1
|
Grevet LT, Teixeira DS, Pan PM, Jackowski AP, Zugman A, Miguel EC, Rohde LA, Salum GA. The association between duration of breastfeeding and the trajectory of brain development from childhood to young adulthood: an 8-year longitudinal study. Eur Child Adolesc Psychiatry 2024; 33:1863-1873. [PMID: 37650992 DOI: 10.1007/s00787-023-02283-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Breastfeeding has been associated with several short- and long-term health benefits, including positive cognitive and behavioral outcomes. However, the impact of breastfeeding on structural brain development over time remains unclear. We aimed to assess the association between breastfeeding duration in childhood and the developmental trajectory of overall cortical thickness, cortical area, and total intracranial volume during the transition from childhood to early adulthood. Participants included 670 children and adolescents with 1326 MRI scans acquired over 8 years from the Brazilian High-Risk Cohort for Mental Conditions (BHRCS). Breastfeeding was assessed using a questionnaire answered by the parents. Brain measures were estimated using MRI T1-weighted images at three time points, with 3-year intervals. Data were evaluated using generalized additive models adjusted for multiple confounders. We found that a longer breastfeeding duration was directly associated with higher global cortical thickness in the left (edf = 1.0, F = 6.07, p = 0.01) and right (edf = 1.0, F = 4.70, p = 0.03) hemispheres. For the total intracranial volume, we found an interaction between duration of breastfeeding and developmental stage (edf = 1.0, F = 6.81, p = 0.009). No association was found between breastfeeding duration and brain area. Our study suggests that the duration of breastfeeding impacts overall cortical thickness and the development of total brain volume, but not area. This study adds to the evidence on the potential impact of breastfeeding on brain development and provides relevant insights into the mechanisms by which breastfeeding might confer cognitive and mental health benefits.
Collapse
Affiliation(s)
- Laura Tietzmann Grevet
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), School of Medicine, Avenida Ipiranga, 6681-Partenon, Porto Alegre, Rio Grande do Sul, 90619-900, Brazil.
| | - Danielle Soares Teixeira
- Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Pedro Mario Pan
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
- Universidade Federal de São Paulo (UNIFESP), Iterdisciplinary Lab for Clinical Neurosciences (LiNC), São Paulo, SP, Brazil
| | - Andrea Parolin Jackowski
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
- Universidade Federal de São Paulo (UNIFESP), Iterdisciplinary Lab for Clinical Neurosciences (LiNC), São Paulo, SP, Brazil
| | - André Zugman
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
- Universidade Federal de São Paulo (UNIFESP), Iterdisciplinary Lab for Clinical Neurosciences (LiNC), São Paulo, SP, Brazil
| | - Euripedes Constantino Miguel
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
- Department and Institute of Psychiatry, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Luis Augusto Rohde
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
- ADHD Outpatient Program and Developmental Psychiatry Program, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Giovanni Abrahão Salum
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
- Child Mind Institute, New York, NY, USA
| |
Collapse
|
2
|
Bas‐Hoogendam JM, Groenewold NA, Aghajani M, Freitag GF, Harrewijn A, Hilbert K, Jahanshad N, Thomopoulos SI, Thompson PM, Veltman DJ, Winkler AM, Lueken U, Pine DS, Wee NJA, Stein DJ, Agosta F, Åhs F, An I, Alberton BAV, Andreescu C, Asami T, Assaf M, Avery SN, Nicholas L, Balderston, Barber JP, Battaglia M, Bayram A, Beesdo‐Baum K, Benedetti F, Berta R, Björkstrand J, Blackford JU, Blair JR, Karina S, Blair, Boehme S, Brambilla P, Burkhouse K, Cano M, Canu E, Cardinale EM, Cardoner N, Clauss JA, Cividini C, Critchley HD, Udo, Dannlowski, Deckert J, Demiralp T, Diefenbach GJ, Domschke K, Doruyter A, Dresler T, Erhardt A, Fallgatter AJ, Fañanás L, Brandee, Feola, Filippi CA, Filippi M, Fonzo GA, Forbes EE, Fox NA, Fredrikson M, Furmark T, Ge T, Gerber AJ, Gosnell SN, Grabe HJ, Grotegerd D, Gur RE, Gur RC, Harmer CJ, Harper J, Heeren A, Hettema J, Hofmann D, Hofmann SG, Jackowski AP, Andreas, Jansen, Kaczkurkin AN, Kingsley E, Kircher T, Kosti c M, Kreifelts B, Krug A, Larsen B, Lee S, Leehr EJ, Leibenluft E, Lochner C, Maggioni E, Makovac E, Mancini M, Manfro GG, Månsson KNT, Meeten F, Michałowski J, et alBas‐Hoogendam JM, Groenewold NA, Aghajani M, Freitag GF, Harrewijn A, Hilbert K, Jahanshad N, Thomopoulos SI, Thompson PM, Veltman DJ, Winkler AM, Lueken U, Pine DS, Wee NJA, Stein DJ, Agosta F, Åhs F, An I, Alberton BAV, Andreescu C, Asami T, Assaf M, Avery SN, Nicholas L, Balderston, Barber JP, Battaglia M, Bayram A, Beesdo‐Baum K, Benedetti F, Berta R, Björkstrand J, Blackford JU, Blair JR, Karina S, Blair, Boehme S, Brambilla P, Burkhouse K, Cano M, Canu E, Cardinale EM, Cardoner N, Clauss JA, Cividini C, Critchley HD, Udo, Dannlowski, Deckert J, Demiralp T, Diefenbach GJ, Domschke K, Doruyter A, Dresler T, Erhardt A, Fallgatter AJ, Fañanás L, Brandee, Feola, Filippi CA, Filippi M, Fonzo GA, Forbes EE, Fox NA, Fredrikson M, Furmark T, Ge T, Gerber AJ, Gosnell SN, Grabe HJ, Grotegerd D, Gur RE, Gur RC, Harmer CJ, Harper J, Heeren A, Hettema J, Hofmann D, Hofmann SG, Jackowski AP, Andreas, Jansen, Kaczkurkin AN, Kingsley E, Kircher T, Kosti c M, Kreifelts B, Krug A, Larsen B, Lee S, Leehr EJ, Leibenluft E, Lochner C, Maggioni E, Makovac E, Mancini M, Manfro GG, Månsson KNT, Meeten F, Michałowski J, Milrod BL, Mühlberger A, Lilianne R, Mujica‐Parodi, Munjiza A, Mwangi B, Myers M, Igor Nenadi C, Neufang S, Nielsen JA, Oh H, Ottaviani C, Pan PM, Pantazatos SP, Martin P, Paulus, Perez‐Edgar K, Peñate W, Perino MT, Peterburs J, Pfleiderer B, Phan KL, Poletti S, Porta‐Casteràs D, Price RB, Pujol J, Andrea, Reinecke, Rivero F, Roelofs K, Rosso I, Saemann P, Salas R, Salum GA, Satterthwaite TD, Schneier F, Schruers KRJ, Schulz SM, Schwarzmeier H, Seeger FR, Smoller JW, Soares JC, Stark R, Stein MB, Straube B, Straube T, Strawn JR, Suarez‐Jimenez B, Boris, Suchan, Sylvester CM, Talati A, Tamburo E, Tükel R, Heuvel OA, Van der Auwera S, Nieuwenhuizen H, Tol M, van Velzen LS, Bort CV, Vermeiren RRJM, Visser RM, Volman I, Wannemüller A, Wendt J, Werwath KE, Westenberg PM, Wiemer J, Katharina, Wittfeld, Wu M, Yang Y, Zilverstand A, Zugman A, Zwiebel HL. ENIGMA-anxiety working group: Rationale for and organization of large-scale neuroimaging studies of anxiety disorders. Hum Brain Mapp 2022; 43:83-112. [PMID: 32618421 PMCID: PMC8805695 DOI: 10.1002/hbm.25100] [Show More Authors] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/09/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders.
Collapse
Affiliation(s)
- Janna Marie Bas‐Hoogendam
- Department of Developmental and Educational PsychologyLeiden University, Institute of Psychology Leiden The Netherlands
- Department of PsychiatryLeiden University Medical Center Leiden The Netherlands
- Leiden Institute for Brain and Cognition Leiden The Netherlands
| | - Nynke A. Groenewold
- Department of Psychiatry & Mental HealthUniversity of Cape Town Cape Town South Africa
| | - Moji Aghajani
- Department of PsychiatryAmsterdam UMC / VUMC Amsterdam The Netherlands
- Department of Research & InnovationGGZ inGeest Amsterdam The Netherlands
| | - Gabrielle F. Freitag
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Anita Harrewijn
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Kevin Hilbert
- Department of PsychologyHumboldt‐Universität zu Berlin Berlin Germany
| | - Neda Jahanshad
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Sophia I. Thomopoulos
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Paul M. Thompson
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Dick J. Veltman
- Department of PsychiatryAmsterdam UMC / VUMC Amsterdam The Netherlands
| | - Anderson M. Winkler
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Ulrike Lueken
- Department of PsychologyHumboldt‐Universität zu Berlin Berlin Germany
| | - Daniel S. Pine
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Nic J. A. Wee
- Department of PsychiatryLeiden University Medical Center Leiden The Netherlands
- Leiden Institute for Brain and Cognition Leiden The Netherlands
| | - Dan J. Stein
- Department of Psychiatry & Mental HealthUniversity of Cape Town Cape Town South Africa
- University of Cape TownSouth African MRC Unit on Risk & Resilience in Mental Disorders Cape Town South Africa
- University of Cape TownNeuroscience Institute Cape Town South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Assari S. Parental Education, Household Income, and Cortical Surface Area among 9-10 Years Old Children: Minorities' Diminished Returns. Brain Sci 2020; 10:E956. [PMID: 33317053 PMCID: PMC7763341 DOI: 10.3390/brainsci10120956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction: Although the effects of parental education and household income on children's brain development are well established, less is known about possible variation in these effects across diverse racial and ethnic groups. According to the Minorities' Diminished Returns (MDRs) phenomenon, due to structural racism, social stratification, and residential segregation, parental educational attainment and household income show weaker effects for non-White than White children. Purpose: Built on the MDRs framework and conceptualizing race as a social rather than a biological factor, this study explored racial and ethnic variation in the magnitude of the effects of parental education and household income on children's whole-brain cortical surface area. Methods: For this cross-sectional study, we used baseline socioeconomic and structural magnetic resonance imaging (sMRI) data of the Adolescent Brain Cognitive Development (ABCD) study. Our analytical sample was 10,262 American children between ages 9 and 10. The independent variables were parental education and household income. The primary outcome was the children's whole-brain cortical surface area. Age, sex, and family marital status were covariates. Race and ethnicity were the moderators. We used mixed-effects regression models for data analysis as participants were nested within families and study sites. Results: High parental education and household income were associated with larger children's whole-brain cortical surface area. The effects of high parental education and high household income on children's whole-brain cortical surface area were modified by race. Compared to White children, Black children showed a diminished return of high parental education on the whole-brain cortical surface area when compared to White children. Asian American children showed weaker effects of household income on the whole-brain cortical surface area when compared to White children. We could not find differential associations between parental education and household income with the whole-brain cortical surface area, when compared to White children, for non-Hispanic and Hispanic children. Conclusions: The effects of parental educational attainment and household income on children's whole-brain cortical surface area are weaker in non-White than White families. Although parental education and income contribute to children's brain development, these effects are unequal across racial groups.
Collapse
Affiliation(s)
- Shervin Assari
- Department of Urban Public Health, Charles R Drew University of Medicine and Science, Los Angeles, CA 92697, USA;
- Department of Family Medicine, Charles R Drew University of Medicine and Science, Los Angeles, CA 92697, USA
| |
Collapse
|
4
|
Abstract
In Australia, there are two distinct populations, each with vastly disparate health outcomes: Aboriginal and Torres Strait Islander People and non-Aboriginal Australians. Aboriginal Australians have significantly higher rates of health and socioeconomic disadvantage, and Aboriginal babies are also more likely to be born low birth weight or growth restricted. The Developmental Origins of Health and Disease (DOHaD) hypothesis advocates that a sub-optimal intrauterine environment, often manifested as diminished foetal growth, during critical periods of foetal development has the potential to alter the risk of non-communicable disease in the offspring. A better understanding of the role of the intrauterine environment and subsequent developmental programming, in response to both transgenerational and immediate stimuli, in Aboriginal Australians remains a relatively unexplored field and may provide insights into the prevailing health disparities between Aboriginal and non-Aboriginal children. This narrative review explores the role of DOHaD in explaining the ongoing disadvantage experienced by Aboriginal People in today's society through a detailed discussion of the literature on the association between foetal growth, as a proxy for the quality of the intrauterine environment, and outcomes in the offspring including perinatal health, early life development and childhood education. The literature largely supports this hypothesis and this review therefore has potential implications for policy makers not only in Australia but also in other countries that have minority and Indigenous populations who suffer disproportionate disadvantage such as the United States, Canada and New Zealand.
Collapse
Affiliation(s)
- E C McEwen
- 1School of Medicine and Public Health,University of Newcastle,Newcastle,NSW,Australia
| | - T J Boulton
- 1School of Medicine and Public Health,University of Newcastle,Newcastle,NSW,Australia
| | - R Smith
- 1School of Medicine and Public Health,University of Newcastle,Newcastle,NSW,Australia
| |
Collapse
|
5
|
McEwen EC, Guthridge SL, He VY, McKenzie JW, Boulton TJ, Smith R. What birthweight percentile is associated with optimal perinatal mortality and childhood education outcomes? Am J Obstet Gynecol 2018; 218:S712-S724. [PMID: 29268938 DOI: 10.1016/j.ajog.2017.11.574] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND Small for gestational age, defined as birthweight <10th percentile for gestational age, is known to be associated with clinically meaningful impairments in health and development. The effects of variation within the normal range of birthweight percentile on perinatal mortality and childhood education remain less well defined. OBJECTIVE We sought to quantify the association among birthweight percentile, perinatal mortality, and educational outcomes and to determine the optimal birthweight percentile for those outcomes in Aboriginal and non-Aboriginal Australian children. STUDY DESIGN This was a retrospective cohort study. Perinatal data for all children born in the Northern Territory, Australia, from 1999 through 2008 were linked to measures of educational attainment at age 8-9 years. Multivariable analysis was used to determine the optimal birthweight percentile for low perinatal mortality and high reading and numeracy scores. RESULTS The birth cohort contained 35,239 births (42% Aboriginal), of which 11,214 had linked and valid education records. Median birthweight percentile was 29.2 in Aboriginal infants and 44.0 in non-Aboriginal infants. The odds of perinatal mortality decreased by 4% with each 1-percentile increase birthweight percentile overall (adjusted odds ratio, 0.96; P = .000) and lowest mortality rates were at the 61st and 78th percentile in Aboriginal and non-Aboriginal infants, respectively. Although birthweights <10th percentile were associated with greatly increased odds of perinatal mortality, the increased risk extended well beyond this cut-off. Birthweight percentile was also positively correlated with scores in reading (P = .000) and numeracy (P = .000). In non-Aboriginal children, reading and numeracy scores peaked at the 66th percentile, but for Aboriginal children there was continuous benefit with increasing birthweight percentile. Birthweight percentile explained 1% of the variation in education outcomes, with much greater variation explained by other perinatal and sociodemographic factors. CONCLUSION Birthweights between the 50th-93rd percentiles were most consistently associated with both low perinatal mortality and high reading and numeracy scores, suggesting that small for gestational age does not sufficiently capture the risks associated with variation in fetal growth. Our data indicate that the effect of birthweight percentile accounts for 1% of variation in perinatal and education outcomes.
Collapse
Affiliation(s)
- Ellie C McEwen
- Mothers and Babies Research Center, Priority Center in Reproduction, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia; School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
| | - Steven L Guthridge
- Health Gains Planning Branch, Northern Territory Department of Health, Darwin, Australia; Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Vincent Yf He
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - John W McKenzie
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Thomas J Boulton
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
| | - Roger Smith
- Mothers and Babies Research Center, Priority Center in Reproduction, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia; School of Medicine and Public Health, University of Newcastle, Newcastle, Australia.
| |
Collapse
|