1
|
Dutta A, Saxena R, Dwivedi V, Venkidasamy B, Mishra RK. Evaluation of oxidative stress, biochemical parameters and in silico markers in different pea accessions in response to drought stress. PLANT CELL REPORTS 2024; 43:251. [PMID: 39367961 DOI: 10.1007/s00299-024-03311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/20/2024] [Indexed: 10/07/2024]
Abstract
KEY MESSAGE ARG6 and ARG10 pea accessions exhibited better tolerance to drought by keeping drought-associated attributes stable and higher, that is, stable chlorophyll content, high antioxidant activity, and the presence of polymorphic bands with stress-responsive EST-SSR markers. Each year, a significant portion of crops is lost due to various abiotic stresses, and even pea (Pisum sativum) crop growth and yield are severely affected by the challenges posed by drought stress. Drought is a critical factor that limits crop growth and development, and its impact is exacerbated by changes in the magnitude of climatic conditions. Drought induces oxidative stress in plants, leading to the accumulation of high concentrations of reactive oxygen species that damage cell structures and vital functioning of cells. The primary objective was to identify stress-tolerant plants by evaluating different morphological and biochemical attributes, such as biomass, chlorophyll content, relative water content, ascorbate peroxidase (APX), superoxide dismutase (SOD), and DPPH scavenging activity, as well as protein, proline, and phenolic content. Our study revealed that pea accessions (ARG6 and ARG10) were more resilient to drought stress as their chlorophyll, relative water, protein, and proline contents increased under drought conditions. Antioxidant enzymes, such as SOD, APX, and DPPH activities, also increased under drought stress in ARG10 and ARG6, suggesting that these accessions could bolster the antioxidant defense system in response to drought stress. Based on putative (cellular, biological, and metabolic) functions, ten EST-SSR primers were selected for the amplification study. Three EST-SSR primers, AUMP06_110, AUMP18_300, and AUMP31_250, were used for ARG6 and ARG10. Based on the correlation between the presence or absence of specific EST-SSR alleles, various physiological and morphological traits, and DPPH scavenging activity, both ARG10 and ARG6 demonstrated resistance to drought stress.
Collapse
Affiliation(s)
- Anamika Dutta
- Amity Institute of Biotechnology, Amity University Madhya Pradesh, Gwalior, India
| | - Raghvendra Saxena
- Amity Institute of Biotechnology, Amity University Madhya Pradesh, Gwalior, India
| | - Vinay Dwivedi
- Amity Institute of Biotechnology, Amity University Madhya Pradesh, Gwalior, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, India.
| | | |
Collapse
|
2
|
Mahalle RM, Bosamia TC, Chakravarty S, Srivastava K, Meena RS, Kadam US, Srivastava CP. De Novo Mining and Validating Novel Microsatellite Markers to Assess Genetic Diversity in Maruca vitrata (F.), a Legume Pod Borer. Genes (Basel) 2023; 14:1433. [PMID: 37510337 PMCID: PMC10379186 DOI: 10.3390/genes14071433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Maruca vitrata (Fabricius) is an invasive insect pest capable of causing enormous economic losses to a broad spectrum of leguminous crops. Microsatellites are valuable molecular markers for population genetic studies; however, an inadequate number of M. vitrata microsatellite loci are available to carry out population association studies. Thus, we utilized this insect's public domain databases for mining expressed sequence tags (EST)-derived microsatellite markers. In total, 234 microsatellite markers were identified from 10053 unigenes. We discovered that trinucleotide repeats were the most predominant microsatellite motifs (61.53%), followed by dinucleotide repeats (23.50%) and tetranucleotide repeats (14.95%). Based on the analysis, twenty-five markers were selected for validation in M. vitrata populations collected from various regions of India. The number of alleles (Na), observed heterozygosity (Ho), and expected heterozygosity (He) ranged from 2 to 5; 0.00 to 0.80; and 0.10 to 0.69, respectively. The polymorphic loci showed polymorphism information content (PIC), ranging from 0.09 to 0.72. Based on the genetic distance matrix, the unrooted neighbor-joining dendrogram differentiated the selected populations into two discrete groups. The SSR markers developed and validated in this study will be helpful in population-level investigations of M. vitrata to understand the gene flow, demography, dispersal patterns, biotype differentiation, and host dynamics.
Collapse
Affiliation(s)
- Rashmi Manohar Mahalle
- Department of Entomology and Agricultural Zoology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tejas C Bosamia
- Plant Omics Division, Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Snehel Chakravarty
- Department of Entomology and Agricultural Zoology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Kartikeya Srivastava
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Radhe S Meena
- Department of Entomology and Agricultural Zoology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ulhas Sopanrao Kadam
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Division of Life Science and Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chandra P Srivastava
- Department of Entomology and Agricultural Zoology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
3
|
Mishra G, Meena RK, Kant R, Pandey S, Ginwal HS, Bhandari MS. Genome-wide characterization leading to simple sequence repeat (SSR) markers development in Shorea robusta. Funct Integr Genomics 2023; 23:51. [PMID: 36707443 PMCID: PMC9883139 DOI: 10.1007/s10142-023-00975-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/29/2023]
Abstract
Tropical rainforests in Southeast Asia are enriched by multifarious biota dominated by Dipterocarpaceae. In this family, Shorea robusta is an ecologically sensitive and economically important timber species whose genomic diversity and phylogeny remain understudied due to lack of datasets on genetic resources. Smattering availability of molecular markers impedes population genetic studies indicating a necessity to develop genomic databases and species-specific markers in S. robusta. Accordingly, the present study focused on fostering de novo low-depth genome sequencing, identification of reliable microsatellites markers, and their validation in various populations of S. robusta in Uttarakhand Himalayas. With 69.88 million raw reads assembled into 1,97,489 contigs (read mapped to 93.2%) and a genome size of 357.11 Mb (29 × coverage), Illumina paired-end sequencing technology arranged a library of sequence data of ~ 10 gigabases (Gb). From 57,702 microsatellite repeats, a total of 35,049 simple sequence repeat (SSR) primer pairs were developed. Afterward, among randomly selected 60 primer pairs, 50 showed successful amplification and 24 were found as polymorphic. Out of which, nine polymorphic loci were further used for genetic analysis in 16 genotypes each from three different geographical locations of Uttarakhand (India). Prominently, the average number of alleles per locus (Na), observed heterozygosity (Ho), expected heterozygosity (He), and the polymorphism information content (PIC) were recorded as 2.44, 0.324, 0.277 and 0.252, respectively. The accessibility of sequence information and novel SSR markers potentially enriches the current knowledge of the genomic background for S. robusta and to be utilized in various genetic studies in species under tribe Shoreae.
Collapse
Affiliation(s)
- Garima Mishra
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun - 248 195, Uttarakhand Dehradun, India
| | - Rajendra K. Meena
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun - 248 195, Uttarakhand Dehradun, India
| | - Rama Kant
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun - 248 195, Uttarakhand Dehradun, India
| | - Shailesh Pandey
- Forest Pathology Discipline, Division of Forest Protection, Forest Research Institute, Dehradun - 248 006, Uttarakhand Dehradun, India
| | - Harish S. Ginwal
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun - 248 195, Uttarakhand Dehradun, India
| | - Maneesh S. Bhandari
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun - 248 195, Uttarakhand Dehradun, India
| |
Collapse
|
4
|
Dutta H, Mishra GP, Aski MS, Bosamia TC, Mishra DC, Bhati J, Sinha SK, Vijay D, C. T. MP, Das S, Pawar PAM, Kumar A, Tripathi K, Kumar RR, Yadava DK, Kumar S, Dikshit HK. Comparative transcriptome analysis, unfolding the pathways regulating the seed-size trait in cultivated lentil (Lens culinaris Medik.). Front Genet 2022; 13:942079. [PMID: 36035144 PMCID: PMC9399355 DOI: 10.3389/fgene.2022.942079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Market class, cooking time, quality, and milled grain yield are largely influenced by the seed size and shape of the lentil (Lens culinaris Medik.); thus, they are considered to be important quality traits. To unfold the pathways regulating seed size in lentils, a transcriptomic approach was performed using large-seeded (L4602) and small-seeded (L830) genotypes. The study has generated nearly 375 million high-quality reads, of which 98.70% were properly aligned to the reference genome. Among biological replicates, very high similarity in fragments per kilobase of exon per million mapped fragments values (R > 0.9) showed the consistency of RNA-seq results. Various differentially expressed genes associated mainly with the hormone signaling and cell division pathways, transcription factors, kinases, etc. were identified as having a role in cell expansion and seed growth. A total of 106,996 unigenes were used for differential expression (DE) analysis. String analysis identified various modules having certain key proteins like Ser/Thr protein kinase, seed storage protein, DNA-binding protein, microtubule-associated protein, etc. In addition, some growth and cell division–related micro-RNAs like miR3457 (cell wall formation), miR1440 (cell proliferation and cell cycles), and miR1533 (biosynthesis of plant hormones) were identified as having a role in seed size determination. Using RNA-seq data, 5254 EST-SSR primers were generated as a source for future studies aiming for the identification of linked markers. In silico validation using Genevestigator® was done for the Ser/Thr protein kinase, ethylene response factor, and Myb transcription factor genes. It is of interest that the xyloglucan endotransglucosylase gene was found differentially regulated, suggesting their role during seed development; however, at maturity, no significant differences were recorded for various cell wall parameters including cellulose, lignin, and xylose content. This is the first report on lentils that has unfolded the key seed size regulating pathways and unveiled a theoretical way for the development of lentil genotypes having customized seed sizes.
Collapse
Affiliation(s)
- Haragopal Dutta
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Gyan P. Mishra
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Gyan P. Mishra, ; Shiv Kumar, ; Harsh Kumar Dikshit,
| | - Muraleedhar S. Aski
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Tejas C. Bosamia
- Plant Omics Division, Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
| | - Dwijesh C. Mishra
- Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Jyotika Bhati
- Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Dunna Vijay
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Manjunath Prasad C. T.
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Shouvik Das
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, Faridabad, India
| | | | - Atul Kumar
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Kuldeep Tripathi
- Germplasm Evaluation Division, National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| | | | - Shiv Kumar
- South Asia and China Program, International Center for Agricultural Research in the Dry Areas, NASC Complex, New Delhi, India
- *Correspondence: Gyan P. Mishra, ; Shiv Kumar, ; Harsh Kumar Dikshit,
| | - Harsh Kumar Dikshit
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Gyan P. Mishra, ; Shiv Kumar, ; Harsh Kumar Dikshit,
| |
Collapse
|
5
|
Genic microsatellite marker characterization and development in little millet (Panicum sumatrense) using transcriptome sequencing. Sci Rep 2021; 11:20620. [PMID: 34663808 PMCID: PMC8523711 DOI: 10.1038/s41598-021-00100-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/29/2021] [Indexed: 11/08/2022] Open
Abstract
Little millet is a climate-resilient and high-nutrient value plant. The lack of molecular markers severely limits the adoption of modern genomic approaches in millet breeding studies. Here the transcriptome of three samples were sequenced. A total of 4443 genic-SSR motifs were identified in 30,220 unigene sequences. SSRs were found at a rate of 12.25 percent, with an average of one SSR locus per 10 kb. Among different repeat motifs, tri-nucleotide repeat (66.67) was the most abundant one, followed by di- (27.39P), and tetra- (3.83P) repeats. CDS contained fewer motifs with the majority of tri-nucleotides, while 3' and 5' UTR carry more motifs but have shorter repeats. Functional annotation of unigenes containing microsatellites, revealed that most of them were linked to metabolism, gene expression regulation, and response to environmental stresses. Fifty primers were randomly chosen and validated in five little millet and 20 minor millet genotypes; 48% showed polymorphism, with a high transferability (70%) rate. Identified microsatellites can be a noteworthy resource for future research into QTL-based breeding, genetic resource conservation, MAS selection, and evolutionary genetics.
Collapse
|
6
|
Comparative RNA-Seq analysis unfolds a complex regulatory network imparting yellow mosaic disease resistance in mungbean [Vigna radiata (L.) R. Wilczek]. PLoS One 2021; 16:e0244593. [PMID: 33434234 PMCID: PMC7802970 DOI: 10.1371/journal.pone.0244593] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/11/2020] [Indexed: 11/19/2022] Open
Abstract
Yellow Mosaic Disease (YMD) in mungbean [Vigna radiata (L.) R. Wilczek] is one of the most damaging diseases in Asia. In the northern part of India, the YMD is caused by Mungbean Yellow Mosaic India Virus (MYMIV), while in southern India this is caused by Mungbean Yellow Mosaic Virus (MYMV). The molecular mechanism of YMD resistance in mungbean remains largely unknown. In this study, RNA-seq analysis was conducted between a resistant (PMR-1) and a susceptible (Pusa Vishal) mungbean genotype under infected and control conditions to understand the regulatory network operating between mungbean-YMV. Overall, 76.8 million raw reads could be generated in different treatment combinations, while mapping rate per library to the reference genome varied from 86.78% to 93.35%. The resistance to MYMIV showed a very complicated gene network, which begins with the production of general PAMPs (pathogen-associated molecular patterns), then activation of various signaling cascades like kinases, jasmonic acid (JA) and brassinosteroid (BR), and finally the expression of specific genes (like PR-proteins, virus resistance and R-gene proteins) leading to resistance response. The function of WRKY, NAC and MYB transcription factors in imparting the resistance against MYMIV could be established. The string analysis also revealed the role of proteins involved in kinase, viral movement and phytoene synthase activity in imparting YMD resistance. A set of novel stress-related EST-SSRs are also identified from the RNA-Seq data which may be used to find the linked genes/QTLs with the YMD resistance. Also, 11 defence-related transcripts could be validated through quantitative real-time PCR analysis. The identified gene networks have led to an insight about the defence mechanism operating against MYMIV infection in mungbean which will be of immense use to manage the YMD resistance in mungbean.
Collapse
|
7
|
Identification of novel QTLs for late leaf spot resistance and validation of a major rust QTL in peanut ( Arachis hypogaea L.). 3 Biotech 2020; 10:458. [PMID: 33088655 DOI: 10.1007/s13205-020-02446-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022] Open
Abstract
Co-occurrence of two devastating foliar-fungal diseases of peanut, viz., late leaf spot (LLS), and rust may cause heavy yield loss besides adversely affecting the quality of kernel and fodder. This study reports the mapping of seven novel stress-related candidate EST-SSRs in a region having major QTLs for LLS and rust diseases using an F2 mapping population (GJG17 × GPBD4) consisting of 328 individuals. The parental polymorphism using 1311 SSRs revealed 84 SSRs (6.4%) as polymorphic and of these 70 SSRs could be mapped on 14 linkage groups (LG). QTL analysis has identified a common QTL (LLSQTL1/RustQTL) for LLS and rust diseases in the map interval of 1.41 cM on A03 chromosome, explaining 47.45% and 70.52% phenotypic variations, respectively. Another major QTL for LLS (LLSQTL1), explaining a 29.06% phenotypic variation was also found on LG_A03. A major rust QTL has been validated which was found harboring R-gene and resistance-related genes having a role in inducing hypersensitive response (HR). Further, 23 linked SSRs including seven novel EST-SSRs were also validated in 177 diverse Indian groundnut genotypes. Twelve genotypes resistant to both LLS and rust were found carrying the common (rust and LLS) QTL region, LLS QTL region, and surrounding regions. These identified and validated candidate EST-SSR markers would be of great use for the peanut breeding groups working for the improvement of foliar-fungal disease resistance.
Collapse
|
8
|
Comparative RNA-Seq profiling of a resistant and susceptible peanut ( Arachis hypogaea) genotypes in response to leaf rust infection caused by Puccinia arachidis. 3 Biotech 2020; 10:284. [PMID: 32550103 DOI: 10.1007/s13205-020-02270-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/20/2020] [Indexed: 10/24/2022] Open
Abstract
The goal of this study was to identify differentially expressed genes (DEGs) responsible for peanut plant (Arachis hypogaea) defence against Puccinia arachidis (causative agent of rust disease). Genes were identified using a high-throughput RNA-sequencing strategy. In total, 86,380,930 reads were generated from RNA-Seq data of two peanut genotypes, JL-24 (susceptible), and GPBD-4 (resistant). Gene Ontology (GO) and KEGG analysis of DEGs revealed essential genes and their pathways responsible for defence response to P. arachidis. DEGs uniquely upregulated in resistant genotype included pathogenesis-related (PR) proteins, MLO such as protein, ethylene-responsive factor, thaumatin, and F-box, whereas, other genes down-regulated in susceptible genotype were Caffeate O-methyltransferase, beta-glucosidase, and transcription factors (WRKY, bZIP, MYB). Moreover, various genes, such as Chitinase, Cytochrome P450, Glutathione S-transferase, and R genes such as NBS-LRR were highly up-regulated in the resistant genotype, indicating their involvement in the plant defence mechanism. RNA-Seq analysis data were validated by RT-qPCR using 15 primer sets derived from DEGs producing high correlation value (R 2 = 0.82). A total of 4511 EST-SSRs were identified from the unigenes, which can be useful in evaluating genetic diversity among genotypes, QTL mapping, and plant variety improvement through marker-assisted breeding. These findings will help to understand the molecular defence mechanisms of the peanut plant in response to P. arachidis infection.
Collapse
|
9
|
Wan Y, Zhang M, Hong A, Zhang Y, Liu Y. Characteristics of Microsatellites Mined from Transcriptome Data and the Development of Novel Markers in Paeonia lactiflora. Genes (Basel) 2020; 11:genes11020214. [PMID: 32092852 PMCID: PMC7073652 DOI: 10.3390/genes11020214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 11/16/2022] Open
Abstract
The insufficient number of available simple sequence repeats (SSRs) inhibits genetic research on and molecular breeding of Paeonia lactiflora, a flowering crop with great economic value. The objective of this study was to develop SSRs for P. lactiflora with Illumina RNA sequencing and assess the role of SSRs in gene regulation. The results showed that dinucleotides with AG/CT repeats were the most abundant type of repeat motif in P. lactiflora and were preferentially distributed in untranslated regions. Significant differences in SSR size were observed among motif types and locations. A large number of unigenes containing SSRs participated in catalytic activity, metabolic processes and cellular processes, and 28.16% of all transcription factors and 21.74% of hub genes for inflorescence stem straightness were found to contain SSRs. Successful amplification was achieved with 89.05% of 960 pairs of SSR primers, 55.83% of which were polymorphic, and most of the 46 tested primers had a high level of transferability to the genus Paeonia. Principal component and cluster dendrogram analyses produced results consistent with known genealogical relationships. This study provides a set of SSRs with abundant information for future accession identification, marker-trait association and molecular assisted breeding in P. lactiflora.
Collapse
Affiliation(s)
- Yingling Wan
- College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Y.W.); (M.Z.); (Y.Z.)
| | - Min Zhang
- College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Y.W.); (M.Z.); (Y.Z.)
| | - Aiying Hong
- Management Office of Caozhou Peony Garden, Heze 274000, Shandong, China;
| | - Yixuan Zhang
- College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Y.W.); (M.Z.); (Y.Z.)
| | - Yan Liu
- College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Y.W.); (M.Z.); (Y.Z.)
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
10
|
Lebedev VG, Subbotina NM, Maluchenko OP, Lebedeva TN, Krutovsky KV, Shestibratov KA. Transferability and Polymorphism of SSR Markers Located in Flavonoid Pathway Genes in Fragaria and Rubus Species. Genes (Basel) 2019; 11:E11. [PMID: 31877734 PMCID: PMC7017068 DOI: 10.3390/genes11010011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/14/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Strawberry (Fragaria) and raspberry (Rubus) are very popular crops, and improving their nutritional quality and disease resistance are important tasks in their breeding programs that are becoming increasingly based on use of functional DNA markers. We identified 118 microsatellite (simple sequence repeat-SSR) loci in the nucleotide sequences of flavonoid biosynthesis and pathogenesis-related genes and developed 24 SSR markers representing some of these structural and regulatory genes. These markers were used to assess the genetic diversity of 48 Fragaria and Rubus specimens, including wild species and rare cultivars, which differ in berry color, ploidy, and origin. We have demonstrated that a high proportion of the developed markers are transferable within and between Fragaria and Rubus genera and are polymorphic. Transferability and polymorphism of the SSR markers depended on location of their polymerase chain reaction (PCR) primer annealing sites and microsatellite loci in genes, respectively. High polymorphism of the SSR markers in regulatory flavonoid biosynthesis genes suggests their allelic variability that can be potentially associated with differences in flavonoid accumulation and composition. This set of SSR markers may be a useful molecular tool in strawberry and raspberry breeding programs for improvement anthocyanin related traits.
Collapse
Affiliation(s)
- Vadim G. Lebedev
- Pushchino State Institute of Natural Sciences, Prospekt Nauki 3, 142290 Pushchino, Russia; (V.G.L.); (N.M.S.)
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia;
| | - Natalya M. Subbotina
- Pushchino State Institute of Natural Sciences, Prospekt Nauki 3, 142290 Pushchino, Russia; (V.G.L.); (N.M.S.)
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia;
| | - Oleg P. Maluchenko
- All-Russian Research Institute of Agricultural Biotechnology, Timiriazevskaya Str. 42, 127550 Moscow, Russia;
| | - Tatyana N. Lebedeva
- Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, Institutskaya Str. 2, 142290 Pushchino, Russia;
| | - Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August University of Göttingen, Albrecht-Thaer-Weg 3, 37075 Göttingen, Germany
- Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin Str. 3, 119333 Moscow, Russia
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia
- Department of Ecosystem Science and Management, Texas A&M University, 2138 TAMU, College Station, TX 77843-2138, USA
| | - Konstantin A. Shestibratov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia;
| |
Collapse
|
11
|
Sarkar T, Thankappan R, Mishra GP, Nawade BD. Advances in the development and use of DREB for improved abiotic stress tolerance in transgenic crop plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1323-1334. [PMID: 31736537 PMCID: PMC6825097 DOI: 10.1007/s12298-019-00711-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/07/2019] [Accepted: 08/29/2019] [Indexed: 05/09/2023]
Abstract
Abiotic stresses negatively influence the survival, biomass production, and yield of crops. Tolerance to diverse abiotic stresses in plants is regulated by multiple genes responding differently to various stress conditions. Genetic engineering approaches have helped develop transgenic crops with improved abiotic stress tolerance including yields. The dehydration-responsive element binding protein (DREB) is a stress-responsive transcription factor that modulates the expression of downstream stress-inducible genes, which confer simultaneous tolerance to multiple stresses. This review focuses on advances in the development of DREB transgenic crops and their characterization under various abiotic stress conditions. It further discusses the mechanistic aspects of abiotic stress tolerance, yield gain, the fate of transgenic plants under controlled and field conditions and future research directions toward commercialization of DREB transgenic crops.
Collapse
Affiliation(s)
- Tanmoy Sarkar
- ICAR-Directorate of Groundnut Research, Post Box 1, Junagadh, Gujarat 362001 India
- Central Sericultural Research & Training Institute (CSRTI), Mysuru, Karnataka 570 008 India
| | | | - Gyan P. Mishra
- ICAR-Directorate of Groundnut Research, Post Box 1, Junagadh, Gujarat 362001 India
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi 110012 India
| | - Bhagwat D. Nawade
- ICAR-Directorate of Groundnut Research, Post Box 1, Junagadh, Gujarat 362001 India
| |
Collapse
|
12
|
Tulsani NJ, Hamid R, Jacob F, Umretiya NG, Nandha AK, Tomar RS, Golakiya BA. Transcriptome landscaping for gene mining and SSR marker development in Coriander (Coriandrum sativum L.). Genomics 2019; 112:1545-1553. [PMID: 31505244 DOI: 10.1016/j.ygeno.2019.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/22/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022]
Abstract
Coriander (Coriandrum sativum L.) is an aromatic herb, widely used as a spice and is of great pharmaceutical interest. Despite high medicinal and economic value, there is a dearth of genomic information about profiling as well as the expressed sequence-based genic markers. In this study, transcriptome was sequenced from seeds, leaves, and flower for gene mining and identification of SSR markers. A total of 9746 SSR containing loci were identified, the most abundant type of SSR identified were the di-nucleotide repeat motifs (45.5%), followed by tri- (34.6%), tetra- (4.5%), penta- (1.5%) and hexanucleotide repeats (1%). A total of 3795 primers were designed, out of which 120 randomly selected were validated in 14 accessions of coriander cultivated in India. The current study provides useful information about preliminary transcriptome sketch and genic markers, which can be useful in breeding and genetic diversity estimation of coriander.
Collapse
Affiliation(s)
- Nilam J Tulsani
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
| | - Rasmieh Hamid
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Iran.
| | - Feba Jacob
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India
| | - Nimita G Umretiya
- Food Quality Testing Laboratory, Navsari Agricultural University, Navsari 396445, India
| | - Abhijeeta K Nandha
- Department of Genetics and plant breeding, College of Agriculture, Parul University, Baroda 390019, India
| | - Rukam S Tomar
- Department of Biotechnology and Biochemistry, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Balaji A Golakiya
- Department of Biotechnology and Biochemistry, Junagadh Agricultural University, Junagadh, Gujarat, India
| |
Collapse
|
13
|
Bhalani H, Thankappan R, Mishra GP, Sarkar T, Bosamia TC, Dobaria JR. Regulation of antioxidant mechanisms by AtDREB1A improves soil-moisture deficit stress tolerance in transgenic peanut (Arachis hypogaea L.). PLoS One 2019; 14:e0216706. [PMID: 31071165 PMCID: PMC6508701 DOI: 10.1371/journal.pone.0216706] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/26/2019] [Indexed: 12/20/2022] Open
Abstract
The present study evaluated the soil-moisture deficit stress tolerance of AtDREB1A transgenic peanut lines during reproductive stages using lysimetric system under controlled glasshouse conditions. The antioxidant activities of AtDREB1A transgenic lines were measured by biochemical assays. The transgenic peanut lines recorded significantly lower accumulation of malondialdehyde and hydrogen peroxide than the wild-type. Whereas, specific activity of catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione reductase and ascorbic acid were found to be significantly higher in transgenic lines than in the wild-type line under drought stress. The results showed that the transgenic lines expressed lower oxidative damage than wild-type and could protect themselves from the elevated levels of reactive oxygen species under drought stress. This could be attributed to the regulation of various stress-inducible genes by AtDREB1A transcription factor. Improved photosynthetic and growth parameters were also recorded in transgenic lines over wild-type under drought stress. Improved physio-biochemical mechanisms in transgenic peanut lines might have resulted in improved growth-related traits as significant correlations were observed between physio-biochemical parameters and growth-related traits under drought stress. The potential target genes of AtDREB1A transcription factor in transgenic peanut lines during drought stress were identified, which helped in understanding the molecular mechanisms of DREB-regulated stress responses. The transgenic line D6 reported the best physio-biochemical mechanisms and growth-related parameters under drought stress over other transgenic lines and wild-type, suggesting it may be used to develop high yielding and terminal drought-tolerant peanut varieties.
Collapse
Affiliation(s)
- Hiren Bhalani
- Directorate of Groundnut Research, Junagadh, Gujarat, India
- Junagadh Agricultural University, Junagadh, Gujarat, India
| | | | - Gyan P. Mishra
- Directorate of Groundnut Research, Junagadh, Gujarat, India
| | - Tanmoy Sarkar
- Directorate of Groundnut Research, Junagadh, Gujarat, India
| | | | | |
Collapse
|
14
|
Nawade B, Mishra GP, Radhakrishnan T, Dodia SM, Ahmad S, Kumar A, Kumar A, Kundu R. High oleic peanut breeding: Achievements, perspectives, and prospects. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Hamid R, Tomar RS, Marashi H, Shafaroudi SM, Golakiya BA, Mohsenpour M. Transcriptome profiling and cataloging differential gene expression in floral buds of fertile and sterile lines of cotton (Gossypium hirsutum L.). Gene 2018; 660:80-91. [PMID: 29577977 DOI: 10.1016/j.gene.2018.03.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 01/02/2023]
Abstract
Cytoplasmic Male Sterility is maternally inherited trait in plants, characterized by failure to produce functional pollen during anther development. Anther development is modulated through the interaction of nuclear and mitochondrial genes. In the present study, differential gene expression of floral buds at the sporogenous stage (SS) and microsporocyte stage (MS) between CGMS and its fertile maintainer line of cotton plants was studied. A total of 320 significantly differentially expressed genes, including 20 down-regulated and 37 up-regulated in CGMS comparing with its maintainer line at the SS stage, as well as and 89 down-regulated and 4 up-regulated in CGMS compared to the fertile line at MS stage. Comparing the two stages in the same line, there were 6 down-regulated differentially expressed genes only induced in CGMS and 9 up-regulated differentially expressed gene only induced in its maintainer. GO analysis revealed essential genes responsible for pollen development, and cytoskeleton category show differential expression between the fertile and CGMS lines. Validation studies by qRT-PCR shows concordance with RNA-seq result. A set of novel SSRs identified in this study can be used in evaluating genetic relationships among cultivars, QTL mapping, and marker-assisted breeding. We reported aberrant expression of genes related to pollen exine formation, and synthesis of pectin lyase, myosine heavy chain, tubulin, actin-beta, heat shock protein and myeloblastosis (MYB) protein as targets for CMS in cotton. The results of this study contribute to basic information for future screening of genes and identification of molecular portraits responsible for CMS as well as to elucidate molecular mechanisms that lead to CMS in cotton.
Collapse
Affiliation(s)
- Rasmieh Hamid
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Iran
| | - Rukam S Tomar
- Department of Biotechnology and Biochemistry, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Hassan Marashi
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Iran.
| | | | - Balaji A Golakiya
- Department of Biotechnology and Biochemistry, Junagadh Agricultural University, Junagadh, Gujarat, India
| | | |
Collapse
|
16
|
Sathyanarayana N, Pittala RK, Tripathi PK, Chopra R, Singh HR, Belamkar V, Bhardwaj PK, Doyle JJ, Egan AN. Transcriptomic resources for the medicinal legume Mucuna pruriens: de novo transcriptome assembly, annotation, identification and validation of EST-SSR markers. BMC Genomics 2017; 18:409. [PMID: 28545396 PMCID: PMC5445377 DOI: 10.1186/s12864-017-3780-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/10/2017] [Indexed: 12/14/2022] Open
Abstract
Background The medicinal legume Mucuna pruriens (L.) DC. has attracted attention worldwide as a source of the anti-Parkinson’s drug L-Dopa. It is also a popular green manure cover crop that offers many agronomic benefits including high protein content, nitrogen fixation and soil nutrients. The plant currently lacks genomic resources and there is limited knowledge on gene expression, metabolic pathways, and genetics of secondary metabolite production. Here, we present transcriptomic resources for M. pruriens, including a de novo transcriptome assembly and annotation, as well as differential transcript expression analyses between root, leaf, and pod tissues. We also develop microsatellite markers and analyze genetic diversity and population structure within a set of Indian germplasm accessions. Results One-hundred ninety-one million two hundred thirty-three thousand two hundred forty-two bp cleaned reads were assembled into 67,561 transcripts with mean length of 626 bp and N50 of 987 bp. Assembled sequences were annotated using BLASTX against public databases with over 80% of transcripts annotated. We identified 7,493 simple sequence repeat (SSR) motifs, including 787 polymorphic repeats between the parents of a mapping population. 134 SSRs from expressed sequenced tags (ESTs) were screened against 23 M. pruriens accessions from India, with 52 EST-SSRs retained after quality control. Population structure analysis using a Bayesian framework implemented in fastSTRUCTURE showed nearly similar groupings as with distance-based (neighbor-joining) and principal component analyses, with most of the accessions clustering per geographical origins. Pair-wise comparison of transcript expression in leaves, roots and pods identified 4,387 differentially expressed transcripts with the highest number occurring between roots and leaves. Differentially expressed transcripts were enriched with transcription factors and transcripts annotated as belonging to secondary metabolite pathways. Conclusions The M. pruriens transcriptomic resources generated in this study provide foundational resources for gene discovery and development of molecular markers. Polymorphic SSRs identified can be used for genetic diversity, marker-trait analyses, and development of functional markers for crop improvement. The results of differential expression studies can be used to investigate genes involved in L-Dopa synthesis and other key metabolic pathways in M. pruriens. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3780-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- N Sathyanarayana
- Department of Botany, Sikkim University, 6th Mile, Tadong-737102, Gangtok, Sikkim, India.
| | - Ranjith Kumar Pittala
- Department of Botany, Sikkim University, 6th Mile, Tadong-737102, Gangtok, Sikkim, India
| | - Pankaj Kumar Tripathi
- Department of Botany, Sikkim University, 6th Mile, Tadong-737102, Gangtok, Sikkim, India
| | - Ratan Chopra
- United States Department of Agriculture, Agriculture Research Service, 3810 4th St., Lubbock, TX, 79415, USA
| | - Heikham Russiachand Singh
- Department of Plant Science, McGill University, Raymond Building, 21111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, H9X 3V9, Canada
| | - Vikas Belamkar
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Pardeep Kumar Bhardwaj
- Institute of Bioresources and Sustainable Development, ikkim Centre, Tadong-737102, Gangtok, Sikkim, India
| | - Jeff J Doyle
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, 412 Mann Library, Ithaca, NY, 14853, USA
| | - Ashley N Egan
- Department of Botany, Smithsonian Institution, National Museum of Natural History, US National Herbarium, 10th and Constitution Ave NW, Washington, DC, 20013, USA.
| |
Collapse
|
17
|
Singh V, Goel R, Pande V, Asif MH, Mohanty CS. De novo sequencing and comparative analysis of leaf transcriptomes of diverse condensed tannin-containing lines of underutilized Psophocarpus tetragonolobus (L.) DC. Sci Rep 2017; 7:44733. [PMID: 28322296 PMCID: PMC5359716 DOI: 10.1038/srep44733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/13/2017] [Indexed: 11/09/2022] Open
Abstract
Condensed tannin (CT) or proanthocyanidin (PA) is a unique group of phenolic metabolite with high molecular weight with specific structure. It is reported that, the presence of high-CT in the legumes adversely affect the nutrients in the plant and impairs the digestibility upon consumption by animals. Winged bean (Psophocarpus tetragonolobus (L.) DC.) is one of the promising underutilized legume with high protein and oil-content. One of the reasons for its underutilization is due to the presence of CT. Transcriptome sequencing of leaves of two diverse CT-containing lines of P. tetragonolobus was carried out on Illumina Nextseq 500 sequencer to identify the underlying genes and contigs responsible for CT-biosynthesis. RNA-Seq data generated 102586 and 88433 contigs for high (HCTW) and low CT (LCTW) lines of P. tetragonolobus, respectively. Based on the similarity searches against gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) database revealed 5210 contigs involved in 229 different pathways. A total of 1235 contigs were detected to differentially express between HCTW and LCTW lines. This study along with its findings will be helpful in providing information for functional and comparative genomic analysis of condensed tannin biosynthesis in this plant in specific and legumes in general.
Collapse
Affiliation(s)
- Vinayak Singh
- Plant Molecular Biology and Genetic Engineering Division, CSIR-National Botanical Research Institute, Lucknow-226 001 Uttar Pradesh, India.,Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, 263001 India
| | - Ridhi Goel
- Plant Molecular Biology and Genetic Engineering Division, CSIR-National Botanical Research Institute, Lucknow-226 001 Uttar Pradesh, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, 263001 India
| | - Mehar Hasan Asif
- Plant Molecular Biology and Genetic Engineering Division, CSIR-National Botanical Research Institute, Lucknow-226 001 Uttar Pradesh, India
| | - Chandra Sekhar Mohanty
- Plant Molecular Biology and Genetic Engineering Division, CSIR-National Botanical Research Institute, Lucknow-226 001 Uttar Pradesh, India
| |
Collapse
|
18
|
Mishra GP, Singh B, Seth T, Singh AK, Halder J, Krishnan N, Tiwari SK, Singh PM. Biotechnological Advancements and Begomovirus Management in Okra ( Abelmoschus esculentus L.): Status and Perspectives. FRONTIERS IN PLANT SCIENCE 2017; 8:360. [PMID: 28367155 PMCID: PMC5355441 DOI: 10.3389/fpls.2017.00360] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/01/2017] [Indexed: 05/24/2023]
Abstract
Despite the importance of okra, as one of the important vegetable crop, very little attention has been paid to its genetic improvement using advanced biotechnological tools. The exploitation of marker assisted breeding in okra is often limited due to the availability of a few molecular markers, the absence of molecular genetic-map(s), and other molecular tools. Chromosome linkage-groups were not yet constructed for this crop and reports on marker development are very scanty and mostly hovering around cultivar characterization. Besides, very little progress has been observed for transgenic development. However, high throughput biotechnological tools like chromosome engineering, RNA interference (RNAi), marker-assisted recurrent selection (MARS), genome-wide selection (GWS), targeted gene replacement, next generation sequencing (NGS), and nanobiotechnology can provide a rapid way for okra improvement. Further, the etiology of many deadly viral diseases like the yellow vein mosaic virus (YVMV) and okra enation leaf curl virus (OELCV) in okra is broadly indistinct and has been shown to be caused by various begomovirus species. These diseases cause systemic infections and have a very effective mode of transmission; thus, preventing their spread has been very complicated. Biotechnological interventions have the potential to enhance okra production even under different viral-stress conditions. In this background, this review deals with the biotechnological advancements in okra per se along with the begomoviruses infecting okra, and special emphasis has been laid on the exploitation of advanced genomic tools for the development of resistant varieties.
Collapse
Affiliation(s)
- Gyan P. Mishra
- Department of Biotechnology, ICAR-Indian Institute of Vegetable ResearchVaranasi, India
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Bhad PG, Mondal S, Badigannavar AM. Genetic diversity in groundnut (Arachis hypogaea L.) genotypes and detection of marker trait associations for plant habit and seed size using genomic and genic SSRs. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s12892-016-0060-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Vatanparast M, Shetty P, Chopra R, Doyle JJ, Sathyanarayana N, Egan AN. Transcriptome sequencing and marker development in winged bean (Psophocarpus tetragonolobus; Leguminosae). Sci Rep 2016; 6:29070. [PMID: 27356763 PMCID: PMC4928180 DOI: 10.1038/srep29070] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/14/2016] [Indexed: 01/08/2023] Open
Abstract
Winged bean, Psophocarpus tetragonolobus (L.) DC., is similar to soybean in yield and nutritional value but more viable in tropical conditions. Here, we strengthen genetic resources for this orphan crop by producing a de novo transcriptome assembly and annotation of two Sri Lankan accessions (denoted herein as CPP34 [PI 491423] and CPP37 [PI 639033]), developing simple sequence repeat (SSR) markers, and identifying single nucleotide polymorphisms (SNPs) between geographically separated genotypes. A combined assembly based on 804,757 reads from two accessions produced 16,115 contigs with an N50 of 889 bp, over 90% of which has significant sequence similarity to other legumes. Combining contigs with singletons produced 97,241 transcripts. We identified 12,956 SSRs, including 2,594 repeats for which primers were designed and 5,190 high-confidence SNPs between Sri Lankan and Nigerian genotypes. The transcriptomic data sets generated here provide new resources for gene discovery and marker development in this orphan crop, and will be vital for future plant breeding efforts. We also analyzed the soybean trypsin inhibitor (STI) gene family, important plant defense genes, in the context of related legumes and found evidence for radiation of the Kunitz trypsin inhibitor (KTI) gene family within winged bean.
Collapse
Affiliation(s)
- Mohammad Vatanparast
- US National Herbarium (US), Department of Botany, Smithsonian Institution-NMNH, 10th and Constitution Ave, Washington DC, 20013, USA
| | - Prateek Shetty
- Department of Plant Biology, Michigan State University, 612 Wilson Road, Room 166, East Lansing, MI, 48824, USA
| | - Ratan Chopra
- United States Department of Agriculture, Agriculture Research Service, 3810 4th St., Lubbock, TX, 79415, USA
| | - Jeff J Doyle
- Section of Plant Breeding &Genetics, School of Integrative Plant Science, Cornell University, 412 Mann Library, Ithaca, NY, 14853, USA
| | - N Sathyanarayana
- Department of Botany, Sikkim University, 5th Mile, Tadong, Gangtok, Sikkim, 737102, India
| | - Ashley N Egan
- US National Herbarium (US), Department of Botany, Smithsonian Institution-NMNH, 10th and Constitution Ave, Washington DC, 20013, USA
| |
Collapse
|
21
|
Characterization and Transferable Utility of Microsatellite Markers in the Wild and Cultivated Arachis Species. PLoS One 2016; 11:e0156633. [PMID: 27243460 PMCID: PMC4887017 DOI: 10.1371/journal.pone.0156633] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/17/2016] [Indexed: 11/19/2022] Open
Abstract
Microsatellite or simple sequence repeat (SSR) is one of the most widely distributed molecular markers that have been widely utilized to assess genetic diversity and genetic mapping for important traits in plants. However, the understanding of microsatellite characteristics in Arachis species and the currently available amount of high-quality SSR markers remain limited. In this study, we identified 16,435 genome survey sequences SSRs (GSS-SSRs) and 40,199 expressed sequence tag SSRs (EST-SSRs) in Arachis hypogaea and its wild relative species using the publicly available sequence data. The GSS-SSRs had a density of 159.9–239.8 SSRs/Mb for wild Arachis and 1,015.8 SSR/Mb for cultivated Arachis, whereas the EST-SSRs had the density of 173.5–384.4 SSR/Mb and 250.9 SSRs/Mb for wild and cultivated Arachis, respectively. The trinucleotide SSRs were predominant across Arachis species, except that the dinucleotide accounted for most in A. hypogaea GSSs. From Arachis GSS-SSR and EST-SSR sequences, we developed 2,589 novel SSR markers that showed a high polymorphism in six diverse A. hypogaea accessions. A genetic linkage map that contained 540 novel SSR loci and 105 anchor SSR loci was constructed by case of a recombinant inbred lines F6 population. A subset of 82 randomly selected SSR markers were used to screen 39 wild and 22 cultivated Arachis accessions, which revealed a high transferability of the novel SSRs across Arachis species. Our results provided informative clues to investigate microsatellite patterns across A. hypogaea and its wild relative species and potentially facilitate the germplasm evaluation and gene mapping in Arachis species.
Collapse
|
22
|
Ferraz dos Santos L, Moreira Fregapani R, Falcão LL, Togawa RC, Costa MMDC, Lopes UV, Peres Gramacho K, Alves RM, Micheli F, Marcellino LH. First Microsatellite Markers Developed from Cupuassu ESTs: Application in Diversity Analysis and Cross-Species Transferability to Cacao. PLoS One 2016; 11:e0151074. [PMID: 26949967 PMCID: PMC4780773 DOI: 10.1371/journal.pone.0151074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/23/2016] [Indexed: 01/25/2023] Open
Abstract
The cupuassu tree (Theobroma grandiflorum) (Willd. ex Spreng.) Schum. is a fruitful species from the Amazon with great economical potential, due to the multiple uses of its fruit´s pulp and seeds in the food and cosmetic industries, including the production of cupulate, an alternative to chocolate. In order to support the cupuassu breeding program and to select plants presenting both pulp/seed quality and fungal disease resistance, SSRs from Next Generation Sequencing ESTs were obtained and used in diversity analysis. From 8,330 ESTs, 1,517 contained one or more SSRs (1,899 SSRs identified). The most abundant motifs identified in the EST-SSRs were hepta- and trinucleotides, and they were found with a minimum and maximum of 2 and 19 repeats, respectively. From the 1,517 ESTs containing SSRs, 70 ESTs were selected based on their functional annotation, focusing on pulp and seed quality, as well as resistance to pathogens. The 70 ESTs selected contained 77 SSRs, and among which, 11 were polymorphic in cupuassu genotypes. These EST-SSRs were able to discriminate the cupuassu genotype in relation to resistance/susceptibility to witches’ broom disease, as well as to pulp quality (SST/ATT values). Finally, we showed that these markers were transferable to cacao genotypes, and that genome availability might be used as a predictive tool for polymorphism detection and primer design useful for both Theobroma species. To our knowledge, this is the first report involving EST-SSRs from cupuassu and is also a pioneer in the analysis of marker transferability from cupuassu to cacao. Moreover, these markers might contribute to develop or saturate the cupuassu and cacao genetic maps, respectively.
Collapse
Affiliation(s)
- Lucas Ferraz dos Santos
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, km 16, 45662–900 Ilhéus-BA, Brazil
- Embrapa Recursos Genéticos e Biotecnologia, Brasília-DF, 70770–917, Brazil
| | | | - Loeni Ludke Falcão
- Embrapa Recursos Genéticos e Biotecnologia, Brasília-DF, 70770–917, Brazil
| | | | | | | | | | | | - Fabienne Micheli
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, km 16, 45662–900 Ilhéus-BA, Brazil
- CIRAD, UMR AGAP, F-34398 Montpellier, France
- * E-mail:
| | | |
Collapse
|
23
|
Sarkar T, Thankappan R, Kumar A, Mishra GP, Dobaria JR. Stress Inducible Expression of AtDREB1A Transcription Factor in Transgenic Peanut (Arachis hypogaea L.) Conferred Tolerance to Soil-Moisture Deficit Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:935. [PMID: 27446163 PMCID: PMC4923254 DOI: 10.3389/fpls.2016.00935] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/13/2016] [Indexed: 05/03/2023]
Abstract
Peanut, an important oilseed crop, is gaining priority for the development of drought tolerant genotypes in recent times, since the area under drought is constantly on the rise. To achieve this, one of the important strategies is to genetically engineer the ruling peanut varieties using transcription factor regulating the expression of several downstream, abiotic-stress responsive gene(s). In this study, eight independent transgenic peanut (cv. GG20) lines were developed using AtDREB1A gene, encoding for a transcription factor, through Agrobacterium-mediated genetic transformation. The transgene insertion was confirmed in (T0) using PCR and Dot-blot analysis, while copy-number(s) was ascertained using Southern-blot analysis. The inheritance of AtDREB1A gene in individual transgenic plants (T1 and T2) was confirmed using PCR. In homozygous transgenic plants (T2), under soil-moisture deficit stress, elevated level of AtDREB1A transgene expression was observed by RT-PCR assay. The transgenic plants at 45-d or reproductive growth stage showed tolerance to severe soil-moisture deficit stress. Physio-biochemical parameters such as proline content, osmotic potential, relative water content, electrolytic leakage, and total-chlorophyll content were found positively correlated with growth-related traits without any morphological abnormality, when compared to wild-type. qPCR analysis revealed consistent increase in expression of AtDREB1A gene under progressive soil-moisture deficit stress in two homozygous transgenic plants. The transgene expression showed significant correlation with improved physio-biochemical traits. The improvement of drought-stress tolerance in combination with improved growth-related traits is very essential criterion for a premium peanut cultivar like GG20, so that marginal farmers of India can incur the economic benefits during seasonal drought and water scarcity.
Collapse
|
24
|
Correction: Novel and Stress Relevant EST Derived SSR Markers Developed and Validated in Peanut. PLoS One 2015; 10:e0133537. [PMID: 26176216 PMCID: PMC4503438 DOI: 10.1371/journal.pone.0133537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|