology. The heterogeneous nature of the study designs and experimental approaches showcase the need for standardized methodologies to better understand the unique properties and potential clinical applications of E-CSF.
Collapse
Affiliation(s)
- Ana Călina Beldean
- Department of Morpho-Functional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
| | - Radu Cristian Moldovan
- MedFuture-Research Center for Advanced Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - Olga Sorițău
- Laboratory of Tumor Cell Biology and Radiobiology, Institute of Oncology "Prof. Dr. Ion Chiricuță", 400015, Cluj-Napoca, Romania
| | - Ștefan Strilciuc
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - Răzvan Ciortea
- Department of Obstetrics and Gynaecology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - Fior Dafin Mureșanu
- Department of Neurosciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
- Neurology Department, Emergency County Hospital, 400012, Cluj-Napoca, Romania
| | - Alina Vasilica Blesneag
- Department of Neurosciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
- Neurology Department, Emergency County Hospital, 400012, Cluj-Napoca, Romania
| | - Ștefan Florian
- Department of Neurosciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
- Department of Neurosurgery, Emergency County Hospital, 400012, Cluj-Napoca, Romania
| | - Alexandru Cristian Bolunduț
- 1st Department of Pediatrics, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400370, Cluj-Napoca, Romania.
| | - Sergiu Șușman
- Department of Morpho-Functional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
- Department of Pathology-Neuropathology-Imogen Research Center, Emergency County Hospital, 400012, Cluj-Napoca, Romania
| |
Collapse
|
2
|
Dubey H, Sharma RK, Krishnan S, Knickmeyer R. SARS-CoV-2 (COVID-19) as a possible risk factor for neurodevelopmental disorders. Front Neurosci 2022; 16:1021721. [PMID: 36590303 PMCID: PMC9800937 DOI: 10.3389/fnins.2022.1021721] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Pregnant women constitute one of the most vulnerable populations to be affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the cause of coronavirus disease 2019. SARS-CoV-2 infection during pregnancy could negatively impact fetal brain development via multiple mechanisms. Accumulating evidence indicates that mother to fetus transmission of SARS-CoV-2 does occur, albeit rarely. When it does occur, there is a potential for neuroinvasion via immune cells, retrograde axonal transport, and olfactory bulb and lymphatic pathways. In the absence of maternal to fetal transmission, there is still the potential for negative neurodevelopmental outcomes as a consequence of disrupted placental development and function leading to preeclampsia, preterm birth, and intrauterine growth restriction. In addition, maternal immune activation may lead to hypomyelination, microglial activation, white matter damage, and reduced neurogenesis in the developing fetus. Moreover, maternal immune activation can disrupt the maternal or fetal hypothalamic-pituitary-adrenal (HPA) axis leading to altered neurodevelopment. Finally, pro-inflammatory cytokines can potentially alter epigenetic processes within the developing brain. In this review, we address each of these potential mechanisms. We propose that SARS-CoV-2 could lead to neurodevelopmental disorders in a subset of pregnant women and that long-term studies are warranted.
Collapse
Affiliation(s)
- Harikesh Dubey
- Division of Neuroengineering, Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, United States
| | - Ravindra K. Sharma
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Suraj Krishnan
- Jacobi Medical Center, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Rebecca Knickmeyer
- Division of Neuroengineering, Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, United States,Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI, United States,*Correspondence: Rebecca Knickmeyer,
| |
Collapse
|
3
|
Takata S, Sakata-Haga H, Shimada H, Tsukada T, Sakai D, Shoji H, Tomosugi M, Nakamura Y, Ishigaki Y, Iizuka H, Hayashi Y, Hatta T. LIF-IGF Axis Contributes to the Proliferation of Neural Progenitor Cells in Developing Rat Cerebrum. Int J Mol Sci 2022; 23:13199. [PMID: 36361987 PMCID: PMC9659294 DOI: 10.3390/ijms232113199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 09/10/2023] Open
Abstract
In rodent models, leukemia inhibitory factor (LIF) is involved in cerebral development via the placenta, and maternal immune activation is linked to psychiatric disorders in the child. However, whether LIF acts directly on neural progenitor cells (NPCs) remains unclear. This study performed DNA microarray analysis and quantitative RT-PCR on the fetal cerebrum after maternal intraperitoneal or fetal intracerebral ventricular injection of LIF at day 14.5 (E14.5) and determined that the expression of insulin-like growth factors (IGF)-1 and -2 was induced by LIF. Physiological IGF-1 and IGF-2 levels in fetal cerebrospinal fluid (CSF) increased from E15.5 to E17.5, following the physiological surge of LIF levels in CSF at E15.5. Immunostaining showed that IGF-1 was expressed in the cerebrum at E15.5 to E19.5 and IGF-2 at E15.5 to E17.5 and that IGF-1 receptor and insulin receptor were co-expressed in NPCs. Further, LIF treatment enhanced cultured NPC proliferation, which was reduced by picropodophyllin, an IGF-1 receptor inhibitor, even under LIF supplementation. Our findings suggest that IGF expression and release from the NPCs of the fetal cerebrum in fetal CSF is induced by LIF, thus supporting the involvement of the LIF-IGF axis in cerebral cortical development in an autocrine/paracrine manner.
Collapse
Affiliation(s)
- Sho Takata
- Department of Neurosurgery, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| | - Hiromi Sakata-Haga
- Department of Anatomy, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| | - Hiroki Shimada
- Department of Medical Science, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| | - Tsuyoshi Tsukada
- Department of Neurosurgery, Saiseikai Toyama Hospital, Toyama 931-8533, Toyama, Japan
| | - Daisuke Sakai
- Department of Biology, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| | - Hiroki Shoji
- Department of Biology, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| | - Mitsuhiro Tomosugi
- Department of Anatomy, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| | - Yuka Nakamura
- Department of Life Science, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| | - Yasuhito Ishigaki
- Department of Life Science, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| | - Hideaki Iizuka
- Department of Neurosurgery, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| | - Yasuhiko Hayashi
- Department of Neurosurgery, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| | - Toshihisa Hatta
- Department of Anatomy, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| |
Collapse
|
4
|
Kajimoto M, Suzuki K, Ueda Y, Fujimoto K, Takeo T, Nakagata N, Hyuga T, Isono K, Yamada G. Androgen/Wnt/β-catenin signal axis augments cell proliferation of the mouse erectile tissue, corpus cavernosum. Congenit Anom (Kyoto) 2022; 62:123-133. [PMID: 35318743 DOI: 10.1111/cga.12465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022]
Abstract
The murine penile erectile tissues including corpus cavernosum (CC) are composed of blood vessels, smooth muscle, and connective tissue, showing marked sexual differences. It has been known that the androgens are required for sexually dimorphic organogenesis. It is however unknown about the features of androgen signaling during mouse CC development. It is also unclear how androgen-driven downstream factors are involved such processes. In the current study, we analyzed the onset of sexually dimorphic CC formation based on histological analyses, the dynamics of androgen receptor (AR) expression, and regulation of cell proliferation. Of note, we identified Dickkopf-related protein 2 (Dkk2), an inhibitor of β-catenin signaling, was predominantly expressed in female CC compared with male. Furthermore, administration of androgens resulted in activation of β-catenin signaling. We have found the Sox9 gene, one of the essential markers for chondrocyte, was specifically expressed in the developing CC. Hence, we utilized CC-specific, Sox9 CreERT2 , β-catenin conditional mutant mice. Such mutant mice showed defective cell proliferation. Furthermore, introduction of activated form of β-catenin mutation (gain of function mutation for Wnt/β-catenin signaling) in CC induced augmented cell proliferation. Altogether, we revealed androgen-Wnt/β-catenin signal dependent cell proliferation was essential for sexually dimorphic CC formation. These findings open new avenues for understanding developmental mechanisms of androgen-dependent cell proliferation during sexual differentiation.
Collapse
Affiliation(s)
- Mizuki Kajimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yuko Ueda
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kota Fujimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Biotechnology and Innovation, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Taiju Hyuga
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan.,Department of Pediatric Urology, Jichi Medical University, Children's Medical Center Tochigi, Tochigi, Japan
| | - Kyoichi Isono
- Laboratory Animal Center, Wakayama Medical University, Wakayama, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
5
|
Hameete BC, Fernández-Calleja JM, de Groot MW, Oppewal TR, Tiemessen MM, Hogenkamp A, de Vries RB, Groenink L. The poly(I:C)-induced maternal immune activation model; a systematic review and meta-analysis of cytokine levels in the offspring. Brain Behav Immun Health 2021; 11:100192. [PMID: 34589729 PMCID: PMC8474626 DOI: 10.1016/j.bbih.2020.100192] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
The maternal polyinosinic:polycytidylic acid (poly(I:C)) animal model is frequently used to study how maternal immune activation may impact neuro development in the offspring. Here, we present the first systematic review and meta-analysis on the effects of maternal poly(I:C) injection on immune mediators in the offspring and provide an openly accessible systematic map of the data including methodological characteristics. Pubmed and EMBASE were searched for relevant publications, yielding 45 unique papers that met inclusion criteria. We extracted data on immune outcomes and methodological characteristics, and assessed the risk of bias. The descriptive summary showed that most studies reported an absence of effect, with an equal number of studies reporting an increase or decrease in the immune mediator being studied. Meta-analysis showed increased IL-6 concentrations in the offspring of poly(I:C) exposed mothers. This effect appeared larger prenatally than post-weaning. Furthermore, poly(I:C) administration during mid-gestation was associated with higher IL-6 concentrations in the offspring. Maternal poly(I:C) induced changes in IL-1β, Il-10 and TNF-α concentrations were small and could not be associated with age of offspring, gestational period or sampling location. Finally, quality of reporting of potential measures to minimize bias was low, which stresses the importance of adherence to publication guidelines. Since neurodevelopmental disorders in humans tend to be associated with lifelong changes in cytokine concentrations, the absence of these effects as identified in this systematic review may suggest that combining the model with other etiological factors in future studies may provide further insight in the mechanisms through which maternal immune activation affects neurodevelopment. Long-term effects of maternal poly(I:C) on immune mediators in the offspring appear limited. Prenatal measurements and mid gestation poly(I:C) injection are associated with increases in IL-6 concentrations. Variety in methodological conduct hampers identification of key elements that affect cytokine concentrations. The quality of reporting of potential measures to minimize bias is poor.
Collapse
Affiliation(s)
- Bart C. Hameete
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, the Netherlands
| | - José M.S. Fernández-Calleja
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, the Netherlands
| | - Martje W.G.D.M. de Groot
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, the Netherlands
| | - Titia Rixt Oppewal
- University College Utrecht (UCU), Campusplein 1, Utrecht, 3584 ED, the Netherlands
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, the Netherlands
| | - Machteld M. Tiemessen
- Research & Innovation, GCoE Immunology, Danone Nutricia Research, Uppsalalaan 12, Utrecht, 3584 CT, the Netherlands
| | - Astrid Hogenkamp
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, the Netherlands
| | - Rob B.M. de Vries
- SYstematic Review Center for Laboratory (Animal) Experimentation, Department for Health Evidence, Radboud University Medical Center, Geert Grooteplein zuid 10, Nijmegen, 6525 GA, the Netherlands
| | - Lucianne Groenink
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, the Netherlands
- Corresponding author.
| |
Collapse
|
6
|
Tsukada T, Sakata-Haga H, Shimada H, Shoji H, Hatta T. Mid-pregnancy maternal immune activation increases Pax6-positive and Tbr2-positive neural progenitor cells and causes integrated stress response in the fetal brain in a mouse model of maternal viral infection. IBRO Neurosci Rep 2021; 11:73-80. [PMID: 34409402 PMCID: PMC8363822 DOI: 10.1016/j.ibneur.2021.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/31/2021] [Indexed: 12/26/2022] Open
Abstract
Maternal immune activation (MIA) in midpregnancy is a risk factor for neurodevelopmental disorders. Improper brain development may cause malformations of the brain; maldevelopment induced by MIA may lead to a pathology-related phenotype. In this study, a single intraperitoneal injection of 20 mg/kg polyriboinosinic–polyribocytidylic acid [poly(I:C)] was administered to C57BL/6J mice on embryonic day (E) 12.5 to mimic maternal viral infection. Histopathological analysis of neurogenesis was performed using markers for Pax6, Tbr2, and Tbr1. In these fetuses, significant increases were observed in the proportion of Pax6-positive neural progenitor cells and Pax6/Tbr2 double-positive cells 24 h after poly(I:C) injection. There were no differences in the proportion of Tbr1-positive postmitotic neurons 48 h after poly(I:C) injection. At E18.5, there were more Pax6-positive and Tbr2-positive neural progenitor cells in the poly(I:C)-injected group than in the saline-injected group. Gene ontology enrichment analysis of poly(I:C)-induced differentially expressed genes in the fetal brain at E12.5 demonstrated that these genes were enriched in terms including response to cytokine, response to decreased oxygen levels in the category of biological process. At E13.5, activating transcription factor 4 (Atf4), which is an effector of integrated stress response, was significantly upregulated in the fetal brain. Our results show that poly(I:C)-induced MIA at E12.5 leads to dysregulated neurogenesis and upregulates Atf4 in the fetal brain. These findings provide a new insight in the mechanism of MIA causing improper brain development and subsequent neurodevelopmental disorders. MIA increases Pax6-positive and Tbr2-positive neural progenitor cells. MIA impaired the process of neurogenesis from as early as the acute stage. MIA upregulated Atf4, an effector of integrated stress response, in the fetal brain.
Collapse
Key Words
- ASD, autism spectrum disorders
- Activating transcription factor 4
- Atf4, activating transcription factor 4
- CP, cortical plate
- DEG, differentially expressed gene
- ISR, integrated stress response
- Integrated stress response
- MIA, Maternal immune activation
- Maternal immune activation
- NPCs, neural progenitor cells
- Neurogenesis
- Polyriboinosinic–polyribocytidylic acid
- SVZ, subventricular zone
- UPR, unfolded protein response
- Unfolded protein response
- VZ, ventricular zone
- [polyI:C], polyriboinosinic–polyribocytidylic acid
Collapse
Affiliation(s)
- Tsuyoshi Tsukada
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
- Department of Neurosurgery, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
- Corresponding author at: Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
| | - Hiromi Sakata-Haga
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Hiroki Shimada
- Department of Medical Science, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Hiroki Shoji
- Department of Biology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Toshihisa Hatta
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
- Corresponding author.
| |
Collapse
|
7
|
Wang H, Sakata-Haga H, Masuta H, Tomosugi M, Tsukada T, Shimada H, Sakai D, Shoji H, Hatta T. Leukemia Inhibitory Factor Induces Proopiomelanocortin via CRH/CRHR Pathway in Mouse Trophoblast. Front Cell Dev Biol 2021; 9:618947. [PMID: 34350170 PMCID: PMC8326836 DOI: 10.3389/fcell.2021.618947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/14/2021] [Indexed: 12/02/2022] Open
Abstract
We previously showed that maternal leukemia inhibitory factor (LIF) induces placental production of adrenocorticotropic hormone (ACTH), which stimulates fetal nucleated red blood cells to further secrete LIF and promote neurogenesis in rodent brains. However, the underlying mechanism of LIF-dependent ACTH induction remains unclear. Recently, we found that LIF induces corticotropin-releasing hormone (CRH) in mouse trophoblast stem cells. This finding supports the results of a previous study that CRH, which is produced by the placenta, induces placental ACTH production. In this study, we examined whether the effects of LIF are mediated by the induction of Pomc via CRH upregulation in mouse trophoblast. In vivo, protein levels of LIF and CRH peak in mouse placenta at 13.5 days post coitum. In mouse placenta, Crh mRNA and protein levels significantly increased 3 h after intraperitoneal injection of LIF (5 μg/kg body weight) into dams at 13.5 days post coitum. We also examined the effect of LIF-induced CRH on the expression of Pomc induced by LIF in mouse trophoblast stem cells in vitro. After LIF supplementation for 3 days, we found that the increased expression of Crh-induced by new supplementation of LIF was earlier than that of Pomc. Furthermore, LIF-induced upregulation of Pomc in mouse trophoblast stem cells was attenuated by inhibition of the CRH/CRHR1 pathway, whereas LIF-induced secretion of ACTH was attenuated by inhibition of the JAK/STAT3 pathway. Therefore, LIF indirectly increases placental Pomc expression through the CRH/CRHR1 pathway, and placental ACTH secretion is induced directly by LIF via the JAK/STAT3 pathway.
Collapse
Affiliation(s)
- He Wang
- Department of Anatomy, Kanazawa Medical University, Uchinada, Japan
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China
| | | | - Hiroko Masuta
- Department of Anatomy, Kanazawa Medical University, Uchinada, Japan
| | | | - Tsuyoshi Tsukada
- Department of Anatomy, Kanazawa Medical University, Uchinada, Japan
| | - Hiroki Shimada
- Department of Medical Science, Kanazawa Medical University, Uchinada, Japan
| | - Daisuke Sakai
- Department of Biology, Kanazawa Medical University, Uchinada, Japan
| | - Hiroki Shoji
- Department of Biology, Kanazawa Medical University, Uchinada, Japan
| | - Toshihisa Hatta
- Department of Anatomy, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
8
|
Zou R, El Marroun H, Voortman T, Hillegers M, White T, Tiemeier H. Maternal polyunsaturated fatty acids during pregnancy and offspring brain development in childhood. Am J Clin Nutr 2021; 114:124-133. [PMID: 33742211 DOI: 10.1093/ajcn/nqab049] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/09/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Emerging evidence suggests an association of maternal PUFA concentrations during pregnancy with child cognitive and neuropsychiatric outcomes such as intelligence and autistic traits. However, little is known about prenatal maternal PUFAs in relation to child brain development, which may underlie these associations. OBJECTIVES We aimed to investigate the association of maternal PUFA status during pregnancy with child brain morphology, including volumetric and white matter microstructure measures. METHODS This study was embedded in a prospective population-based study. In total, 1553 mother-child dyads of Dutch origin were included. Maternal plasma glycerophospholipid PUFAs were assessed in midpregnancy. Child brain morphologic outcomes, including total gray and white matter volumes, as well as white matter microstructure quantified by global fractional anisotropy and mean diffusivity, were measured using MRI (including diffusion tensor imaging) at age 9-11 y. RESULTS Maternal ω-3 (n-3) long-chain PUFA (LC-PUFA) concentrations during pregnancy had an inverted U-shaped relation with child total gray volume (linear term: β: 16.7; 95% CI: 2.0, 31.5; quadratic term: β: -1.1; 95% CI: -2.1, -0.07) and total white matter volume (linear term: β: 15.7; 95% CI: 3.6, 27.8; quadratic term: β: -1.0; 95% CI: -1.8, -0.16). Maternal gestational ω-6 LC-PUFA concentrations did not predict brain volumetric differences in children, albeit the linolenic acid concentration was inversely associated with child total white matter volume. Maternal PUFA status during pregnancy was not related to child white matter microstructure. CONCLUSIONS Sufficient maternal ω-3 PUFAs during pregnancy may be related to more optimal child brain development in the long term. In particular, exposure to lower ω-3 PUFA concentrations in fetal life was associated with less brain volume in childhood. Maternal ω-6 LC-PUFAs were not related to child brain morphology.
Collapse
Affiliation(s)
- Runyu Zou
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hanan El Marroun
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Manon Hillegers
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Tonya White
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Social and Behavioral Sciences, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| |
Collapse
|
9
|
Shereen MA, Bashir N, Su R, Liu F, Wu K, Luo Z, Wu J. Zika virus dysregulates the expression of astrocytic genes involved in neurodevelopment. PLoS Negl Trop Dis 2021; 15:e0009362. [PMID: 33891593 PMCID: PMC8099136 DOI: 10.1371/journal.pntd.0009362] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/05/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022] Open
Abstract
Zika virus (ZIKV) is a kind of flavivirus emerged in French Polynesia and Brazil, and has led to a worldwide public health concern since 2016. ZIKV infection causes various neurological conditions, which are associated with fetus brain development or peripheral and central nervous systems (PNS/CNS) functional problems. To date, no vaccine or any specific antiviral therapy against ZIKV infection are available. It urgently needs efforts to explore the underlying molecular mechanisms of ZIKV-induced neural pathogenesis. ZIKV favorably infects neural and glial cells specifically astrocytes, consequently dysregulating gene expression and pathways with impairment of process neural cells. In this study, we applied a model for ZIKV replication in mouse primary astrocytes (MPAs) and profiled temporal alterations in the host transcriptomes upon ZIKV infection. Among the RNA-sequencing data of 27,812 genes, we examined 710 genes were significantly differentially expressed by ZIKV, which lead to dysregulation of numerous functions including neurons development and migration, glial cells differentiation, myelinations, astrocytes projection, neurogenesis, and brain development, along with multiple pathways including Hippo signaling pathway, tight junction, PI3K-Akt signaling pathway, and focal adhesion. Furthermore, we confirmed the dysregulation of the selected genes in MPAs and human astroglioma U251 cells. We found that PTBP1, LIF, GHR, and PTBP3 were upregulated while EDNRB and MBP were downregulated upon ZIKV infection. The current study highlights the ZIKV-mediated potential genes associated with neurodevelopment or related diseases. Zika virus (ZIKV) infection causes serious neurological disorders of central and peripheral nervous system, and fetal brain development disorders including microcephaly. There are still uncovered explorations for the underlying molecular mechanism of ZIKV-infected pathogenesis. This study reveals a series of dysregulation of neuropathic genes mRNA and protein expression in mouse and human astrocytes upon ZIKV infection. As an ideal ZIKV infection model in mouse primary astrocytes (MPAs), RNA-seq was performed to profile transcriptome alteration by ZIKV infection. Bioinformatics analysis demonstrated the significant alterations of the 710 genes that were linked to glial cell differentiation and projection, neurogenesis and migration of neurons, myelination, as well as synaptic control. Among the top selected differentially expressed genes, such as PTBP1, LIF, GHR, PTBP3, EDNRB, and MBP, the mRNA and protein expressions were confirmed to identify the dysregulation of the transcriptome in MPAs upon ZIKV infection. Furthermore, ZIKV infection altered the mRNA and protein expression of these astrocytic genes involved in neurodevelopment in U251 cells following the analysis of the transcriptome. In conclusion, the alteration of astrocytic gene functions or associated-pathways suggest a novel clue of a mechanism involved in the ZIKV-induced neurodevelopment disorders.
Collapse
Affiliation(s)
- Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Nadia Bashir
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Rui Su
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhen Luo
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- * E-mail: (ZL); (JW)
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- * E-mail: (ZL); (JW)
| |
Collapse
|
10
|
Decidual cells are the initial target of polyriboinosinic-polyribocytidylic acid in a mouse model of maternal viral infection. Biochem Biophys Rep 2021; 26:100958. [PMID: 33732901 PMCID: PMC7937661 DOI: 10.1016/j.bbrep.2021.100958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/06/2020] [Accepted: 02/16/2021] [Indexed: 11/23/2022] Open
Abstract
Background Maternal immune activation has been implicated in the pathophysiology of neurodevelopmental disorders such as autism spectrum disorders caused by maternal infection. It has been suggested that the placental origin of inflammatory cytokines leads to neurodevelopmental disorders. However, the identity of the initial immune-activated site in the placenta, in response to maternal viral infection, is not clear. Methods By cross-breeding male enhanced green fluorescent protein (EGFP) transgenic mice with wild-type females, the placental tissues of maternal origin can be distinguished from those of paternal origin by EGFP expression. Using this method, at embryonic day (E) 12.5, dams were administered an intraperitoneal polyriboinosinic-polyribocytidylic acid (poly [I:C]) injection. We quantitatively analyzed the levels of phosphorylated interferon (IFN) regulatory factor 3 (pIRF3) in the placenta, and investigated the distribution of pIRF3 positive cells. Results We show that maternally derived decidual cells are the initial target of maternal poly (I:C) through the toll-like receptor 3/TIR-domain-containing the adapter-inducing interferon-β signaling pathway. We also show that the expression of interferon-β was upregulated in the placenta after maternal injection with poly (I:C). Conclusion These results suggest that maternally derived decidual cells are the initial target of maternal poly (I:C) and that this innate immune response is likely associated with a state of maternal immune activation.
Collapse
|
11
|
Canales CP, Estes ML, Cichewicz K, Angara K, Aboubechara JP, Cameron S, Prendergast K, Su-Feher L, Zdilar I, Kreun EJ, Connolly EC, Seo JM, Goon JB, Farrelly K, Stradleigh TW, van der List D, Haapanen L, Van de Water J, Vogt D, McAllister AK, Nord AS. Sequential perturbations to mouse corticogenesis following in utero maternal immune activation. eLife 2021; 10:e60100. [PMID: 33666173 PMCID: PMC7979158 DOI: 10.7554/elife.60100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
In utero exposure to maternal immune activation (MIA) is an environmental risk factor for neurodevelopmental and neuropsychiatric disorders. Animal models provide an opportunity to identify mechanisms driving neuropathology associated with MIA. We performed time-course transcriptional profiling of mouse cortical development following induced MIA via poly(I:C) injection at E12.5. MIA-driven transcriptional changes were validated via protein analysis, and parallel perturbations to cortical neuroanatomy were identified via imaging. MIA-induced acute upregulation of genes associated with hypoxia, immune signaling, and angiogenesis, by 6 hr following exposure. This acute response was followed by changes in proliferation, neuronal and glial specification, and cortical lamination that emerged at E14.5 and peaked at E17.5. Decreased numbers of proliferative cells in germinal zones and alterations in neuronal and glial populations were identified in the MIA-exposed cortex. Overall, paired transcriptomic and neuroanatomical characterization revealed a sequence of perturbations to corticogenesis driven by mid-gestational MIA.
Collapse
Affiliation(s)
| | - Myka L Estes
- Center for Neuroscience, UC DavisDavisUnited States
| | | | - Kartik Angara
- Department of Pediatrics & Human Development, Michigan State UniversityEast LansingUnited States
| | | | | | | | | | - Iva Zdilar
- Center for Neuroscience, UC DavisDavisUnited States
| | | | | | | | - Jack B Goon
- Center for Neuroscience, UC DavisDavisUnited States
| | | | | | | | - Lori Haapanen
- Division of Rheumatology, Allergy and Clinical Immunology, UC DavisDavisUnited States
| | - Judy Van de Water
- Division of Rheumatology, Allergy and Clinical Immunology, UC DavisDavisUnited States
| | - Daniel Vogt
- Department of Pediatrics & Human Development, Michigan State UniversityEast LansingUnited States
| | | | - Alex S Nord
- Center for Neuroscience, UC DavisDavisUnited States
| |
Collapse
|
12
|
Shimizu Y, Tsukada T, Sakata-Haga H, Sakai D, Shoji H, Saikawa Y, Hatta T. Exposure to Maternal Immune Activation Causes Congenital Unfolded Protein Response Defects and Increases the Susceptibility to Postnatal Inflammatory Stimulation in Offspring. J Inflamm Res 2021; 14:355-365. [PMID: 33603435 PMCID: PMC7886242 DOI: 10.2147/jir.s294238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Background A number of childhood diseases have been identified, such as severe infection or autoinflammatory disease, in which immune overreaction against inflammation is a possible underlying mechanism. Previous reports have demonstrated that fetal cells exposed to maternal immune activation (MIA) induced by polyriboinosinic-polyribocytidylic acid [poly(I:C)] exhibited hypersensitivity to inflammation in vitro. However, the details of this mechanism remain unclear. Therefore, this study aimed to reveal the reaction to inflammation in offspring exposed to MIA in the prenatal period, as well as its molecular mechanism, using a viral infection mouse model. Materials and Methods Pregnant mice at 12.5, 14.5, and 16.5 days post coitum were injected intraperitoneally with poly(I:C) 20 mg/kg body weight (BW) or saline. Offspring aged 3-4 weeks received the second injection of 20 mg/kg BW or 4 mg/kg BW poly(I:C) or saline. Serum and tissues were collected at 2, 24, 48, and 72 h after the postnatal injection. The cytokine profile, histopathology of organs, and unfolded protein response (UPR) in offspring were examined. Results The serum levels of interleukin (IL)-6, IL-17, and interferon-γ were significantly higher in the MIA group, and acute liver necrosis was detected. Moreover, failure in UPR was observed in the MIA group compared with that in the control group. Conclusion Overall, MIA exposure in utero caused failure in UPR as well as immune overreaction to the second attack of inflammation in offspring. Our results suggested that prenatal exposure to MIA might contribute to the congenital inflammatory constitution after birth.
Collapse
Affiliation(s)
- Yo Shimizu
- Department of Pediatrics, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Tsuyoshi Tsukada
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Hiromi Sakata-Haga
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Daisuke Sakai
- Department of Biology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Hiroki Shoji
- Department of Biology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Yutaka Saikawa
- Department of Pediatrics, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Toshihisa Hatta
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| |
Collapse
|
13
|
Dabbah-Assadi F, Khatib N, Ginsberg Y, Weiner Z, Shamir A, Beloosesky R. Short-Term Effect of MgSO 4 on the Expression of NRG-ErbB, Dopamine, GABA, and Glutamate Systems in the Fetal Rat Brain. J Mol Neurosci 2020; 71:446-454. [PMID: 32691278 DOI: 10.1007/s12031-020-01665-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
Abstract
MgSO4 has been used for the past two decades as neuroprotective treatment in a variety of preterm conditions. Despite the putative advantages of MgSO4 as a neuroprotective agent in the preterm brain, the short- and long-term molecular function of MgSO4 as a neuroprotective agent has not been fully elucidated. Neuregulin (NRG1)-ErbB4 signaling plays a critical role in embryonic brain development, in the biology of dopaminergic, GABAergic, and glutamatergic systems. We hypothesize that this pathway may be associated with the neuroprotective role of MgSO4. The current study aims to investigate the ability of MgSO4 to modulate the normal developing expression pattern of selected genes related to the NRG1-ErbB, dopaminergic, GABAergic, and glutamatergic systems. We demonstrate that overall short-term treatment of dam rats with MgSO4 affects the expression of fetal brain NRG1, NRG3, ErbB4, GAD67, tyrosine hydroxylase (TH), dopamine D2 and D1 receptors, GluN1, and GluN2B. More specifically, the administration of MgSO4 alters the expression of NRG-ErbB, GAD67, TH, and D2R at early gestation day 16 (GD16) regardless of the activation of the maternal immune system by lipopolysaccharide (LPS). Our data suggest that MgSO4 treatment may affect the expression of major neuronal systems and pathways mostly at an early gestation day. These changes might be an initial clue (foundation stone) in the molecular mechanism that underlies the beneficial effect of MgSO4 as a neuroprotective agent for the developmental brain.
Collapse
Affiliation(s)
- Fadwa Dabbah-Assadi
- Psychobiology Research Laboratory, Mazor Mental Health Center, D.N. Oshrat, 25201, Akko, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Nazar Khatib
- Department of Obstetrics and Gynecology, Rambam Medical Center, D.N. Haaleya Hashniya, 3525408, Haifa, Israel
| | - Yuval Ginsberg
- Department of Obstetrics and Gynecology, Rambam Medical Center, D.N. Haaleya Hashniya, 3525408, Haifa, Israel
| | - Ze'ev Weiner
- Department of Obstetrics and Gynecology, Rambam Medical Center, D.N. Haaleya Hashniya, 3525408, Haifa, Israel
| | - Alon Shamir
- Psychobiology Research Laboratory, Mazor Mental Health Center, D.N. Oshrat, 25201, Akko, Israel. .,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Ron Beloosesky
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel. .,Department of Obstetrics and Gynecology, Rambam Medical Center, D.N. Haaleya Hashniya, 3525408, Haifa, Israel.
| |
Collapse
|
14
|
Haddad FL, Patel SV, Schmid S. Maternal Immune Activation by Poly I:C as a preclinical Model for Neurodevelopmental Disorders: A focus on Autism and Schizophrenia. Neurosci Biobehav Rev 2020; 113:546-567. [PMID: 32320814 DOI: 10.1016/j.neubiorev.2020.04.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 01/28/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
Maternal immune activation (MIA) in response to a viral infection during early and mid-gestation has been linked through various epidemiological studies to a higher risk for the child to develop autism or schizophrenia-related symptoms.. This has led to the establishment of the pathogen-free poly I:C-induced MIA animal model for neurodevelopmental disorders, which shows relatively high construct and face validity. Depending on the experimental variables, particularly the timing of poly I:C administration, different behavioural and molecular phenotypes have been described that relate to specific symptoms of neurodevelopmental disorders such as autism spectrum disorder and/or schizophrenia. We here review and summarize epidemiological evidence for the effects of maternal infection and immune activation, as well as major findings in different poly I:C MIA models with a focus on poly I:C exposure timing, behavioural and molecular changes in the offspring, and characteristics of the model that relate it to autism spectrum disorder and schizophrenia.
Collapse
Affiliation(s)
- Faraj L Haddad
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| | - Salonee V Patel
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| | - Susanne Schmid
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| |
Collapse
|
15
|
Pinho V, Fernandes M, da Costa A, Machado R, Gomes AC. Leukemia inhibitory factor: Recent advances and implications in biotechnology. Cytokine Growth Factor Rev 2019; 52:25-33. [PMID: 31870618 DOI: 10.1016/j.cytogfr.2019.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
Leukemia inhibitory factor (LIF) is a pleiotropic cytokine with several functions in health and disease ranging from inflammation to cancer. LIF is also a potential target and/or therapeutic agent for diseases such as multiple sclerosis, stroke and even psychological disorders, where the function of LIF as a neurotrophic factor has only recently been explored. In recent years, a limited number of LIF clinical trials have been completed, which partially explains the shortage of effective applications as a therapeutic agent. With the increasing interest from biotechnology companies producing recombinant LIF, this status quo will certainly change, and the potential impact of LIF in terms of disease diagnosis, treatment and management will be realized.
Collapse
Affiliation(s)
- Vanessa Pinho
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Mário Fernandes
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - André da Costa
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Raúl Machado
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Andreia C Gomes
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
16
|
Liu L, Wang D, Mi S, Duan Z, Yang S, Song J, Xu G, Yang N, Yu Y. The different effects of viral and bacterial mimics maternal stimuli on ethology of hens and reproduction of their offspring. Poult Sci 2019; 98:4153-4160. [PMID: 30982890 DOI: 10.3382/ps/pez189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/21/2019] [Indexed: 02/02/2023] Open
Abstract
Environmental stimuli resulting from immunological stress can induce transgenerational phenotypic inheritance, but few similar studies are found in avian. Here, we challenged F0 hens with polyinosinic: polycytidylic acid [Poly(I: C)] and lipopolysaccharide (LPS) at 53 wk of age, and then investigated the ethology of the challenged hens. In the unchallenged F1 descendants, the egg quality at 23 wk of age and laying rate (LR) at different stages were measured. Mortality rate (MR) and the days of population LR reaching 50% (D50%LR) at 33 wk of age were also tested in F1 hens. Pearson correlation analysis was subsequently calculated between F1 peripheral blood lymphocytes transcriptome and LR (in L vs. C) and EW (in P vs. C), respectively. The results showed that the ethology and egg-laying variations of stimuli-challenged hens and their descendants could be affected by the 2 kinds of immune stimuli. Poly(I: C) was likely to increase LR, especially in the early laying period and advance the D50%LR in F1 hens. It also reduced the MR, albumen height, and Haugh units of the unchallenged offspring. Whereas LPS could induce a sickness behavior of the challenged F0 hens, it also reduced the LR of F1 hens throughout the study, prolonged the D50%LR, and faded the eggshell color. Correlation analysis showed that Poly(I: C) mainly affected EW, while LPS mainly influenced LR of F1 offspring. All findings in the present study were the first time to be revealed in laying chickens, suggesting the different effects of Poly(I: C) and LPS on chickens and their descendants, and laying the foundation for the study of the influence of maternal experience on offspring in avian.
Collapse
Affiliation(s)
- Lei Liu
- National Engineering Laboratory for Animal Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Di Wang
- National Engineering Laboratory for Animal Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Siyuan Mi
- National Engineering Laboratory for Animal Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Zhongyi Duan
- National Engineering Laboratory for Animal Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Shuang Yang
- National Engineering Laboratory for Animal Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742
| | - Guiyun Xu
- National Engineering Laboratory for Animal Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Ying Yu
- National Engineering Laboratory for Animal Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
17
|
Wang H, Tsukada T, Shimada H, Sakata-Haga H, Iida Y, Zhang S, Shoji H, Hatta T. Leukemia inhibitory factor induces corticotropin-releasing hormone in mouse trophoblast stem cells. Biochem Biophys Res Commun 2019; 522:81-87. [PMID: 31740000 DOI: 10.1016/j.bbrc.2019.11.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022]
Abstract
Previous studies have shown that some inflammatory cytokines promote the expression of corticotropin-releasing hormone (CRH) in trophoblasts during pregnancy and that placental CRH could induce the production of adrenocorticotropic hormone (ACTH) in humans. However, whether the same is true in rodent placenta remains unclear. In this study, we examined the effect of pro-inflammatory cytokine LIF on the induction of CRH in mouse trophoblast stem cells (mTSCs). During differentiation, the CRH levels in mTSCs gradually increased. On days 3 and 5 after LIF supplementation, Crh expression in the differentiated mTSCs was significantly increased with LIF treatment than those without LIF treatment. Moreover, the CRH concentration in the culture media increased. Thereafter, we examined the contribution of the downstream pathways of LIF to CRH induction in differentiated mTSCs. The LIF-induced upregulation of CRH was attenuated by inhibition of PI3K/AKT and MAPK phosphorylation but not by inhibition of JAK/STAT3. Therefore, in mTSCs, LIF increased Crh expression through activation of the PI3K/AKT and MAPK pathways but not by the JAK/STAT3 pathway. The present study suggests that mTSC is an ideal in vitro model for studying regulation and function of placental CRH.
Collapse
Affiliation(s)
- He Wang
- Department of Anatomy, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan; Department of Obstetrics, The First Hospital of China Medical University, No. 155 Nanjing Bei Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Tsuyoshi Tsukada
- Department of Anatomy, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Hiroki Shimada
- Department of Medical Science, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Hiromi Sakata-Haga
- Department of Anatomy, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Yasuo Iida
- Department of Mathematics, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Shitai Zhang
- Department of Obstetrics and Gynecology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Hiroki Shoji
- Department of Biology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Toshihisa Hatta
- Department of Anatomy, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan.
| |
Collapse
|
18
|
Poon J, Campos M, Foronjy RF, Nath S, Gupta G, Railwah C, Dabo AJ, Baumlin N, Salathe M, Geraghty P. Cigarette smoke exposure reduces leukemia inhibitory factor levels during respiratory syncytial viral infection. Int J Chron Obstruct Pulmon Dis 2019; 14:1305-1315. [PMID: 31417248 PMCID: PMC6592033 DOI: 10.2147/copd.s196658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 04/12/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Viral infections are considered a major driving factor of chronic obstructive pulmonary disease (COPD) exacerbations and thus contribute to disease morbidity and mortality. Respiratory syncytial virus (RSV) is a frequently detected pathogen in the respiratory tract of COPD patients during an exacerbation. We previously demonstrated in a murine model that leukemia inhibitory factor (LIF) expression was increased in the lungs during RSV infection. Subduing LIF signaling in this model enhanced lung injury and airway hypersensitivity. In this study, we investigated lung LIF levels in COPD patient samples to determine the impact of disease status and cigarette smoke exposure on LIF expression. Materials and methods: Bronchoalveolar lavage fluid (BALF) was obtained from healthy never smokers, smokers, and COPD patients, by written informed consent. Human bronchial epithelial (HBE) cells were isolated from healthy never smokers and COPD patients, grown at the air-liquid interface and infected with RSV or stimulated with polyinosinic:polycytidylic acid (poly (i:c)). Mice were exposed to cigarette smoke daily for 6 months and were subsequently infected with RSV. LIF expression was profiled in all samples. Results: In human BALF, LIF protein was significantly reduced in both smokers and COPD patients compared to healthy never smokers. HBE cells isolated from COPD patients produced less LIF compared to never smokers during RSV infection or poly (i:c) stimulation. Animals exposed to cigarette smoke had reduced lung levels of LIF and its corresponding receptor, LIFR. Smoke-exposed animals had reduced LIF expression during RSV infection. Two possible factors for reduced LIF levels were increased LIF mRNA instability in COPD epithelia and proteolytic degradation of LIF protein by serine proteases. Conclusions: Cigarette smoke is an important modulator for LIF expression in the lungs. Loss of LIF expression in COPD could contribute to a higher degree of lung injury during virus-associated exacerbations.
Collapse
Affiliation(s)
- Justin Poon
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Michael Campos
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami, Miami, FL, USA
| | - Robert F Foronjy
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Sridesh Nath
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Gayatri Gupta
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Christopher Railwah
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Abdoulaye J Dabo
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Nathalie Baumlin
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Patrick Geraghty
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
19
|
Tsukada T, Shimada H, Sakata-Haga H, Iizuka H, Hatta T. Molecular mechanisms underlying the models of neurodevelopmental disorders in maternal immune activation relevant to the placenta. Congenit Anom (Kyoto) 2019; 59:81-87. [PMID: 30592100 DOI: 10.1111/cga.12323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/29/2018] [Accepted: 12/24/2018] [Indexed: 12/28/2022]
Abstract
The rapid rise in the prevalence of autism spectrum disorders (ASD) and other psychiatric disorders displaying similar traits has increased the need to elucidate their molecular mechanisms. Epidemiological studies have shown that maternal infection during mid-pregnancy is associated with increased risk of neurodevelopmental disorders such as ASD in offspring. Using maternal infection models, researchers have gathered evidence relevant to such disorders. A comprehensive summary of the changes in the brain structure, function, and behavior in offspring induced by maternal immune activation (MIA) has been reported. However, the molecular mechanisms underlying the association between MIA and improper brain development, which ultimately lead to neurodevelopmental disorders, have not been fully reviewed. This paper summarizes the currently known molecular mechanisms associated with the MIA model, with a special focus on the role of the placenta in fetal brain development.
Collapse
Affiliation(s)
- Tsuyoshi Tsukada
- Department of Anatomy, Kanazawa Medical University, Uchinada, Japan.,Department of Neurosurgery, Kanazawa Medical University, Uchinada, Japan
| | - Hiroki Shimada
- Department of Anatomy, Kanazawa Medical University, Uchinada, Japan.,Department of Medical Science, Kanazawa Medical University, Uchinada, Japan
| | | | - Hideaki Iizuka
- Department of Neurosurgery, Kanazawa Medical University, Uchinada, Japan
| | - Toshihisa Hatta
- Department of Anatomy, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
20
|
Chang YC, Daza R, Hevner R, Costa LG, Cole TB. Prenatal and early life diesel exhaust exposure disrupts cortical lamina organization: Evidence for a reelin-related pathogenic pathway induced by interleukin-6. Brain Behav Immun 2019; 78:105-115. [PMID: 30668980 PMCID: PMC6557404 DOI: 10.1016/j.bbi.2019.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
Several epidemiological studies have shown associations between developmental exposure to traffic-related air pollution and increased risk for autism spectrum disorders (ASD), a spectrum of neurodevelopmental disorders with increasing prevalence rate in the United States. Though animal studies have provided support for these associations, little is known regarding possible underlying mechanisms. In a previous study we found that exposure of C57BL/6J mice of both sexes to environmentally relevant levels (250-300 µg/m3) of diesel exhaust (DE) from embryonic day 0 to postnatal day 21 (E0 to PND21) caused significant changes in all three characteristic behavioral domains of ASD in the offspring. In the present study we investigated a potential mechanistic pathway that may be of relevance for ASD-like changes associated with developmental DE exposure. Using the same DE exposure protocol (250-300 µg/m3 DE from E0 to PND21) several molecular markers were examined in the brains of male and female mice at PND3, 21, and 60. Exposure to DE as above increased levels of interleukin-6 (IL-6) in placenta and in neonatal brain. The JAK2/STAT3 pathway, a target for IL-6, was activated by STAT3 phosphorylation, and the expression of DNA methyltransferase 1 (DNMT1), a STAT3 target gene, was increased in DE-exposed neonatal brain. DNMT1 has been reported to down-regulate expression of reelin (RELN), an extracellular matrix glycoprotein important in regulating the processes of neuronal migration. RELN is considered an important modulator for ASD, since there are several polymorphisms in this gene linked to the disease, and since lower levels of RELN have been reported in brains of ASD patients. We observed decreased RELN expression in brains of the DE-exposed mice at PND3. Since disorganized patches in the prefrontal cortex have been reported in ASD patients and disrupted cortical organization has been found in RELN-deficient mice, we also assessed cortical organization, by labeling cells expressing the lamina-specific-markers RELN and calretinin. In DE-exposed mice we found increased cell density in deeper cortex (lamina layers VI-IV) for cells expressing either RELN or calretinin. These findings demonstrate that developmental DE exposure is associated with subtle disorganization of the cerebral cortex at PND60, and suggest a pathway involving IL-6, STAT3, and DNMT1 leading to downregulation of RELN expression that could be contributing to this long-lasting disruption in cortical laminar organization.
Collapse
Affiliation(s)
- Yu-Chi Chang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
| | - Ray Daza
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
| | - Robert Hevner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Neurological Surgery, University of Washington, Seattle, WA, USA.
| | - Lucio G. Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Toby B. Cole
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA,Center on Human Development and Disability, University of Washington, Seattle, WA, USA,Corresponding author at: Department of Environmental and Occupational Health Sciences, University of Washington, Box 357234, 1959 NE Pacific St., Seattle, WA, USA. (Y.-C. Chang), , (R. Daza), , (R. Hevner), (L.G. Costa), (T.B. Cole)
| |
Collapse
|
21
|
Izvolskaia M, Sharova V, Zakharova L. Prenatal Programming of Neuroendocrine System Development by Lipopolysaccharide: Long-Term Effects. Int J Mol Sci 2018; 19:ijms19113695. [PMID: 30469423 PMCID: PMC6274672 DOI: 10.3390/ijms19113695] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
Various stress factors during critical periods of fetal development modulate the epigenetic mechanisms controlling specific genes, which can affect the structure and function of physiological systems. Maternal immune stress by bacterial infection simulated by lipopolysaccharide (LPS) in an experiment is considered to be a powerful programming factor of fetal development. Studies of the molecular mechanisms controlling the formation and functioning of physiological systems are in the pilot stage. LPSs are the most potent natural inflammation factors. LPS-induced increases in fetal levels of pro- and anti-inflammatory cytokines can affect brain development and have long-term effects on behavior and neuroendocrine functions. The degradation of serotonergic neurons induced by LPS in the fetus is attributed to the increased levels of interleukin (IL)-6 and tumor necrosis factor (TNFα) as well as to anxiety and depression in children. Dopamine deficiency causes dysthymia, learning disability, and Parkinson’s disease. According to our data, an LPS-induced increase in the levels of IL-6, leukemia inhibitory factor (LIF), and monocyte chemotactic protein (MCP-1) in maternal and fetal rats during early pregnancy disturbs the development and functioning of gonadotropin-releasing hormone production and reproductive systems. It is important to note the high responsiveness of epigenetic developmental mechanisms to many regulatory factors, which offers opportunities to correct the defects.
Collapse
Affiliation(s)
- Marina Izvolskaia
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
| | - Viktoria Sharova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
| | - Liudmila Zakharova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
| |
Collapse
|
22
|
Logan S, Jiang C, Yan Y, Inagaki Y, Arzua T, Bai X. Propofol Alters Long Non-Coding RNA Profiles in the Neonatal Mouse Hippocampus: Implication of Novel Mechanisms in Anesthetic-Induced Developmental Neurotoxicity. Cell Physiol Biochem 2018; 49:2496-2510. [PMID: 30261491 DOI: 10.1159/000493875] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Propofol induces acute neurotoxicity (e.g., neuroapoptosis) followed by impairment of long-term memory and learning in animals. However, underlying mechanisms remain largely unknown. Long non-coding RNAs (lncRNAs) are found to participate in various pathological processes. We hypothesized that lncRNA profile and the associated signaling pathways were altered, and these changes might be related to the neurotoxicity observed in the neonatal mouse hippocampus following propofol exposure. METHODS In this laboratory experiment, 7-day-old mice were exposed to a subanesthetic dose of propofol for 3 hours, with 4 animals per group. Hippocampal tissues were harvested 3 hours after propofol administration. Neuroapoptosis was analyzed based on caspase 3 activity using a colorimetric assay. A microarray was performed to investigate the profiles of 35,923 lncRNAs and 24,881 messenger RNAs (mRNAs). Representative differentially expressed lncRNAs and mRNAs were validated using reverse transcription quantitative polymerase chain reaction. All mRNAs dysregulated by propofol and the 50 top-ranked, significantly dysregulated lncRNAs were subject to bioinformatics analysis for exploring the potential mechanisms and signaling network of propofol-induced neurotoxicity. RESULTS Propofol induced neuroapoptosis in the hippocampus, with differential expression of 159 lncRNAs and 100 mRNAs (fold change ± 2.0, P< 0.05). Bioinformatics analysis demonstrated that these lncRNAs and their associated mRNAs might participate in neurodegenerative pathways (e.g., calcium handling, apoptosis, autophagy, and synaptogenesis). CONCLUSION This novel report emphasizes that propofol alters profiles of lncRNAs, mRNAs, and their cooperative signaling network, which provides novel insights into molecular mechanisms of anesthetic-induced developmental neurodegeneration and preventive targets against the neurotoxicity.
Collapse
Affiliation(s)
- Sarah Logan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Congshan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xian, China
| | - Yasheng Yan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yasuyoshi Inagaki
- Department of Emergency Medicine, Nayoro City General Hospital, Nayoro, Japan
| | - Thiago Arzua
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
23
|
Liu L, Yang N, Xu G, Liu S, Wang D, Song J, Duan Z, Yang S, Yu Y. Transgenerational transmission of maternal stimulatory experience in domesticated birds. FASEB J 2018; 32:fj201800762RR. [PMID: 30260701 DOI: 10.1096/fj.201800762rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The environmental stimuli experienced by a female can influence phenotypes and gene expression in the subsequent generations. We used a specifically designed domesticated-bird model to examine the transgenerational transmission of maternal stimulus exposure, a phenomenon that has been observed but has not been understood in noninbred animals. We subjected parental generation [filial (F)0] hens to viral- or bacterial-like stimulation after artificial insemination. Subsequent filial generations F1 and F2 transmitted growth or fertility variations without further stimulation in contrast to the controls. The whole-genome bisulfite sequence and next-generation mRNA sequencing of peripheral blood lymphocytes (PBLs) from the F1 generation revealed DNA methylome and transcriptome differences in the F1 polyriboinosinic:polyribocytidylic [poly(I:C)] acid or LPS offspring, compared with the F1 controls. In the F1 offspring, DNA methylation changes induced by maternal immune stimulation may have contributed to transcriptional variation. Pathways analysis indicated that the metabolic processes of xenobiotics and drug metabolism pathways, as well as reproduction-related pathways, were involved in the transgenerational transmission of maternal stimulatory experience. Furthermore, LPS-induced transcriptional transmission may have contributed to subfertility, as indicated by the results of comparative analysis between the transcriptomes of spleen tissues across the F0 and F1 generations, as well as the correlative analysis between the transcriptome and reproductive phenotypes. Our findings provide a framework for determining the mechanisms by which maternal stimulatory factors can be inherited transgenerationally with respect to growth, fertility, DNA methylation, and transcriptional levels in outbred animals.-Liu, L., Yang, N., Xu, G., Liu, S., Wang, D., Song, J., Duan, Z., Yang, S., Yu, Y. Transgenerational transmission of maternal stimulatory experience in domesticated birds.
Collapse
Affiliation(s)
- Lei Liu
- National Engineering Laboratory for Animal Breeding, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China; and
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China; and
| | - Guiyun Xu
- National Engineering Laboratory for Animal Breeding, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China; and
| | - Shuli Liu
- National Engineering Laboratory for Animal Breeding, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China; and
| | - Di Wang
- National Engineering Laboratory for Animal Breeding, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China; and
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Zhongyi Duan
- National Engineering Laboratory for Animal Breeding, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China; and
| | - Shuang Yang
- National Engineering Laboratory for Animal Breeding, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China; and
| | - Ying Yu
- National Engineering Laboratory for Animal Breeding, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China; and
| |
Collapse
|
24
|
Deng SP, Hu W, Calhoun VD, Wang YP. Integrating Imaging Genomic Data in the Quest for Biomarkers of Schizophrenia Disease. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:1480-1491. [PMID: 28880187 PMCID: PMC6207076 DOI: 10.1109/tcbb.2017.2748944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
It's increasingly important but difficult to determine potential biomarkers of schizophrenia (SCZ) disease, owing to the complex pathophysiology of this disease. In this study, a network-fusion based framework was proposed to identify genetic biomarkers of the SCZ disease. A three-step feature selection was applied to single nucleotide polymorphisms (SNPs), DNA methylation, and functional magnetic resonance imaging (fMRI) data to select important features, which were then used to construct two gene networks in different states for the SNPs and DNA methylation data, respectively. Two health networks (one is for SNP data and the other is for DNA methylation data) were combined into one health network from which health minimum spanning trees (MSTs) were extracted. Two disease networks also followed the same procedures. Those genes with significant changes were determined as SCZ biomarkers by comparing MSTs in two different states and they were finally validated from five aspects. The effectiveness of the proposed discovery framework was also demonstrated by comparing with other network-based discovery methods. In summary, our approach provides a general framework for discovering gene biomarkers of the complex diseases by integrating imaging genomic data, which can be applied to the diagnosis of the complex diseases in the future.
Collapse
Affiliation(s)
- Su-Ping Deng
- Department of Biomedical Engineering, School of Science and Engineering, Tulane University, New Orleans, LA 70118, USA.,
| | - Wenxing Hu
- Department of Biomedical Engineering, School of Science and Engineering, Tulane University, New Orleans, LA 70118, USA.,
| | | | - Yu-Ping Wang
- Department of Biomedical Engineering, School of Science and Engineering, Tulane University, New Orleans, LA 70118, USA., , Telephone: (504)865-5867, Fax: (504)862-8779
| |
Collapse
|
25
|
Arita Y, Pressman M, Getahun D, Menon R, Peltier MR. Effect of Tetrabromobisphenol A on expression of biomarkers for inflammation and neurodevelopment by the placenta. Placenta 2018; 68:33-39. [DOI: 10.1016/j.placenta.2018.06.306] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/05/2018] [Accepted: 06/18/2018] [Indexed: 12/21/2022]
|
26
|
Prins JR, Eskandar S, Eggen BJL, Scherjon SA. Microglia, the missing link in maternal immune activation and fetal neurodevelopment; and a possible link in preeclampsia and disturbed neurodevelopment? J Reprod Immunol 2018; 126:18-22. [PMID: 29421625 DOI: 10.1016/j.jri.2018.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/06/2017] [Accepted: 01/17/2018] [Indexed: 12/24/2022]
Abstract
Disturbances in fetal neurodevelopment have extensively been related to neurodevelopmental disorders in early and later life. Fetal neurodevelopment is dependent on adequate functioning of the fetal immune system. During pregnancy, the maternal immune system is challenged to both tolerate the semi-allogenic fetus and to protect the mother and fetus from microbes. The fetal immune system is influenced by maternal immune disturbances; therefore, perturbations in maternal immunity likely do not only alter pregnancy outcome but also alter fetal neurodevelopment. A possible common pathway could be modulating the functioning of tissue macrophages in the placenta and brain. Maternal immune tolerance towards the fetus involves several complex adaptations. In this active maternal immune state, the fetus develops its own immunity. As cytokines and other players of the immune system -which can pass the placenta- are involved in neurodevelopment, disruptions in immune balance influence fetal neurodevelopment. Several studies reported an association between maternal immune activation, complications of pregnancy as preeclampsia, and altered neonatal neurodevelopment. A possible pathway involves dysfunctioning of microglia cells, the immune cells of the brain. Functionality of microglia cells during normal pregnancy is, however, poorly understood. The recent outbreak of ZIKA virus (ZKV), but also the literature on virus infections in general and its consequences on microglial cell function and fetal neurodevelopment show the devastating effects a virus infection during pregnancy can have.
Collapse
Affiliation(s)
- Jelmer R Prins
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands; Department of Obstetrics and Gynecology, Medisch Spectrum Twente, PO Box 50 000, 7500 KA Enschede, The Netherlands.
| | - Sharon Eskandar
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands; Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands.
| | - Bart J L Eggen
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands.
| | - Sicco A Scherjon
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
27
|
Engelhardt M, Hamad MIK, Jack A, Ahmed K, König J, Rennau LM, Jamann N, Räk A, Schönfelder S, Riedel C, Wirth MJ, Patz S, Wahle P. Interneuron synaptopathy in developing rat cortex induced by the pro-inflammatory cytokine LIF. Exp Neurol 2018; 302:169-180. [PMID: 29305051 DOI: 10.1016/j.expneurol.2017.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/08/2017] [Accepted: 12/26/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Maren Engelhardt
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany; Institute of Neuroanatomy, Medical Faculty Mannheim, CBTM, Heidelberg University, Germany
| | - Mohammad I K Hamad
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Alexander Jack
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Küpra Ahmed
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Jennifer König
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Lisa Marie Rennau
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Nora Jamann
- Institute of Neuroanatomy, Medical Faculty Mannheim, CBTM, Heidelberg University, Germany
| | - Andrea Räk
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Sabine Schönfelder
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Christian Riedel
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Markus Joseph Wirth
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany; Institute of Biology-II, RWTH Aachen University, Aachen, Germany
| | - Silke Patz
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany; Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Petra Wahle
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany.
| |
Collapse
|
28
|
Solek CM, Farooqi N, Verly M, Lim TK, Ruthazer ES. Maternal immune activation in neurodevelopmental disorders. Dev Dyn 2017; 247:588-619. [PMID: 29226543 DOI: 10.1002/dvdy.24612] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022] Open
Abstract
Converging lines of evidence from basic science and clinical studies suggest a relationship between maternal immune activation (MIA) and neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia. The mechanisms through which MIA increases the risk of neurodevelopmental disorders have become a subject of intensive research. This review aims to describe how dysregulation of microglial function and immune mechanisms may link MIA and neurodevelopmental pathologies. We also summarize the current evidence in animal models of MIA. Developmental Dynamics 247:588-619, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cynthia M Solek
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Nasr Farooqi
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Myriam Verly
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Tony K Lim
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Edward S Ruthazer
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|