1
|
Chrzan N, Hartman ML. Copper in melanoma: At the crossroad of protumorigenic and anticancer roles. Redox Biol 2025; 81:103552. [PMID: 39970778 PMCID: PMC11880738 DOI: 10.1016/j.redox.2025.103552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025] Open
Abstract
Copper is an essential micronutrient that is a cofactor for various enzymes involved in multiple cellular processes. Melanoma patients have high serum copper levels, and elevated copper concentrations are found in melanoma tumors. Copper influences the activity of several melanoma-related proteins involved in cell survival, proliferation, pigmentation, angiogenesis, and metastasis. Targeting these processes with copper chelators has shown efficacy in reducing tumor growth and overcoming drug resistance. In contrast, excessive copper can also have detrimental effects when imported into melanoma cells. Multiple distinct cellular effects of copper overload, including the induction of different types of cell death, have been reported. Cuproptosis, a novel type of copper-dependent cell death, has been recently described and is associated with the metabolic phenotype. Melanoma cells can switch between glycolysis and oxidative phosphorylation, which are crucial for tumor growth and drug resistance. In this respect, metabolic plasticity might be exploited for the use of copper-delivery strategies, including repurposing of disulfiram, which is approved for the treatment of noncancer patients. In addition, the development of nanomedicines can improve the targeted delivery of copper to melanoma cells and enable the use of these drugs alone or in combination as copper has been shown to complement targeted therapy and immunotherapy in melanoma cells. However, further research is needed to explore the specific mechanisms of both copper restriction and excess copper-induced processes and determine effective biomarkers for predicting treatment sensitivity in melanoma patients. In this review, we discuss the dual role of copper in melanoma biology.
Collapse
Affiliation(s)
- Natalia Chrzan
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | - Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| |
Collapse
|
2
|
Tearle RG, Chen T, Brien FD. A 3-bp deletion in the SLC45A2 gene is associated with loss of fleece pigmentation in black-fleeced Suffolk sheep. Anim Genet 2025; 56:e13495. [PMID: 39608806 DOI: 10.1111/age.13495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024]
Abstract
Sheep have naturally pigmented wool which interferes with dyeing. Selection has been carried out over many years to remove pigment, with substantial success, but most wool still contains some pigment. As an alternative to selection, it has been proposed to take a naturally occurring mutation found in black Suffolk sheep, that blocks wool pigmentation, and introgress it into other breeds. However, the nature of the mutation has not been identified, prompting us to characterise it. The Suffolk white-fleece phenotype is associated with a novel 3-bp deletion in the gene SLC45A2, which encodes a membrane bound transporter that mediates melanin synthesis. The deletion results in the removal of one amino acid from the protein. The assignment of this deletion as the likely causative mutation is supported by it: being homozygous in the genome of nine animals with a white fleece and not homozygous in the genomes of eight animals with a black fleece; having a high level of conservation of the encoded amino acid sequence in the region surrounding the deleted amino acid across Mammalia; and the same deletion (but in a compound heterozygous state) being found in human SLC45A2 in a person with albinism.
Collapse
Affiliation(s)
- R G Tearle
- Davies Research Livestock Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, Australia
| | - T Chen
- Davies Research Livestock Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, Australia
| | - F D Brien
- Davies Research Livestock Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, Australia
| |
Collapse
|
3
|
Mpofana N, Mlambo ZP, Makgobole MU, Dlova NC, Naicker T. Association of Genetic Polymorphisms in SLC45A2, TYR, HERC2, and SLC24A in African Women with Melasma: A Pilot Study. Int J Mol Sci 2025; 26:1158. [PMID: 39940926 PMCID: PMC11818098 DOI: 10.3390/ijms26031158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/20/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Melasma is a chronic skin disorder characterized by hyperpigmentation, predominantly affecting women with darker skin types, including those of African descent. This study investigates the association between genetic variants in SLC45A2, TYR, HERC2, and SLC24A5 genes and the severity of melasma in women of reproductive age. Forty participants were divided into two groups: twenty with facial melasma and twenty without. Deoxyribonucleic acid (DNA) was extracted from blood samples and genotyped using TaqMan assays to identify allele frequencies and genotype distributions. Significant associations were observed for the TYR gene (rs1042602), HERC2 gene (rs1129038), and SLC24A5 gene (rs1426654) polymorphisms, highlighting their potential roles in melasma susceptibility. For example, the rs1042602 Single Nucleotide Polymorphisms (SNP) in the TYR gene showed a strong association with melasma, with the AA genotype conferring a markedly increased risk. Similarly, the rs1129038 SNP in the HERC2 gene and the rs1426654 SNP in the SLC24A5 gene revealed significant genetic variations between groups in women of African descent. These findings underscore the influence of genetic polymorphisms on melasma's pathogenesis, emphasizing the need for personalized approaches to its treatment, particularly for women with darker skin types.
Collapse
Affiliation(s)
- Nomakhosi Mpofana
- Dermatology Department, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4000, South Africa; (M.U.M.); (N.C.D.)
- Department of Somatology, Durban University of Technology, Durban 4000, South Africa
| | - Zinhle Pretty Mlambo
- Discipline of Optics and Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (Z.P.M.); (T.N.)
| | - Mokgadi Ursula Makgobole
- Dermatology Department, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4000, South Africa; (M.U.M.); (N.C.D.)
| | - Ncoza Cordelia Dlova
- Dermatology Department, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4000, South Africa; (M.U.M.); (N.C.D.)
| | - Thajasvarie Naicker
- Discipline of Optics and Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (Z.P.M.); (T.N.)
| |
Collapse
|
4
|
Cho E, Hyung KE, Choi YH, Chun H, Kim D, Jun SH, Kang NG. Modulating OCA2 Expression as a Promising Approach to Enhance Skin Brightness and Reduce Dark Spots. Biomolecules 2024; 14:1284. [PMID: 39456217 PMCID: PMC11506640 DOI: 10.3390/biom14101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The oculocutaneous albinism II (OCA2) gene encodes a melanosomal transmembrane protein involved in melanogenesis. Recent genome-wide association studies have identified several single nucleotide polymorphisms within OCA2 genes that are involved in skin pigmentation. Nevertheless, there have been no attempts to modulate this gene to improve skin discoloration. Accordingly, our aim was to identify compounds that can reduce OCA2 expression and to develop a formula that can improve skin brightness and reduce hyperpigmented spots. In this study, we investigated the effects of OCA2 expression reduction on melanin levels, melanosome pH, and autophagy induction through siRNA knockdown. Additionally, we identified several bioactives that effectively reduce OCA2 expression. Ultimately, in a clinical trial, we demonstrated that topical application of those compounds significantly improved skin tone and dark spots compared to vitamin C, a typical brightening agent. These findings demonstrate that OCA2 is a promising target for the development of efficacious cosmetics and therapeutics designed to treat hyperpigmentation.
Collapse
Affiliation(s)
| | | | | | | | | | - Seung-Hyun Jun
- LG Household and Health Care, R & D Center, Seoul 07795, Republic of Korea; (E.C.); (K.E.H.); (Y.-H.C.); (H.C.); (D.K.)
| | - Nae-Gyu Kang
- LG Household and Health Care, R & D Center, Seoul 07795, Republic of Korea; (E.C.); (K.E.H.); (Y.-H.C.); (H.C.); (D.K.)
| |
Collapse
|
5
|
Snyman M, Walsdorf RE, Wix SN, Gill JG. The metabolism of melanin synthesis-From melanocytes to melanoma. Pigment Cell Melanoma Res 2024; 37:438-452. [PMID: 38445351 PMCID: PMC11178461 DOI: 10.1111/pcmr.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024]
Abstract
Melanin synthesis involves the successful coordination of metabolic pathways across multiple intracellular compartments including the melanosome, mitochondria, ER/Golgi, and cytoplasm. While pigment production offers a communal protection from UV damage, the process also requires anabolic and redox demands that must be carefully managed by melanocytes. In this report we provide an updated review on melanin metabolism, including recent data leveraging new techniques, and technologies in the field of metabolism. We also discuss the many aspects of melanin synthesis that intersect with metabolic pathways known to impact melanoma phenotypes and behavior. By reviewing the metabolism of melanin synthesis, we hope to highlight outstanding questions and opportunities for future research that could improve patient outcomes in pigmentary and oncologic disease settings.
Collapse
Affiliation(s)
- Marelize Snyman
- Dermatology Department, University of Texas Southwestern Medical Center, Dallas, Texas, 75235
| | - Rachel E. Walsdorf
- Dermatology Department, University of Texas Southwestern Medical Center, Dallas, Texas, 75235
| | - Sophia N. Wix
- Dermatology Department, University of Texas Southwestern Medical Center, Dallas, Texas, 75235
| | - Jennifer G. Gill
- Dermatology Department, University of Texas Southwestern Medical Center, Dallas, Texas, 75235
| |
Collapse
|
6
|
Brito S, Heo H, Cha B, Lee SH, Park G, Kwak BM, Seong JK, Lee H, Park JH, Weon BM, Bin BH. The Slc45a4 Gene Regulates Pigmentation in a Manner Distinct from that of the OCA4 Gene Slc45a2. J Invest Dermatol 2024; 144:720-722.e5. [PMID: 37775036 DOI: 10.1016/j.jid.2023.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 10/01/2023]
Affiliation(s)
- Sofia Brito
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Research Center for Advanced Materials Technology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyojin Heo
- Department of Applied Bio Technology, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Byungsun Cha
- Department of Biological Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Sang Hun Lee
- Department of Biological Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Gunwoo Park
- Department of Applied Bio Technology, Graduate School, Ajou University, Suwon, Republic of Korea; Korea Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| | - Byeong-Mun Kwak
- Department of Biological Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 Plus Program for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; Interdiscplinary Program for Bioinformatics, Seoul National University, Seoul, Republic of Korea; Korea Mouse Phenotyping Center, Seoul National University, Seoul, Republic of Korea
| | - Ho Lee
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, Republic of Korea; Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Ji-Hwan Park
- Korea Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| | - Byung Mook Weon
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Research Center for Advanced Materials Technology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Bum-Ho Bin
- Department of Applied Bio Technology, Graduate School, Ajou University, Suwon, Republic of Korea; Department of Biological Sciences, Graduate School, Ajou University, Suwon, Republic of Korea.
| |
Collapse
|
7
|
Ghosh Roy S, Bakhrat A, Abdu M, Afonso S, Pereira P, Carneiro M, Abdu U. Mutations in SLC45A2 lead to loss of melanin in parrot feathers. G3 (BETHESDA, MD.) 2024; 14:jkad254. [PMID: 37943814 PMCID: PMC10849330 DOI: 10.1093/g3journal/jkad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
Bird plumage coloration is a complex and multifactorial process that involves both genetic and environmental factors. Diverse pigment groups contribute to plumage variation in different birds. In parrots, the predominant green color results from the combination of 2 different primary colors: yellow and blue. Psittacofulvin, a pigment uniquely found in parrots, is responsible for the yellow coloration, while blue is suggested to be the result of light scattering by feather nanostructures and melanin granules. So far, genetic control of melanin-mediated blue coloration has been elusive. In this study, we demonstrated that feather from the yellow mutant rose-ringed parakeet displays loss of melanosome granules in spongy layer of feather barb. Using whole genome sequencing, we found that mutation in SLC45A2, an important solute carrier protein in melanin synthetic pathway, is responsible for the sex-linked yellow phenotype in rose-ringed parakeet. Intriguingly, one of the mutations, P53L found in yellow Psittacula krameri is already reported as P58A/S in the human albinism database, known to be associated with human OCA4. We further showed that mutations in SLC45A2 gene affect melanin production also in other members of Psittaculidae family such as alexandrine and plum-headed parakeets. Additionally, we demonstrate that the mutations associated with the sex-linked yellow phenotype, localized within the transmembrane domains of the SLC45A2 protein, affect the protein localization pattern. This is the first evidence of plumage color variation involving SLC45A2 in parrots and confirmation of associated mutations in the transmembrane domains of the protein that affects its localization.
Collapse
Affiliation(s)
- Shatadru Ghosh Roy
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Anna Bakhrat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Moty Abdu
- ST Lab Hashita 240, Sede Tzvi 85340, Israel
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, 4485-661 Vairão, Portugal
| | - Paulo Pereira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, 4485-661 Vairão, Portugal
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, 4485-661 Vairão, Portugal
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
8
|
He D, Liu X, Yao T, Hu J, Zheng X, Tang L, Fan X. Oculocutaneous albinism type 4: Novel compound heterozygous mutations in the SLC45A2 gene in a Chinese case. Mol Genet Genomic Med 2024; 12:e2385. [PMID: 38337174 PMCID: PMC10858317 DOI: 10.1002/mgg3.2385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/13/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Oculocutaneous albinism type 4 (OCA4) is a rare autosomal recessive disorder characterized by a reduction of pigmentation in skin, hair, and eyes, and OCA4 is mainly seen in the SLC45A2 gene variants. OBJECTIVE To report a Chinese patient suspected of oculocutaneous albinism and identify the causing mutation. METHODS Genomic DNA was extracted from the peripheral blood samples of the patient, his parents, and elder brother. Whole exome sequencing was performed in the family, and Sanger sequencing was then used to verify the mutations. RESULTS Compound heterozygous variants, c.1304C>A (p.S435Y) and c.301C>G (p.R101G) in SLC45A2 gene, were detected in the proband, which were inherited from his father and mother respectively. Based on the ACMG guidelines, we can interpret the c.1304C>A (p.S435Y) variant as a suspected pathogenic variant and the c.301C>G (p.R101G) variant as a clinically significant unspecified variant. The diagnosis of OCA4 is confirmed. CONCLUSION We firstly reported this case of OCA4 with the compound heterozygous variants in the SLC45A2 gene. Our findings further enrich the reservoir of SLC45A2 mutations in OCA4.
Collapse
Affiliation(s)
- Danyue He
- Department of DermatologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiP.R. China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of EducationHefeiAnhuiP.R. China
- Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiP.R. China
| | - Xiaonan Liu
- Department of DermatologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiP.R. China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of EducationHefeiAnhuiP.R. China
- Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiP.R. China
| | - Tianyu Yao
- Department of DermatologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiP.R. China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of EducationHefeiAnhuiP.R. China
- Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiP.R. China
| | - Jie Hu
- Department of DermatologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiP.R. China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of EducationHefeiAnhuiP.R. China
- Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiP.R. China
| | - Xiaodong Zheng
- Department of DermatologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiP.R. China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of EducationHefeiAnhuiP.R. China
- Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiP.R. China
| | - Lili Tang
- Department of DermatologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiP.R. China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of EducationHefeiAnhuiP.R. China
- Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiP.R. China
| | - Xing Fan
- Department of DermatologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiP.R. China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of EducationHefeiAnhuiP.R. China
- Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiP.R. China
| |
Collapse
|
9
|
Li X, Zhu L, Ma R, Zhang X, Lin C, Tang Y, Huang Z, Wang C. Effects of iron additives on the removal of antibiotics and antibiotic resistance genes in anaerobic fermentation of food waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119038. [PMID: 37769470 DOI: 10.1016/j.jenvman.2023.119038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/04/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023]
Abstract
The presence of antibiotics and antibiotic resistance genes (ARGs) in food waste (FW) during anaerobic fermentation poses significant environmental and health risks. This study elucidated the potential of iron additives, specifically 500-nm and 50-nm zero-valent iron (ZVI) and magnetite, in mitigating these contaminants. These findings revealed that 500-nm magnetite significantly reduced tetracyclines by 81.04%, while 500-nm ZVI effectively reduced cefotaxime by 89.90%. Furthermore, both 500-nm and 50-nm ZVI were observed to decrease different types and abundance of heavy metal resistance and virulence genes. Interestingly, while 500-nm ZVI reduced the overall abundance of ARGs by 50%, 500-nm magnetite primarily reduced the diversity of ARGs without significantly impacting their abundance. These results elucidate the efficacy of iron additives in addressing antibiotic contamination and resistance during the anaerobic fermentation process of FW. The findings acquired from this study mitigate the development of innovative and environmentally sustainable technologies for FW treatment, emphasizing the reduction of environmental risks and enhancement of treatment efficiency.
Collapse
Affiliation(s)
- Xiaotian Li
- College of Natural Resources and Environment, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou, 510642, PR China.
| | - Langping Zhu
- College of Natural Resources and Environment, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou, 510642, PR China
| | - Rong Ma
- College of Natural Resources and Environment, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou, 510642, PR China
| | - Xiaozhi Zhang
- College of Natural Resources and Environment, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou, 510642, PR China
| | - Changquan Lin
- College of Natural Resources and Environment, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou, 510642, PR China
| | - Youqian Tang
- College of Natural Resources and Environment, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou, 510642, PR China
| | - Zhuoshen Huang
- College of Natural Resources and Environment, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou, 510642, PR China
| | - Chunming Wang
- College of Natural Resources and Environment, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou, 510642, PR China.
| |
Collapse
|
10
|
Li R, Wang Y, Liu Y, Li D, Tian Y, Liu X, Kang X, Li Z. Effects of SLC45A2 and GPNMB on Melanin Deposition Based on Transcriptome Sequencing in Chicken Feather Follicles. Animals (Basel) 2023; 13:2608. [PMID: 37627399 PMCID: PMC10451703 DOI: 10.3390/ani13162608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
As an essential genetic and economic trait, chicken feather color has long been an important research topic. To further understand the mechanism of melanin deposition associated with coloration in chicken feathers, we selected feather follicle tissues from the neck and wings of chickens with differently colored feathers (yellow, sub-Columbian, and silver) for transcriptome analysis. We focused on genes that were expressed in both the wings and neck and were expressed with the same trends in breeds with two different plumage colors, specifically, SLC45A2, GPNMB, MLPH, TYR, KIT, WNT11, and FZD1. GO and KEGG enrichment analyses showed the DEGs were enriched in melanin-related pathways, such as tyrosine metabolic pathway and melanogenesis, and PPI analysis highlighted the genes SLC45A2 and GPNMB as associated with melanin deposition. Verification experiments in chicken melanocytes demonstrated that these two genes promote melanocyte melanin deposition. These data enrich our knowledge of the mechanisms that regulate chicken feather color.
Collapse
Affiliation(s)
- Ruiting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yanxing Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yihan Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
- The Shennong Laboratory, Zhengzhou 450000, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| |
Collapse
|
11
|
Ma EZ, Zhou AE, Hoegler KM, Khachemoune A. Oculocutaneous albinism: epidemiology, genetics, skin manifestation, and psychosocial issues. Arch Dermatol Res 2023; 315:107-116. [PMID: 35217926 DOI: 10.1007/s00403-022-02335-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/06/2022] [Accepted: 02/10/2022] [Indexed: 11/29/2022]
Abstract
Oculocutaneous albinism (OCA) is a group of rare, inherited disorders associated with reduced melanin biosynthesis. Clinical manifestations of the eight known subtypes of OCA include hypopigmented skin, eyes, and hair and ocular manifestations, such as decreased visual acuity and nystagmus. OCA affects people globally but is most prevalent in African countries. Individuals with oculocutaneous albinism lack UV protection and are prone to skin damage and skin cancers. For many African albino individuals, there are significant challenges in seeking treatment for skin cancer and preventing sun damage due to psychosocial factors and poor education. This review summarizes the current understanding of the epidemiology, genetics, and clinical manifestations of OCA. We also discuss the medical and psychosocial challenges that affect individuals with OCA and the current landscape of albinism treatment modalities. The extent of the psychosocial challenges needs to be better understood and additional educational interventions may improve quality of life for people with albinism.
Collapse
Affiliation(s)
- Emily Z Ma
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Albert E Zhou
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Karl M Hoegler
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amor Khachemoune
- Brooklyn Campus of the VA NY Harbor Healthcare System, FACMS, 800 Poly Place, Brooklyn, NY, USA. .,Department of Dermatology, SUNY Downstate, 450 Clarkson Ave, Brooklyn, NY, USA.
| |
Collapse
|
12
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
13
|
Sun D, Qi X, Wen H, Li C, Li J, Chen J, Tao Z, Zhu M, Zhang X, Li Y. The genetic basis and potential molecular mechanism of yellow-albino northern snakehead ( Channa argus). Open Biol 2023; 13:220235. [PMID: 36789536 PMCID: PMC9929503 DOI: 10.1098/rsob.220235] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Body colour is an important economic trait for commercial fishes. Recently, a new colour morph displaying market-favoured yellow skin (termed as yellow-mutant, YM) of northern snakehead (Channa argus) was discovered in China. We confirmed that YM snakehead is an albino with complete loss of melanin in the skin and eyes by histological and ultrastructural observations, and inherited as a recessive Mendelian trait. By applying genomic analysis approaches, in combination with gene knockdown and rescue experiments, we suggested a non-sense mutation in slc45a2 (c.383G > A) is the causation for the YM snakehead. Notably, significantly higher levels of key melanogenesis genes (tyr, tyrp1, dct and pmel) and phospho-MITF protein were detected in YM snakehead than those in wild-type individuals, and the underlying mechanism was further investigated by comparative transcriptomic analysis. Results revealed that differential expressed genes involved in pathways like MAPK, WNT and calcium signalling were significantly induced in YM snakehead, which might account for the increased amount of melanogenesis elements, and presumably be stimulated by fibroblast-derived melanogenic factors in a paracrine manner. Our study clarified the genetic basis of colour variation in C. argus and provided the preliminary clue indicating the potential involvement of fibroblasts in pigmentation in fish.
Collapse
Affiliation(s)
- Donglei Sun
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Haishen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Jianlong Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jiwei Chen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Zexin Tao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Mingxin Zhu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xiaoyan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
14
|
Cerivastatin Synergizes with Trametinib and Enhances Its Efficacy in the Therapy of Uveal Melanoma. Cancers (Basel) 2023; 15:cancers15030886. [PMID: 36765842 PMCID: PMC9913575 DOI: 10.3390/cancers15030886] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Metastatic uveal melanoma (MUM) is a highly aggressive, therapy-resistant disease. Driver mutations in Gα-proteins GNAQ and GNA11 activate MAP-kinase and YAP/TAZ pathways of oncogenic signalling. MAP-kinase and MEK-inhibitors do not significantly block MUM progression, likely due to persisting YAP/TAZ signalling. Statins inhibit YAP/TAZ activation by blocking the mevalonate pathway, geranyl-geranylation, and subcellular localisation of the Rho-GTPase. We investigated drugs that affect the YAP/TAZ pathway, valproic acid, verteporfin and statins, in combination with MEK-inhibitor trametinib. METHODS We established IC50 values of the individual drugs and monitored the effects of their combinations in terms of proliferation. We selected trametinib and cerivastatin for evaluation of cell cycle and apoptosis. Synergism was detected using isobologram and Chou-Talalay analyses. The most synergistic combination was tested in vivo. RESULTS Synergistic concentrations of trametinib and cerivastatin induced a massive arrest of proliferation and cell cycle and enhanced apoptosis, particularly in the monosomic, BAP1-mutated UPMM3 cell line. The combined treatment reduced ERK and AKT phosphorylation, increased the inactive, cytoplasmatic form of YAP and significantly impaired the growth of UM cells with monosomy of chromosome 3 in NSG mice. CONCLUSION Statins can potentiate the efficacy of MEK inhibitors in the therapy of UM.
Collapse
|
15
|
Karawita AC, Cheng Y, Chew KY, Challagulla A, Kraus R, Mueller RC, Tong MZW, Hulme KD, Bielefeldt-Ohmann H, Steele LE, Wu M, Sng J, Noye E, Bruxner TJ, Au GG, Lowther S, Blommaert J, Suh A, McCauley AJ, Kaur P, Dudchenko O, Aiden E, Fedrigo O, Formenti G, Mountcastle J, Chow W, Martin FJ, Ogeh DN, Thiaud-Nissen F, Howe K, Tracey A, Smith J, Kuo RI, Renfree MB, Kimura T, Sakoda Y, McDougall M, Spencer HG, Pyne M, Tolf C, Waldenström J, Jarvis ED, Baker ML, Burt DW, Short KR. The swan genome and transcriptome, it is not all black and white. Genome Biol 2023; 24:13. [PMID: 36683094 PMCID: PMC9867998 DOI: 10.1186/s13059-022-02838-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/12/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The Australian black swan (Cygnus atratus) is an iconic species with contrasting plumage to that of the closely related northern hemisphere white swans. The relative geographic isolation of the black swan may have resulted in a limited immune repertoire and increased susceptibility to infectious diseases, notably infectious diseases from which Australia has been largely shielded. Unlike mallard ducks and the mute swan (Cygnus olor), the black swan is extremely sensitive to highly pathogenic avian influenza. Understanding this susceptibility has been impaired by the absence of any available swan genome and transcriptome information. RESULTS Here, we generate the first chromosome-length black and mute swan genomes annotated with transcriptome data, all using long-read based pipelines generated for vertebrate species. We use these genomes and transcriptomes to show that unlike other wild waterfowl, black swans lack an expanded immune gene repertoire, lack a key viral pattern-recognition receptor in endothelial cells and mount a poorly controlled inflammatory response to highly pathogenic avian influenza. We also implicate genetic differences in SLC45A2 gene in the iconic plumage of the black swan. CONCLUSION Together, these data suggest that the immune system of the black swan is such that should any avian viral infection become established in its native habitat, the black swan would be in a significant peril.
Collapse
Affiliation(s)
- Anjana C Karawita
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Arjun Challagulla
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Robert Kraus
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, 78315, Germany
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| | - Ralf C Mueller
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, 78315, Germany
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| | - Marcus Z W Tong
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Katina D Hulme
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Lauren E Steele
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Melanie Wu
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Julian Sng
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ellesandra Noye
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Timothy J Bruxner
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Gough G Au
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Suzanne Lowther
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Julie Blommaert
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Science for Life Laboratory, Uppsala, 752 36, Sweden
- The New Zealand Institute for Plant & Food Research Ltd, Nelson, 7010, New Zealand
| | - Alexander Suh
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Science for Life Laboratory, Uppsala, 752 36, Sweden
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK
| | - Alexander J McCauley
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Parwinder Kaur
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
| | - Olga Dudchenko
- The Centre for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Centre for Theoretical Biological Physics and Department of Computer Science, Rice University, Houston, TX, 77030, USA
| | - Erez Aiden
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
- The Centre for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Centre for Theoretical Biological Physics and Department of Computer Science, Rice University, Houston, TX, 77030, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong, 201210, China
| | - Olivier Fedrigo
- The Vertebrate Genome Laboratory, The Rockefeller University, NY, 10065, USA
| | - Giulio Formenti
- The Vertebrate Genome Laboratory, The Rockefeller University, NY, 10065, USA
| | | | - William Chow
- Tree of Life, Welcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Denye N Ogeh
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Françoise Thiaud-Nissen
- National Centre for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Kerstin Howe
- Tree of Life, Welcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Alan Tracey
- Tree of Life, Welcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Richard I Kuo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Marilyn B Renfree
- School of Biosciences, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Takashi Kimura
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Yoshihiro Sakoda
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Mathew McDougall
- New Zealand Fish & Game - Eastern Region, Rotorua, 3046, New Zealand
| | - Hamish G Spencer
- Department of Zoology, University of Otago, Dunedin, 9054, New Zealand
| | - Michael Pyne
- Currumbin Wildlife Sanctuary, Currumbin, QLD, 4223, Australia
| | - Conny Tolf
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, SE-391 82, Sweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, SE-391 82, Sweden
| | - Erich D Jarvis
- The Vertebrate Genome Laboratory, The Rockefeller University, NY, 10065, USA
| | - Michelle L Baker
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - David W Burt
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
16
|
The retinal pigmentation pathway in human albinism: Not so black and white. Prog Retin Eye Res 2022; 91:101091. [PMID: 35729001 DOI: 10.1016/j.preteyeres.2022.101091] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/16/2022]
Abstract
Albinism is a pigment disorder affecting eye, skin and/or hair. Patients usually have decreased melanin in affected tissues and suffer from severe visual abnormalities, including foveal hypoplasia and chiasmal misrouting. Combining our data with those of the literature, we propose a single functional genetic retinal signalling pathway that includes all 22 currently known human albinism disease genes. We hypothesise that defects affecting the genesis or function of different intra-cellular organelles, including melanosomes, cause syndromic forms of albinism (Hermansky-Pudlak (HPS) and Chediak-Higashi syndrome (CHS)). We put forward that specific melanosome impairments cause different forms of oculocutaneous albinism (OCA1-8). Further, we incorporate GPR143 that has been implicated in ocular albinism (OA1), characterised by a phenotype limited to the eye. Finally, we include the SLC38A8-associated disorder FHONDA that causes an even more restricted "albinism-related" ocular phenotype with foveal hypoplasia and chiasmal misrouting but without pigmentation defects. We propose the following retinal pigmentation pathway, with increasingly specific genetic and cellular defects causing an increasingly specific ocular phenotype: (HPS1-11/CHS: syndromic forms of albinism)-(OCA1-8: OCA)-(GPR143: OA1)-(SLC38A8: FHONDA). Beyond disease genes involvement, we also evaluate a range of (candidate) regulatory and signalling mechanisms affecting the activity of the pathway in retinal development, retinal pigmentation and albinism. We further suggest that the proposed pigmentation pathway is also involved in other retinal disorders, such as age-related macular degeneration. The hypotheses put forward in this report provide a framework for further systematic studies in albinism and melanin pigmentation disorders.
Collapse
|
17
|
Brown AR, Comai K, Mannino D, McCullough H, Donekal Y, Meyers HC, Graves CW, Seidel HS, The BIO306W Consortium. A community-science approach identifies genetic variants associated with three color morphs in ball pythons (Python regius). PLoS One 2022; 17:e0276376. [PMID: 36260636 PMCID: PMC9581371 DOI: 10.1371/journal.pone.0276376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Color morphs in ball pythons (Python regius) provide a unique and largely untapped resource for understanding the genetics of coloration in reptiles. Here we use a community-science approach to investigate the genetics of three color morphs affecting production of the pigment melanin. These morphs-Albino, Lavender Albino, and Ultramel-show a loss of melanin in the skin and eyes, ranging from severe (Albino) to moderate (Lavender Albino) to mild (Ultramel). To identify genetic variants causing each morph, we recruited shed skins of pet ball pythons via social media, extracted DNA from the skins, and searched for putative loss-of-function variants in homologs of genes controlling melanin production in other vertebrates. We report that the Albino morph is associated with missense and non-coding variants in the gene TYR. The Lavender Albino morph is associated with a deletion in the gene OCA2. The Ultramel morph is associated with a missense variant and a putative deletion in the gene TYRP1. Our study is one of the first to identify genetic variants associated with color morphs in ball pythons and shows that pet samples recruited from the community can provide a resource for genetic studies in this species.
Collapse
Affiliation(s)
- Autumn R. Brown
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Kaylee Comai
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Dominic Mannino
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Haily McCullough
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Yamini Donekal
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Hunter C. Meyers
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Chiron W. Graves
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
- * E-mail: (CWG); (HSS)
| | - Hannah S. Seidel
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
- * E-mail: (CWG); (HSS)
| | - The BIO306W Consortium
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| |
Collapse
|
18
|
Campana S, Riesgo A, Jongepier E, Fuss J, Muyzer G, de Goeij JM. Meta-transcriptomic comparison of two sponge holobionts feeding on coral- and macroalgal-dissolved organic matter. BMC Genomics 2022; 23:674. [PMID: 36175840 PMCID: PMC9520939 DOI: 10.1186/s12864-022-08893-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background Sponge holobionts (i.e., the host and its associated microbiota) play a key role in the cycling of dissolved organic matter (DOM) in marine ecosystems. On coral reefs, an ecological shift from coral-dominated to algal-dominated ecosystems is currently occurring. Given that benthic corals and macroalgae release different types of DOM, in different abundances and with different bioavailability to sponge holobionts, it is important to understand how the metabolic activity of the host and associated microbiota change in response to the exposure to both DOM sources. Here, we look at the differential gene expression of two sponge holobionts 6 hours after feeding on naturally sourced coral- and macroalgal-DOM using RNA sequencing and meta-transcriptomic analysis. Results We found a slight, but significant differential gene expression in the comparison between the coral- and macroalgal-DOM treatments in both the high microbial abundance sponge Plakortis angulospiculatus and the low microbial abundance sponge Haliclona vansoesti. In the hosts, processes that regulate immune response, signal transduction, and metabolic pathways related to cell proliferation were elicited. In the associated microbiota carbohydrate metabolism was upregulated in both treatments, but coral-DOM induced further lipid and amino acids biosynthesis, while macroalgal-DOM caused a stress response. These differences could be driven by the presence of distinct organic macronutrients in the two DOM sources and of small pathogens or bacterial virulence factors in the macroalgal-DOM. Conclusions This work provides two new sponge meta-transcriptomes and a database of putative genes and genetic pathways that are involved in the differential processing of coral- versus macroalgal-DOM as food source to sponges with high and low abundances of associated microbes. These pathways include carbohydrate metabolism, signaling pathways, and immune responses. However, the differences in the meta-transcriptomic responses of the sponge holobionts after 6 hours of feeding on the two DOM sources were small. Longer-term responses to both DOM sources should be assessed to evaluate how the metabolism and the ecological function of sponges will be affected when reefs shift from coral towards algal dominance. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08893-y.
Collapse
Affiliation(s)
- Sara Campana
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Post Office Box 94240, 1090, Amsterdam, GE, Netherlands.
| | - Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Calle José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Evelien Jongepier
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Post Office Box 94240, 1090, Amsterdam, GE, Netherlands
| | - Janina Fuss
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Gerard Muyzer
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Post Office Box 94240, 1090, Amsterdam, GE, Netherlands
| | - Jasper M de Goeij
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Post Office Box 94240, 1090, Amsterdam, GE, Netherlands.,CARMABI Foundation, Piscaderabaai z/n, P.O. Box 2090, Willemstad, Curaçao
| |
Collapse
|
19
|
Strobel SB, Machiraju D, Hassel JC. TCR-Directed Therapy in the Treatment of Metastatic Uveal Melanoma. Cancers (Basel) 2022; 14:1215. [PMID: 35267523 PMCID: PMC8909175 DOI: 10.3390/cancers14051215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/11/2022] Open
Abstract
Metastatic uveal melanoma (mUM) is one of the most rapidly progressing tumors, with a bad prognosis and no standard-of-care treatment. Immune checkpoint inhibitors have revolutionized cancer therapy and improved overall survival in patients with metastatic cutaneous melanoma (mCM). However, this approach has been largely unimpressive, with no significant impact on the survival of mUM patients. Technical advances in immunotherapies have led to the development of novel T cell receptor (TCR)-based approaches to fight cancer. For the first time in over 50 years, compelling evidence demonstrates the power of TCR-based approaches for survival in mUM patients. Hence, this review summarizes novel TCR-based immunotherapeutic strategies currently in clinical studies for mUM treatment. We also discuss the potential combinational treatments to these strategies to maximize the clinical benefits.
Collapse
Affiliation(s)
| | | | - Jessica C. Hassel
- Department of Dermatology, National Center for Tumor Diseases, University Hospital Heidelberg, Code, 69120 Heidelberg, Germany; (S.B.S.); (D.M.)
| |
Collapse
|
20
|
LncRNA-mRNA co-expression network revealing the regulatory roles of lncRNAs in melanogenesis in vitiligo. J Hum Genet 2021; 67:247-252. [PMID: 34815525 DOI: 10.1038/s10038-021-00993-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/08/2022]
Abstract
Vitiligo is characterized by the progressive disappearance of melanocytes, resulting in depigmentation. Long noncoding RNAs (lncRNAs) are a class of noncoding RNAs that play an essential role in the regulation of inflammation and immunity. Published reports on the expression profile of lncRNAs in vitiligo cases and the potential biological function of lncRNAs in vitiligo are lacking. We performed RNA-Seq to identify the functions of lncRNAs in vitiligo. In total, 32 upregulated lncRNAs and 78 downregulated lncRNAs were identified in skin lesions with vitiligo. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis demonstrated that mRNAs regulated by abnormally expressed lncRNAs are most relevant to melanocyte function and melanogenesis. We identified 14 aberrantly expressed lncRNAs through the co-expression pattern that regulate the melanogenesis-related genes DCT, TYR, and TYRP1. Therefore, we speculate that these hub genes may be involved in pathological mechanisms in melanocytes in vitiligo. These genes are closely related to melanogenesis in vitiligo. Abnormally expressed lncRNAs directly or indirectly act on these target genes to regulate melanogenesis. Identifying lncRNAs and clarifying the regulatory roles of the lncRNA-mRNA network may be helpful to develop novel diagnoses or treatment targets for vitiligo.
Collapse
|
21
|
Segev-Hadar A, Slosman T, Rozen A, Sherman A, Cnaani A, Biran J. Genome Editing Using the CRISPR-Cas9 System to Generate a Solid-Red Germline of Nile Tilapia ( Oreochromis niloticus). CRISPR J 2021; 4:583-594. [PMID: 34406049 DOI: 10.1089/crispr.2020.0115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In recent years, there has been increasing demand for red tilapia, which are commercial strains of hybrids of different tilapiine species or red variants of highly inbred Nile tilapia. However, red tilapia phenotypes are genetically unstable and affected by environmental factors, resulting in nonuniform coloration with black or dark-red color blotches that reduce their market value. Solute carrier family 45 member 2 (SLC45A2) is a membrane transporter that mediates melanin biosynthesis and is evolutionarily conserved from fish to humans. In the present study, we describe the generation of a stable and heritable red tilapia phenotype by inducing loss-of-function mutations in the slc45a2 gene. For this purpose, we identified the slc45a2 gene in Nile tilapia and designed highly specific guide RNAs (gRNA) for its genomic sequence. Multiplex microinjection of slc45a2-specific ribonucleoproteins to Nile tilapia zygotes induced up to 97-99% albinism, including loss of melanin in the eye. Next-generation sequencing of the injected zygotes demonstrated that all injected fish carried mutant alleles with variable mutagenesis efficiencies. Sanger sequencing of the genomic target region in the slc45a2 gene from fin clips, sperm, and F1 offspring of a highly mutant male identified various genomic indels and germline transmission of the sperm-identified indels. Overall, this work demonstrates the generation of somatic and germline slc45a2 mutant alleles, which leads to complete albinism in Nile tilapia.
Collapse
Affiliation(s)
- Adi Segev-Hadar
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel; and Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Tatiana Slosman
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel; and Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Ada Rozen
- Department of Fruit Trees Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Amir Sherman
- Department of Fruit Trees Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Avner Cnaani
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel; and Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Jakob Biran
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel; and Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| |
Collapse
|
22
|
Chen Q, Zhou D, Abdel-Malek Z, Zhang F, Goff PS, Sviderskaya EV, Wakamatsu K, Ito S, Gross SS, Zippin JH. Measurement of Melanin Metabolism in Live Cells by [U- 13C]-L-Tyrosine Fate Tracing Using Liquid Chromatography-Mass Spectrometry. J Invest Dermatol 2021; 141:1810-1818.e6. [PMID: 33549605 PMCID: PMC8830938 DOI: 10.1016/j.jid.2021.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/17/2020] [Accepted: 01/20/2021] [Indexed: 01/07/2023]
Abstract
Melanin synthesis occurs within a specialized organelle called the melanosome. Traditional methods for measuring melanin levels rely on the detection of chemical degradation products of melanin by high-performance liquid chromatography. Although these methods are robust, they are unable to distinguish between melanin synthesis and degradation and are best suited to measure melanin changes over long periods of time. We developed a method that actively measures both eumelanin and pheomelanin synthesis by fate tracing [U-13C] L-tyrosine using liquid chromatography-mass spectrometry. Using this method, we confirmed the previous reports of the differences in melanin synthesis between melanocytes derived from individuals with different skin colors and MC1R genotype and uncovered new information regarding the differential de novo synthesis of eumelanin and pheomelanin, also called mixed melanogenesis. We also revealed that distinct mechanisms that alter melanosomal pH differentially induce new eumelanin and pheomelanin synthesis. Finally, we revealed that the synthesis of L-3,4-dihydroxyphenylalanine, an important metabolite of L-tyrosine, is differentially controlled by multiple factors. Because L-tyrosine fate tracing is compatible with untargeted liquid chromatography-mass spectrometry‒based metabolomics, this approach enables the broad measurement of cellular metabolism in combination with melanin metabolism, and we anticipate that this approach will shed new light on multiple mechanisms of melanogenesis.
Collapse
Affiliation(s)
- Qiuying Chen
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York, USA
| | - Dalee Zhou
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York, USA
| | - Zalfa Abdel-Malek
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Fengli Zhang
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York, USA
| | - Philip S Goff
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Elena V Sviderskaya
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Steven S Gross
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York, USA
| | - Jonathan H Zippin
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York, USA; Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York, USA.
| |
Collapse
|
23
|
Evident hypopigmentation without other ocular deficits in Dutch patients with oculocutaneous albinism type 4. Sci Rep 2021; 11:11572. [PMID: 34078970 PMCID: PMC8172864 DOI: 10.1038/s41598-021-90896-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/05/2021] [Indexed: 02/04/2023] Open
Abstract
To describe the phenotype of Dutch patients with oculocutaneous albinism type 4 (OCA4), we collected data on pigmentation (skin, hair, and eyes), visual acuity (VA), nystagmus, foveal hypoplasia, chiasmal misrouting, and molecular analyses of nine Dutch OCA4 patients from the Bartiméus Diagnostic Center for complex visual disorders. All patients had severely reduced pigmentation of skin, hair, and eyes with iris transillumination over 360 degrees. Three unrelated OCA4 patients had normal VA, no nystagmus, no foveal hypoplasia, and no misrouting of the visual pathways. Six patients had poor visual acuity (0.6 to 1.0 logMAR), nystagmus, severe foveal hypoplasia and misrouting. We found two novel variants in the SLC45A2 gene, c.310C > T; (p.Pro104Ser), and c.1368 + 3_1368 + 9del; (p.?). OCA4 patients of this Dutch cohort all had hypopigmentation of skin, hair, and iris translucency. However, patients were either severely affected with regard to visual acuity, foveal hypoplasia, and misrouting, or visually not affected at all. We describe for the first time OCA4 patients with an evident lack of pigmentation, but normal visual acuity, normal foveal development and absence of misrouting. This implies that absence of melanin does not invariably lead to foveal hypoplasia and abnormal routing of the visual pathways.
Collapse
|
24
|
Identification of critical amino acid residues in the regulatory N-terminal domain of PMEL. Sci Rep 2021; 11:7730. [PMID: 33833328 PMCID: PMC8032716 DOI: 10.1038/s41598-021-87259-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/26/2021] [Indexed: 01/22/2023] Open
Abstract
The pigment cell-specific protein PMEL forms a functional amyloid matrix in melanosomes onto which the pigment melanin is deposited. The amyloid core consists of a short proteolytic fragment, which we have termed the core-amyloid fragment (CAF) and perhaps additional parts of the protein, such as the PKD domain. A highly O-glycosylated repeat (RPT) domain also derived from PMEL proteolysis associates with the amyloid and is necessary to establish the sheet-like morphology of the assemblies. Excluded from the aggregate is the regulatory N-terminus, which nevertheless must be linked in cis to the CAF in order to drive amyloid formation. The domain is then likely cleaved away immediately before, during, or immediately after the incorporation of a new CAF subunit into the nascent amyloid. We had previously identified a 21 amino acid long region, which mediates the regulatory activity of the N-terminus towards the CAF. However, many mutations in the respective segment caused misfolding and/or blocked PMEL export from the endoplasmic reticulum, leaving their phenotype hard to interpret. Here, we employ a saturating mutagenesis approach targeting the motif at single amino acid resolution. Our results confirm the critical nature of the PMEL N-terminal region and identify several residues essential for PMEL amyloidogenesis.
Collapse
|
25
|
Wakamatsu K, Zippin JH, Ito S. Chemical and biochemical control of skin pigmentation with special emphasis on mixed melanogenesis. Pigment Cell Melanoma Res 2021; 34:730-747. [PMID: 33751833 DOI: 10.1111/pcmr.12970] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/24/2021] [Accepted: 03/07/2021] [Indexed: 02/06/2023]
Abstract
Melanins are widely distributed in animals and plants; in vertebrates, most melanins are present on the body surface. The diversity of pigmentation in vertebrates is mainly attributed to the quantity and ratio of eumelanin and pheomelanin synthesis. Most natural melanin pigments in animals consist of both eumelanin and pheomelanin in varying ratios, and thus, their combined synthesis is called "mixed melanogenesis." Gene expression is an established mechanism for controlling melanin synthesis; however, there are multiple factors that affect melanin synthesis besides gene expression. Due to the differential sensitivity of the eumelanin and pheomelanin synthetic pathways to pH, melanosomal pH likely plays a major role in mixed melanogenesis. Here, we focused on various factors affecting mixed melanogenesis including (1) chemical regulation of melanin synthesis, (2) melanosomal pH regulation during normal melanogenesis and effect on mixed melanogenesis, and (3) mechanisms of melanosomal pH control (proton pumps, channels, transporters, and signaling pathways).
Collapse
Affiliation(s)
- Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Jonathan H Zippin
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| |
Collapse
|
26
|
Bâlteanu VA, Cardoso TF, Amills M, Luigi-Sierra MG, Egerszegi I, Anton I, Zsolnai A. Red and blond Mangalitza pigs display a signature of divergent directional selection in the SLC45A2 gene. Anim Genet 2020; 52:66-77. [PMID: 33316088 DOI: 10.1111/age.13031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 12/11/2022]
Abstract
The Mangalitza lard-type pig breed is well known for its fat appearance and curly hair, and it is mainly distributed in Eastern Europe. Four main lines were created in the nineteenth century by artificial selection: Blond Mangalitza, Black Mangalitza, Swallow-Belly Mangalitza and Red Mangalitza. The Swallow-Belly line has a black coat combined with yellow-blond throat and underbelly. In the current work, we aimed to investigate if the colourations of Mangalitza pigs are genetically determined by one or a few loci whose frequencies have been modified by artificial selection. The results of selection scans, with HapFLK and BayeScan, and of a GWAS for coat colour highlighted the existence of one region on SSC16 (18-20 Mb) with potential effects on hair pigmentation (Red vs. Blond contrast). The analysis of the gene content of this region allowed us to detect the solute carrier family 45 member 2 (SLC45A2) locus as a candidate gene for this trait. The polymorphism of the SLC45A2 locus has been associated with reduced levels or the absence of melanin in several mammalian species. The genotyping of four missense polymorphisms evidenced that rs341599992:G > A and rs693695020:G > A SNPs are strongly but not fully associated with the red and blond coat colours of Mangalitza pigs, a result that was confirmed by performing a haplotype association test. The near fixation of alternative SLC45A2 genotypes in Red and Blond Mangalitza pigs provides a compelling example of the consequences of a divergent directional selection for coat colour in a domestic species.
Collapse
Affiliation(s)
- V A Bâlteanu
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, Cluj-Napoca, 400372, Romania
| | - T F Cardoso
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193, Spain.,CAPES Foundation, Ministry of Education of Brazil, Brasilia, 7004020, Brazil
| | - M Amills
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193, Spain.,Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - M G Luigi-Sierra
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193, Spain
| | - I Egerszegi
- Szent István University, Páter Károly u. 1, Gödöllő, 2100, Hungary
| | - I Anton
- NARIC-Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, Herceghalom, 2053, Hungary
| | - A Zsolnai
- NARIC-Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, Herceghalom, 2053, Hungary
| |
Collapse
|
27
|
Current and emerging treatments for albinism. Surv Ophthalmol 2020; 66:362-377. [PMID: 33129801 DOI: 10.1016/j.survophthal.2020.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/07/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022]
Abstract
Albinism is a group of rare inherited disorders arising from impairment of melanin biosynthesis. The reduction of melanin synthesis leads to hypopigmentation of the skin and eyes. A wide range of ophthalmic manifestations arise from albinism, including reduction of visual acuity, nystagmus, strabismus, iris translucency, foveal hypoplasia, fundus hypopigmentation, and abnormal decussation of retinal ganglion cell axons at the optic chiasm. Currently, albinism is incurable, and treatment aims either surgically or pharmacologically to optimize vision and protect the skin; however, novel therapies that aim to directly address the molecular errors of albinism, such as l-dihydroxyphenylalanine and nitisinone, are being developed and have entered human trials though with limited success. Experimental gene-based strategies for editing the genetic errors in albinism have also met early success in animal models. The emergence of these new therapeutic modalities represents a new era in the management of albinism. We focus on the known genetic subtypes, clinical assessment, and existing and emerging therapeutic options for the nonsyndromic forms of albinism.
Collapse
|
28
|
Le L, Escobar IE, Ho T, Lefkovith AJ, Latteri E, Haltaufderhyde KD, Dennis MK, Plowright L, Sviderskaya EV, Bennett DC, Oancea E, Marks MS. SLC45A2 protein stability and regulation of melanosome pH determine melanocyte pigmentation. Mol Biol Cell 2020; 31:2687-2702. [PMID: 32966160 PMCID: PMC7927184 DOI: 10.1091/mbc.e20-03-0200] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
SLC45A2 encodes a putative transporter expressed primarily in pigment cells. SLC45A2 mutations cause oculocutaneous albinism type 4 (OCA4) and polymorphisms are associated with pigmentation variation, but the localization, function, and regulation of SLC45A2 and its variants remain unknown. We show that SLC45A2 localizes to a cohort of mature melanosomes that only partially overlaps with the cohort expressing the chloride channel OCA2. SLC45A2 expressed ectopically in HeLa cells localizes to lysosomes and raises lysosomal pH, suggesting that in melanocytes SLC45A2 expression, like OCA2 expression, results in the deacidification of maturing melanosomes to support melanin synthesis. Interestingly, OCA2 overexpression compensates for loss of SLC45A2 expression in pigmentation. Analyses of SLC45A2- and OCA2-deficient mouse melanocytes show that SLC45A2 likely functions later during melanosome maturation than OCA2. Moreover, the light skin-associated SLC45A2 allelic F374 variant restores only moderate pigmentation to SLC45A2-deficient melanocytes due to rapid proteasome-dependent degradation resulting in lower protein expression levels in melanosomes than the dark skin-associated allelic L374 variant. Our data suggest that SLC45A2 maintains melanosome neutralization that is initially orchestrated by transient OCA2 activity to support melanization at late stages of melanosome maturation, and that a common allelic variant imparts reduced activity due to protein instability.
Collapse
Affiliation(s)
- Linh Le
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Iliana E Escobar
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912
| | - Tina Ho
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ariel J Lefkovith
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Emily Latteri
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and
| | - Kirk D Haltaufderhyde
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912
| | - Megan K Dennis
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and.,Biology Department, Marist College, Poughkeepsie, NY 12601
| | - Lynn Plowright
- Molecular & Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Elena V Sviderskaya
- Molecular & Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Dorothy C Bennett
- Molecular & Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Elena Oancea
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912
| | - Michael S Marks
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and
| |
Collapse
|
29
|
Bibi N, Ullah A, Darwesh L, Khan W, Khan T, Ullah K, Khan B, Ahmad W. Identification and Computational Analysis of Novel TYR and SLC45A2 Gene Mutations in Pakistani Families With Identical Non-syndromic Oculocutaneous Albinism. Front Genet 2020; 11:749. [PMID: 32849781 PMCID: PMC7385404 DOI: 10.3389/fgene.2020.00749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022] Open
Abstract
Non-syndromic oculocutaneous albinism (nsOCA) is an inherited disorder of melanin biosynthesis with autosomal recessive mode of inheritance, presenting either hypopigmented or depigmented skin, hair, and eyes. It is genetically heterogeneous with seven loci (OCA1–OCA7) reported to date. In the present study, we have reported three consanguineous families (A, B, C) presenting identical nsOCA phenotypes. Sanger sequencing revealed a novel [NM_000372.5: c.826 T > C, p.(Cys276Arg)] and a recurrent variant [NM_000372.5: c.832C > T, p.(Arg278∗)] in tyrosinase (TYR) in families A and B, respectively. Microsatellite marker-based homozygosity mapping linked family C to OCA4. Sequence analysis identified a novel insertion variant (NM_016180.5: c.1331_1332insA) in the SLC45A2. Further, in silico mutagenesis and dynamic simulation approaches revealed that a novel Cys276Arg variant abolished the cysteine bridge and might contribute toward decreased stability of the TYR protein. Our study expands the mutation spectrum of the TYR and SLC45A2 genes and emphasizes that molecular investigations are essential for accurate disease diagnosis.
Collapse
Affiliation(s)
- Nousheen Bibi
- Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Asmat Ullah
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Lubna Darwesh
- Department of Biochemistry, Hazara University, Mansehra, Pakistan
| | - Waqas Khan
- Department of Biochemistry, Hazara University, Mansehra, Pakistan
| | - Tanzeela Khan
- Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Kalim Ullah
- Department of Zoology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Bushra Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Wasim Ahmad
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | | |
Collapse
|
30
|
Böhme I, Schönherr R, Eberle J, Bosserhoff AK. Membrane Transporters and Channels in Melanoma. Rev Physiol Biochem Pharmacol 2020; 181:269-374. [PMID: 32737752 DOI: 10.1007/112_2020_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent research has revealed that ion channels and transporters can be important players in tumor development, progression, and therapy resistance in melanoma. For example, members of the ABC family were shown to support cancer stemness-like features in melanoma cells, while several members of the TRP channel family were reported to act as tumor suppressors.Also, many transporter proteins support tumor cell viability and thus suppress apoptosis induction by anticancer therapy. Due to the high number of ion channels and transporters and the resulting high complexity of the field, progress in understanding is often focused on single molecules and is in total rather slow. In this review, we aim at giving an overview about a broad subset of ion transporters, also illustrating some aspects of the field, which have not been addressed in detail in melanoma. In context with the other chapters in this special issue on "Transportome Malfunctions in the Cancer Spectrum," a comparison between melanoma and these tumors will be possible.
Collapse
Affiliation(s)
- Ines Böhme
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Schönherr
- Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Jürgen Eberle
- Department of Dermatology, Venerology and Allergology, Skin Cancer Center Charité, University Medical Center Charité, Berlin, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany. .,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
31
|
Abstract
Melanin pigments are responsible for human skin and hair color, and they protect the body from harmful ultraviolet light. The black and brown melanin pigments are synthesized in specialized lysosome-related organelles called melanosomes in melanocytes. Mature melanosomes are transported within melanocytes and transferred to adjacent keratinocytes, which constitute the principal part of human skin. The melanosomes are then deposited inside the keratinocytes and darken the skin (a process called tanning). Owing to their dark color, melanosomes can be seen easily with an ordinary light microscope, and melanosome research dates back approximately 150 years; since then, biochemical studies aimed at isolating and purifying melanosomes have been conducted. Moreover, in the last two decades, hundreds of molecules involved in regulating melanosomal functions have been identified by analyses of the genes of coat-color mutant animals and patients with genetic diseases characterized by pigment abnormalities, such as hypopigmentation. In recent years, dynamic analyses by more precise microscopic observations have revealed specific functions of a variety of molecules involved in melanogenesis. This review article focuses on the latest findings with regard to the steps (or mechanisms) involved in melanosome formation and transport of mature melanosomes within epidermal melanocytes. Finally, we will touch on current topics in melanosome research, particularly on the "melanosome transfer" and "post-transfer" steps, and discuss future directions in pigment research.
Collapse
Affiliation(s)
- Norihiko Ohbayashi
- Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi 980-8578, Japan
| |
Collapse
|
32
|
Wiriyasermkul P, Moriyama S, Nagamori S. Membrane transport proteins in melanosomes: Regulation of ions for pigmentation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183318. [PMID: 32333855 PMCID: PMC7175901 DOI: 10.1016/j.bbamem.2020.183318] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022]
Abstract
Melanosomes are unique organelles in melanocytes that produce melanin, the pigment for skin, hair, and eye color. Tyrosinase is the essential and rate-limiting enzyme for melanin production, that strictly requires neutral pH for activity. pH maintenance is a result of the combinational function of multiple ion transport proteins. Thus, ion homeostasis in melanosomes is crucial for melanin synthesis. Defect of the ion transport system causes various pigmentation phenotypes, from mild effect to severe disorders such as albinism. In this review, we summarize the up-to-date knowledge of the ion transport system, such as transport function, structure, and the physiological roles and mechanisms of the ion transport proteins in melanosomes. In addition, we propose a model of melanosomal ion transport system-how the functional coupling of multiple transport proteins modulates and maintains ion homeostasis. We discuss melanin synthesis in terms of the ion transport system.
Collapse
Affiliation(s)
- Pattama Wiriyasermkul
- Department of Collaborative Research for Bio-Molecular Dynamics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | - Satomi Moriyama
- Department of Collaborative Research for Bio-Molecular Dynamics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | - Shushi Nagamori
- Department of Collaborative Research for Bio-Molecular Dynamics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| |
Collapse
|
33
|
Lewis SS, Girisha KM. Whole exome sequencing identifies a novel pathogenic variation [p.(Gly194valfs*7)] in SLC45A2 in the homozygous state in multiple members of a family with oculocutaneous albinism in southern India. Clin Exp Dermatol 2019; 45:409-413. [PMID: 31630438 DOI: 10.1111/ced.14126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2019] [Indexed: 01/16/2023]
Abstract
Deleterious mutations within the SLC45A2 gene, encoding membrane-associated transporter protein (MATP), are responsible for type 4 oculocutaneous albinism. The cytogenetic location of SLC45A2 is 5p13.2 and it comprises seven exons located over around 40 kb. Its encoded protein, MATP, is 530 amino acids long and has 12 putative transmembrane domains. MATP is synthesized within melanocytes. It is in these cells that melanogenesis takes place and the melanin is contained within specialized organelles called melanosomes. Previous studies have shown that when MATP expression was reduced using small interfering RNA in MNT-1 melanoma cells, pH was lowered within melanosomes, they became poorly melanized and tyrosinase activity within melanocytes was also reduced. This type of albinism produces a broad spectrum of phenotypes, ranging from complete absence of melanin to brown hair and brown irides. In the current study, blood was collected from a family in which four members had oculocutaneous albinism, showing a complete absence of melanin in skin, hair and eyes. Screening of the TYR gene using the extracted DNA showed no mutation and therefore whole exome sequencing analysis was performed. A novel deletion mutation c.579delG [p.(Gly194Valfs*7)] in the SLC45A2 gene, predicted to be pathogenic and to result in both frameshift and premature termination of the MATP chain, was identified. These data add to the information pertaining to the mutation spectrum of OCA4.
Collapse
Affiliation(s)
- S S Lewis
- Department of Medical Genetics, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - K M Girisha
- Department of Medical Genetics, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
34
|
Nathan V, Johansson PA, Palmer JM, Howlie M, Hamilton HR, Wadt K, Jönsson G, Brooks KM, Pritchard AL, Hayward NK. Germline variants in oculocutaneous albinism genes and predisposition to familial cutaneous melanoma. Pigment Cell Melanoma Res 2019; 32:854-863. [PMID: 31233279 DOI: 10.1111/pcmr.12804] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/28/2019] [Accepted: 06/15/2019] [Indexed: 11/30/2022]
Abstract
Approximately 1%-2% of cutaneous melanoma (CM) is classified as strongly familial. We sought to investigate unexplained CM predisposition in families negative for the known susceptibility genes using next-generation sequencing of affected individuals. Segregation of germline variants of interest within families was assessed by Sanger sequencing. Several heterozygous variants in oculocutaneous albinism (OCA) genes: TYR, OCA2, TYRP1 and SLC45A2, were present in our CM cohort. OCA is a group of autosomal recessive genetic disorders, resulting in pigmentation defects of the eyes, hair and skin. Missense variants classified as pathogenic for OCA were present in multiple families and some fully segregated with CM. The functionally compromised TYR p.T373K variant was present in three unrelated families. In OCA2, known pathogenic variants: p.V443I and p.N489D, were present in three families and one family, respectively. We identified a likely pathogenic SLC45A2 frameshift variant that fully segregated with CM in a family of four cases. Another four-case family harboured cosegregating variants (p.A24T and p.R153C) of uncertain functional significance in TYRP1. We conclude that rare, heterozygous variants in OCA genes confer moderate risk for CM.
Collapse
Affiliation(s)
- Vaishnavi Nathan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- University of Queensland, Brisbane, Queensland, Australia
| | - Peter A Johansson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jane M Palmer
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Madeleine Howlie
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Hayley R Hamilton
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Karin Wadt
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Göran Jönsson
- Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | - Kelly M Brooks
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Antonia L Pritchard
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- University of Highlands and Islands, Inverness, Scotland
| | - Nicholas K Hayward
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
35
|
Loss of the dermis zinc transporter ZIP13 promotes the mildness of fibrosarcoma by inhibiting autophagy. Sci Rep 2019; 9:15042. [PMID: 31636298 PMCID: PMC6803768 DOI: 10.1038/s41598-019-51438-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022] Open
Abstract
Fibrosarcoma is a skin tumor that is frequently observed in humans, dogs, and cats. Despite unsightly appearance, studies on fibrosarcoma have not significantly progressed, due to a relatively mild tumor severity and a lower incidence than that of other epithelial tumors. Here, we focused on the role of a recently-found dermis zinc transporter, ZIP13, in fibrosarcoma progression. We generated two transformed cell lines from wild-type and ZIP13-KO mice-derived dermal fibroblasts by stably expressing the Simian Virus (SV) 40-T antigen. The ZIP13−/− cell line exhibited an impairment in autophagy, followed by hypersensitivity to nutrient deficiency. The autophagy impairment in the ZIP13−/− cell line was due to the low expression of LC3 gene and protein, and was restored by the DNA demethylating agent, 5-aza-2’-deoxycytidine (5-aza) treatment. Moreover, the DNA methyltransferase activity was significantly increased in the ZIP13−/− cell line, indicating the disturbance of epigenetic regulations. Autophagy inhibitors effectively inhibited the growth of fibrosarcoma with relatively minor damages to normal cells in xenograft assay. Our data show that proper control over autophagy and zinc homeostasis could allow for the development of a new therapeutic strategy to treat fibrosarcoma.
Collapse
|
36
|
Liu J, Hasanuzzaman M, Wen H, Zhang J, Peng T, Sun H, Zhao Q. High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. PROTOPLASMA 2019; 256:1217-1227. [PMID: 31001689 DOI: 10.1007/s00709-019-01354-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/04/2019] [Indexed: 05/10/2023]
Abstract
Seed germination is one of the most important biological processes in the life cycle of plants, and temperature and water are the two most critical environmental factors that influence seed germination. In the present study, we investigated the roles of the plant hormone abscisic acid (ABA) and reactive oxygen species (ROS) in high temperature (HT) and drought-induced inhibition of rice seed germination. HT and drought stress caused ABA accumulation in seeds and inhibited seed germination and seedling establishment. Quantitative real-time polymerase chain reaction analysis revealed that HT and drought stress induced the expression of OsNCED3, a key gene in ABA synthesis in rice seeds. In addition, ROS (O2•- and H2O2) and malondialdehyde contents were increased in germinating seeds under HT and drought stress. Moreover, we adopted the non-invasive micro-test technique to detect H2O2 and Ca2+ fluxes at the site of coleoptile emergence. HT and drought stress resulted in a H2O2 efflux, but only drought stress significantly induced Ca2+ influx. Antioxidant enzyme assays revealed that superoxide dismutase (SOD), peroxidase, catalase (CAT), and ascorbate peroxidase (APX) activity were reduced by HT and drought stress, consistent with the expression of OsCu/ZnSOD, OsCATc, and OsAPX2 during seed germination. Altogether, these results suggest that ABA and ROS accumulation under HT and drought conditions can inhibit rice seed germination and growth.
Collapse
Affiliation(s)
- Juan Liu
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, China
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Huili Wen
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, China
| | - Jing Zhang
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, China
| | - Ting Peng
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, China
| | - Huwei Sun
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, China
| | - Quanzhi Zhao
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
37
|
Abstract
Human skin and hair color are visible traits that can vary dramatically within and across ethnic populations. The genetic makeup of these traits-including polymorphisms in the enzymes and signaling proteins involved in melanogenesis, and the vital role of ion transport mechanisms operating during the maturation and distribution of the melanosome-has provided new insights into the regulation of pigmentation. A large number of novel loci involved in the process have been recently discovered through four large-scale genome-wide association studies in Europeans, two large genetic studies of skin color in Africans, one study in Latin Americans, and functional testing in animal models. The responsible polymorphisms within these pigmentation genes appear at different population frequencies, can be used as ancestry-informative markers, and provide insight into the evolutionary selective forces that have acted to create this human diversity.
Collapse
Affiliation(s)
- William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Richard A Sturm
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia;
| |
Collapse
|
38
|
Baxter LL, Watkins-Chow DE, Pavan WJ, Loftus SK. A curated gene list for expanding the horizons of pigmentation biology. Pigment Cell Melanoma Res 2019; 32:348-358. [PMID: 30339321 PMCID: PMC10413850 DOI: 10.1111/pcmr.12743] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 09/01/2018] [Accepted: 09/29/2018] [Indexed: 12/27/2022]
Abstract
Over the past century, studies of human pigmentary disorders along with mouse and zebrafish models have shed light on the many cellular functions associated with visible pigment phenotypes. This has led to numerous genes annotated with the ontology term "pigmentation" in independent human, mouse, and zebrafish databases. Comparisons among these datasets revealed that each is individually incomplete in documenting all genes involved in integument-based pigmentation phenotypes. Additionally, each database contained inherent species-specific biases in data annotation, and the term "pigmentation" did not solely reflect integument pigmentation phenotypes. This review presents a comprehensive, cross-species list of 650 genes involved in pigmentation phenotypes that was compiled with extensive manual curation of genes annotated in OMIM, MGI, ZFIN, and GO. The resulting cross-species list of genes both intrinsic and extrinsic to integument pigment cells provides a valuable tool that can be used to expand our knowledge of complex, pigmentation-associated pathways.
Collapse
Affiliation(s)
- Laura L Baxter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Dawn E Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Stacie K Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
39
|
Lajis AFB, Ariff AB. Discovery of new depigmenting compounds and their efficacy to treat hyperpigmentation: Evidence from in vitro study. J Cosmet Dermatol 2019; 18:703-727. [PMID: 30866156 DOI: 10.1111/jocd.12900] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
Human skin pigmentation is a result of constitutive and facultative pigmentation. Facultative pigmentation is frequently stimulated by UV radiation, pharmacologic drugs, and hormones whereby leads to the development of abnormal skin hyperpigmentation. To date, many state-of-art depigmenting compounds have been studied using in vitro model to treat hyperpigmentation problems for cosmetic dermatological applications; little attention has been made to compare the effectiveness of these depigmenting compounds and their mode of actions. In this present article, new and recent depigmenting compounds, their melanogenic pathway targets, and modes of action are reviewed. This article compares the effectiveness of these new depigmenting compounds to modulate several melanogenesis-regulatory enzymes and proteins such as tyrosinase (TYR), TYR-related protein-1 (TRP1), TYR-related protein-2 (TRP2), microphthalmia-associated transcription factor (MITF), extracellular signal-regulated kinase (ERK) and N-terminal kinases (JNK) and mitogen-activated protein kinase p38 (p38 MAPK). Other evidences from in vitro assays such as inhibition on melanosomal transfer, proteasomes, nitric oxide, and inflammation-induced melanogenesis are also highlighted. This article also reviews analytical techniques in different assays performed using in vitro model as well as their advantages and limitations. This article also provides an insight on recent finding and re-examination of some protocols as well as their effectiveness and reliability in the evaluation of depigmenting compounds. Evidence and support from related patents are also incorporated in this present article to give an overview on current patented technology, latest trends, and intellectual values of some depigmenting compounds and protocols, which are rarely highlighted in the literatures.
Collapse
Affiliation(s)
- Ahmad Firdaus B Lajis
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Bioprocessing and Biomanufacturing Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Arbakariya B Ariff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Bioprocessing and Biomanufacturing Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
40
|
Gong Y, Hu M, Xu S, Wang B, Wang C, Mu X, Xu P, Jiang Y. Comparative transcriptome analysis reveals expression signatures of albino Russian sturgeon, Acipenseriformes gueldenstaedtii. Mar Genomics 2019; 46:1-7. [PMID: 30852186 DOI: 10.1016/j.margen.2019.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/24/2019] [Accepted: 02/16/2019] [Indexed: 01/03/2023]
Abstract
Albinism is a genetically inherited condition that is caused by a series of genetic abnormalities leading to a reduction in melanin production. Russian sturgeon is one of the most valuable freshwater fish species worldwide, and albino individuals have been found in fish farms. Due to its complicated genome and scarce genome-wide genetic resources, the underlying molecular basis of albinism in Russian sturgeon is unknown. In the present study, we first generated transcriptome profile of Acipenser gueldenstaedtii using pooled tissues, which provided reliable reference sequences for future molecular genetic studies. A total of 369,441 contigs were assembled, corresponding to 32,965 unique genes. A comparative analysis of the transcripts from the skin of albino and wildtype individuals was conducted afterwards. A total of 785 unique genes were differentially expressed, including the upregulation of 385 genes and the downregulation of 400 genes in albino individuals. The expression pattern of 16 selected differentially expressed genes was validated using qRT-PCR. Additional annotation, GO enrichment analysis and gene pathway analysis indicated that the melanogenesis pathway may be interrupted in albinism. Eight potential causative genes that were highly likely to be responsible for sturgeon albinism were identified, including Dct, Tyrp1b, Slc45a2, Ctns, Pmela, Pmelb, Cd63, and Bloc1s3, which were found to be significantly down-regulated in albino Russian sturgeon. Moreover, a sliding window analysis of the ratio of nonsynonymous to synonymous nucleotide substitution rates (Ka/Ks) ratios indicated that seven out of the eight genes underwent positive selection during evolution. Our results provide a valuable basis for understanding the molecular mechanism of albinism in fish species and will facilitate future genetic selection and breeding of sturgeon with market-favored traits in aquaculture.
Collapse
Affiliation(s)
- Yiwen Gong
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, CAFS Key Laboratory of Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Mou Hu
- Hangzhou Qiandaohu Xunlong Sci-Tech Development Company Limited, Quzhou, China
| | - Shijian Xu
- Hangzhou Qiandaohu Xunlong Sci-Tech Development Company Limited, Quzhou, China
| | - Bin Wang
- Hangzhou Qiandaohu Xunlong Sci-Tech Development Company Limited, Quzhou, China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology (Ningbo University), Ministry of Education, Ningbo, China
| | - Xidong Mu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Peng Xu
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, China
| | - Yanliang Jiang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, CAFS Key Laboratory of Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China; Hangzhou Qiandaohu Xunlong Sci-Tech Development Company Limited, Quzhou, China; Key Laboratory of Applied Marine Biotechnology (Ningbo University), Ministry of Education, Ningbo, China.
| |
Collapse
|
41
|
Adams DR, Menezes S, Jauregui R, Valivullah ZM, Power B, Abraham M, Jeffrey BG, Garced A, Alur RP, Cunningham D, Wiggs E, Merideth MA, Chiang PW, Bernstein S, Ito S, Wakamatsu K, Jack RM, Introne WJ, Gahl WA, Brooks BP. One-year pilot study on the effects of nitisinone on melanin in patients with OCA-1B. JCI Insight 2019; 4:124387. [PMID: 30674731 PMCID: PMC6413781 DOI: 10.1172/jci.insight.124387] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/06/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND. Oculocutaneous albinism (OCA) results in reduced melanin synthesis, skin hypopigmentation, increased risk of UV-induced malignancy, and developmental eye abnormalities affecting vision. No treatments exist. We have shown that oral nitisinone increases ocular and fur pigmentation in a mouse model of one form of albinism, OCA-1B, due to hypomorphic mutations in the Tyrosinase gene. METHODS. In this open-label pilot study, 5 adult patients with OCA-1B established baseline measurements of iris, skin, and hair pigmentation and were treated over 12 months with 2 mg/d oral nitisinone. Changes in pigmentation and visual function were evaluated at 3-month intervals. RESULTS. The mean change in iris transillumination, a marker of melanin, from baseline was 1.0 ± 1.54 points, representing no change. The method of iris transillumination grading showed a high intergrader reliability (intraclass correlation coefficient ≥ 0.88 at each visit). The number of letters read (visual acuity) improved significantly at month 12 for both eyes (right eye, OD, mean 4.2 [95% CI, 0.3, 8.1], P = 0.04) and left eye (OS, 5 [1.0, 9.1], P = 0.003). Skin pigmentation on the inner bicep increased (M index increase = 1.72 [0.03, 3.41], P = 0.047). Finally, hair pigmentation increased by both reflectometry (M index [17.3 {4.4, 30.2}, P = 0.01]) and biochemically. CONCLUSION. Nitisinone did not result in an increase in iris melanin content but may increase hair and skin pigmentation in patients with OCA-1B. The iris transillumination grading scale used in this study proved robust, with potential for use in future clinical trials. TRIAL REGISTRATION. ClinicalTrials.gov NCT01838655. FUNDING. Intramural program of the National Eye Institute. Oral nitisinone may improve melanin pigmentation in patients with the OCA-1B form of albinism due to hypomorphic mutations in the tyrosinase gene.
Collapse
Affiliation(s)
- David R Adams
- National Human Genome Research Institute, NIH, Department of Health and Human Services, Bethesda, Maryland, USA
| | | | | | - Zaheer M Valivullah
- National Human Genome Research Institute, NIH, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Bradley Power
- National Human Genome Research Institute, NIH, Department of Health and Human Services, Bethesda, Maryland, USA
| | | | | | | | | | | | - Edythe Wiggs
- National Institute of Neurological Disease and Stroke, NIH, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Melissa A Merideth
- National Human Genome Research Institute, NIH, Department of Health and Human Services, Bethesda, Maryland, USA
| | | | - Shanna Bernstein
- Nutrition Department, NIH Clinical Center, Bethesda, Maryland, USA
| | - Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan
| | - Rhona M Jack
- Seattle Children's Hospital, Department of Pathology & Laboratory Medicine, Seattle, Washington, USA
| | - Wendy J Introne
- National Human Genome Research Institute, NIH, Department of Health and Human Services, Bethesda, Maryland, USA
| | - William A Gahl
- National Human Genome Research Institute, NIH, Department of Health and Human Services, Bethesda, Maryland, USA
| | | |
Collapse
|
42
|
Bin B, Lee S, Bhin J, Irié T, Kim S, Seo J, Mishima K, Lee T, Hwang D, Fukada T, Cho E. The epithelial zinc transporter
ZIP
10 epigenetically regulates human epidermal homeostasis by modulating histone acetyltransferase activity. Br J Dermatol 2018; 180:869-880. [PMID: 30339739 DOI: 10.1111/bjd.17339] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2018] [Indexed: 12/17/2022]
Affiliation(s)
- B.‐H. Bin
- Basic Research & Innovation Division AmorePacific R&D Unit Yongin 17014 Republic of Korea
- Department of Biological Sciences Ajou University Suwon 16499Republic of Korea
| | - S.‐H. Lee
- Biosolution Corporation Seoul 01811Republic of Korea
| | - J. Bhin
- Division of Molecular Carcinogenesis the Netherlands Cancer Institute Amsterdam 1066 CXthe Netherlands
| | - T. Irié
- Division of Pathology Department of Oral Diagnostic Sciences School of Dentistry Showa University Tokyo 142‐8666Japan
- Division of Anatomical and Cellular Pathology Department of Pathology Iwate Medical University Iwate 028‐3694Japan
| | - S. Kim
- Biosolution Corporation Seoul 01811Republic of Korea
| | - J. Seo
- Beauty in Longevity Science Research Division AmorePacific R&D Unit Yongin 17014 Republic of Korea
| | - K. Mishima
- Division of Pathology Department of Oral Diagnostic Sciences School of Dentistry Showa University Tokyo 142‐8666Japan
| | - T.R. Lee
- Basic Research & Innovation Division AmorePacific R&D Unit Yongin 17014 Republic of Korea
| | - D. Hwang
- Center for Systems Biology of Plant Senescence and Life History Institute for Basic Science Daegu 42988Republic of Korea
| | - T. Fukada
- Faculty of Pharmaceutical Sciences Tokushima Bunri University Tokushima 770‐8055 Japan
| | - E.‐G. Cho
- Basic Research & Innovation Division AmorePacific R&D Unit Yongin 17014 Republic of Korea
| |
Collapse
|
43
|
Kruijt CC, de Wit GC, Bergen AA, Florijn RJ, Schalij-Delfos NE, van Genderen MM. The Phenotypic Spectrum of Albinism. Ophthalmology 2018; 125:1953-1960. [DOI: 10.1016/j.ophtha.2018.08.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 11/28/2022] Open
|
44
|
Zhou D, Ota K, Nardin C, Feldman M, Widman A, Wind O, Simon A, Reilly M, Levin LR, Buck J, Wakamatsu K, Ito S, Zippin JH. Mammalian pigmentation is regulated by a distinct cAMP-dependent mechanism that controls melanosome pH. Sci Signal 2018; 11:11/555/eaau7987. [PMID: 30401788 DOI: 10.1126/scisignal.aau7987] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The production of melanin increases skin pigmentation and reduces the risk of skin cancer. Melanin production depends on the pH of melanosomes, which are more acidic in lighter-skinned than in darker-skinned people. We showed that inhibition of soluble adenylyl cyclase (sAC) controlled pigmentation by increasing the pH of melanosomes both in cells and in vivo. Distinct from the canonical melanocortin 1 receptor (MC1R)-dependent cAMP pathway that controls pigmentation by altering gene expression, we found that inhibition of sAC increased pigmentation by increasing the activity of tyrosinase, the rate-limiting enzyme in melanin synthesis, which is more active at basic pH. We demonstrated that the effect of sAC activity on pH and melanin production in human melanocytes depended on the skin color of the donor. Last, we identified sAC inhibitors as a new class of drugs that increase melanosome pH and pigmentation in vivo, suggesting that pharmacologic inhibition of this pathway may affect skin cancer risk or pigmentation conditions.
Collapse
Affiliation(s)
- Dalee Zhou
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Koji Ota
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Charlee Nardin
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA.,Service de Dermatologie, Centre Hospitalier Universitaire, Besançon 25030, France
| | - Michelle Feldman
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Adam Widman
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Olivia Wind
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Amanda Simon
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Michael Reilly
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake 470-1192, Japan
| | - Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake 470-1192, Japan
| | - Jonathan H Zippin
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
45
|
Computational analysis of deleterious SNPs of SLC45A2 involved in oculocutaneous albinism type 4. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Rogasevskaia TP, Szerencsei RT, Jalloul AH, Visser F, Winkfein RJ, Schnetkamp PPM. Cellular localization of the K
+
‐dependent Na
+
–Ca
2+
exchanger
NCKX
5 and the role of the cytoplasmic loop in its distribution in pigmented cells. Pigment Cell Melanoma Res 2018; 32:55-67. [DOI: 10.1111/pcmr.12723] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 06/13/2018] [Accepted: 07/03/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Tatiana P. Rogasevskaia
- Department of BiologyMount Royal University Calgary AB Canada
- Department of Physiology & PharmacologyCumming School of MedicineUniversity of Calgary Calgary AB Canada
| | - Robert T. Szerencsei
- Department of Physiology & PharmacologyCumming School of MedicineUniversity of Calgary Calgary AB Canada
| | - Ali H. Jalloul
- Department of Physiology & PharmacologyCumming School of MedicineUniversity of Calgary Calgary AB Canada
| | - Frank Visser
- Department of Physiology & PharmacologyCumming School of MedicineUniversity of Calgary Calgary AB Canada
| | - Robert J. Winkfein
- Department of Physiology & PharmacologyCumming School of MedicineUniversity of Calgary Calgary AB Canada
| | - Paul P. M. Schnetkamp
- Department of Physiology & PharmacologyCumming School of MedicineUniversity of Calgary Calgary AB Canada
| |
Collapse
|
47
|
Serre C, Busuttil V, Botto JM. Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation. Int J Cosmet Sci 2018; 40:328-347. [PMID: 29752874 DOI: 10.1111/ics.12466] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/04/2018] [Indexed: 12/11/2022]
Abstract
In human skin, melanogenesis is a tightly regulated process. Indeed, several extracellular signals are transduced via dedicated signalling pathways and mostly converge to MITF, a transcription factor integrating upstream signalling and regulating downstream genes involved in the various inherent mechanisms modulating melanogenesis. The synthesis of melanin pigments occurs in melanocytes inside melanosomes where melanogenic enzymes (tyrosinase and related proteins) are addressed with the help of specific protein complexes. The melanosomes loaded with melanin are then transferred to keratinocytes. A more elaborate level of melanogenesis regulation comes into play via the action of non-coding RNAs (microRNAs, lncRNAs). Besides this canonical regulation, melanogenesis can also be modulated by other non-specific intrinsic pathways (hormonal environment, inflammation) and by extrinsic factors (solar irradiation such as ultraviolet irradiation, environmental pollution). We developed a bioinformatic interaction network gathering the multiple aspects of melanogenesis and skin pigmentation as a resource to better understand and study skin pigmentation biology.
Collapse
Affiliation(s)
- C Serre
- Global Skin Research Center, Ashland, 655, route du Pin Montard, Sophia Antipolis, 06904, France
| | - V Busuttil
- Global Skin Research Center, Ashland, 655, route du Pin Montard, Sophia Antipolis, 06904, France
| | - J-M Botto
- Global Skin Research Center, Ashland, 655, route du Pin Montard, Sophia Antipolis, 06904, France
| |
Collapse
|
48
|
Lajis AFB. A Zebrafish Embryo as an Animal Model for the Treatment of Hyperpigmentation in Cosmetic Dermatology Medicine. ACTA ACUST UNITED AC 2018; 54:medicina54030035. [PMID: 30344266 PMCID: PMC6122095 DOI: 10.3390/medicina54030035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 12/18/2022]
Abstract
For years, clinical studies involving human volunteers and several known pre-clinical in vivo models (i.e., mice, guinea pigs) have demonstrated their reliability in evaluating the effectiveness of a number of depigmenting agents. Although these models have great advantages, they also suffer from several drawbacks, especially involving ethical issues regarding experimentation. At present, a new depigmenting model using zebrafish has been proposed and demonstrated. The application of this model for screening and studying the depigmenting activity of many bioactive compounds has been given great attention in genetics, medicinal chemistry and even the cosmetic industry. Depigmenting studies using this model have been recognized as noteworthy approaches to investigating the antimelanogenic activity of bioactive compounds in vivo. This article details the current knowledge of zebrafish pigmentation and its reliability as a model for the screening and development of depigmenting agents. Several methods to quantify the antimelanogenic activity of bioactive compounds in this model, such as phenotype-based screening, melanin content, tyrosinase inhibitory activity, other related proteins and transcription genes, are reviewed. Depigmenting activity of several bioactive compounds which have been reported towards this model are compared in terms of their molecular structure and possible mode of actions. This includes patented materials with regard to the application of zebrafish as a depigmenting model, in order to give an insight of its intellectual value. At the end of this article, some limitations are highlighted and several recommendations are suggested for improvement of future studies.
Collapse
Affiliation(s)
- Ahmad Firdaus B Lajis
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Laboratory of Molecular Medicine, Institute of Bioscience, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Research Center, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
49
|
Chen T, Zhao B, Liu Y, Wang R, Yang Y, Yang L, Dong C. MITF-M regulates melanogenesis in mouse melanocytes. J Dermatol Sci 2018; 90:253-262. [PMID: 29496358 DOI: 10.1016/j.jdermsci.2018.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 02/06/2018] [Accepted: 02/14/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Although the impact of the microphthalamia-associated transcription factor (Mitf) signaling pathway on melanocytes progression has been extensively studied, the specific molecular mechanisms behind MITF-M-enhanced melanin production in melanocytes still need to be clarified. METHODS In this study, we analyzed the levels of Mitf-M in skin tissues of different coat mice in order to further reveal the relationship between Mitf-M and skin pigmentation. To address the function of Mitf-M on melanogenesis, we have used an overexpression system and combined morphological and biochemical methods to investigate its localization in different coat color mice and pigmentation-related genes' expression in mouse melanocytes. RESULTS The qRT-PCR assay and Western blotting analysis revealed that Mitf-M mRNA and protein were synthesized in all tested mice skin samples, with the highest expression level in brown skin, a moderate expression level in grey skin and the lowest expression level in black skin. Simultaneously, immunofluorescence staining revealed that MITF-M was mainly expressed in the hair follicle matrix and inner and outer root sheath in the skin tissues with different coat colors. Furthermore, overexpression of MITF-M led to increased melanin content and variable pigmentation-related gene expression. CONCLUSION These results directly demonstrate that MITF-M not only influences melanogenesis, but also determines the progression of melanosomal protein in mouse melanocytes.
Collapse
Affiliation(s)
- Tianzhi Chen
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bingling Zhao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yu Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ruiwei Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yujing Yang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Linpei Yang
- Shenzhou Vocational and Technical Education Center, Shenzhou 053800, China
| | - Changsheng Dong
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China.
| |
Collapse
|
50
|
Rimpelä AK, Reinisalo M, Hellinen L, Grazhdankin E, Kidron H, Urtti A, del Amo EM. Implications of melanin binding in ocular drug delivery. Adv Drug Deliv Rev 2018; 126:23-43. [PMID: 29247767 DOI: 10.1016/j.addr.2017.12.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/04/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022]
Abstract
Pigmented ocular tissues contain melanin within the intracellular melanosomes. Drugs bind to melanin at varying extent that ranges from no binding to extensive binding. Binding may lead to drug accumulation to the pigmented tissues and prolonged drug retention in the melanin containing cells. Therefore, melanin binding is an important feature that affects ocular drug delivery and biodistribution, but this topic has not been reviewed since 1998. In this review, we present current knowledge on ocular melanin, melanosomes and binding of drugs to pigmented cells and tissues. In vitro, in vivo and in silico methods in the field were critically evaluated, because the literature in this field can be confusing if the reader does not properly understand the methodological aspects. Literature analysis includes a comprehensive table of literature data on melanin binding of drugs. Furthermore, we aimed to give some insights beyond the current literature by making a chemical structure based classification model for melanin binding of drugs and kinetic simulations that revealed significant interplay between melanin binding and drug permeability across the melanosomal and plasma membranes. Overall, more mechanistic and systematic research is needed before the impact of melanin binding on ocular drug delivery can be properly understood and predicted.
Collapse
|