1
|
Barthels DA, House RV, Gelhaus HC. The immune response to Francisella tularensis. Front Microbiol 2025; 16:1549343. [PMID: 40351308 PMCID: PMC12062900 DOI: 10.3389/fmicb.2025.1549343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/24/2025] [Indexed: 05/14/2025] Open
Abstract
Francisella tularensis (Ft) is a Gram negative intracellular bacterial pathogen, commonly transmitted via arthropod bites, but is most lethal when contracted via inhalation. The nature of a Gram-negative intracellular pathogen presents unique challenges to the mammalian immune response, unlike more common viral pathogens and extracellular bacterial pathogens. The current literature on Ft involves numerous variables, including the use of differing research strains and variation in animal models. This review aims to consolidate much of the recent literature on Ft to suggest promising research to better understand the complex immune response to this bacterium.
Collapse
Affiliation(s)
- Derek A. Barthels
- Department of Biology, Life Sciences Research Center, United States Air Force Academy, Colorado Springs, CO, United States
- National Research Council Research Associateships Program, Washington, DC, United States
| | - Robert V. House
- Dr. RV House LLC, Harpers Ferry, WV, United States
- Appili Therapeutics, Halifax, NS, Canada
| | | |
Collapse
|
2
|
Wiedinger K, McCauley J, Bitsaktsis C. Isotype-specific outcomes in Fc gamma receptor targeting of PspA using fusion proteins as a vaccination strategy against Streptococcus pneumoniae infection. Vaccine 2020; 38:5634-5646. [PMID: 32646816 DOI: 10.1016/j.vaccine.2020.06.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/22/2020] [Accepted: 06/22/2020] [Indexed: 02/08/2023]
Abstract
Streptococcus pneumoniae (Spn) remains a considerable threat to public health despite the availability of antibiotics and polysaccharide conjugate vaccines. The lack of mucosal immunity in addition to capsular polysaccharide diversity, has proved to be problematic in developing a universal vaccine against Spn. Targeting antigen to Fc receptors is an attractive way to augment both innate and adaptive immunity against mucosal pathogens, by promoting interactions with activating Fcγ receptors (FcγR) that mediate diverse immunomodulatory functions. The effect of targeting FcγR is highly influenced by the IgG subclass, which bares differential affinities for activating and inhibitory FcγR. In the current study we demonstrate targeting activating FcγR with fusion proteins consisting of PspA and IgG2a Fc enhance PspA-specific immune responses, and effectively protect against mucosal Spn challenge. Specifically, targeting PspA to FcγR polarized alveolar macrophage to the AM1 phenotype and increased conventional dendritic cell subsets in the lung in addition to augmenting Th1 cytokines and PspA-specific IgG and IgA. In contrast, fusion proteins consisting of PspA fused to the IgG1 Fc provided minimal benefit over administration of PspA alone, as a result of interaction with the inhibitory FcγRIIB. Protective efficacy of the IgG1 fusion protein was significantly enhanced in animals deficient for FcγRIIB accompanied by increased B cell maturation and proliferation levels in these animals. These studies demonstrate FcγR targeting is an effective strategy for inducing potent cellular and humoral responses via mucosal immunization with Fc fusion proteins, however, careful consideration of the Fc region utilized is required since Fc isotype subclass heavily influenced immunization induced effector functions and survival against lethal Spn challenge. Fc-engineering with specific attention to FcγRIIB engagement presents a valuable vaccine strategy for protecting against Spn infection.
Collapse
Affiliation(s)
- Kari Wiedinger
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA.
| | - James McCauley
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA.
| | | |
Collapse
|
3
|
Hunt D, Drake LA, Drake JR. Murine macrophage TLR2-FcγR synergy via FcγR licensing of IL-6 cytokine mRNA ribosome binding and translation. PLoS One 2018; 13:e0200764. [PMID: 30024985 PMCID: PMC6053178 DOI: 10.1371/journal.pone.0200764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022] Open
Abstract
Macrophages (MØs) are sentinels of the immune system that use pattern recognition receptors such as Toll-like receptors (TLR) to detect invading pathogens and immune receptors such as FcγR to sense the host’s immune state. Crosstalk between these two signaling pathways allows the MØ to tailor the cell’s overall response to prevailing conditions. However, the molecular mechanisms underlying TLR-FcγR crosstalk are only partially understood. Therefore, we employed an immunologically-relevant MØ stimulus, an inactivated gram-negative bacterium that bears TLR2 agonists but no TLR4 agonist (iBTLR2) opsonized with a monoclonal antibody (mAb-iBTLR2), as a tool to study FcγR regulation of TLR2-driven production of IL-6, a key inflammatory cytokine. We chose this particular agonist as an investigational tool because MØ production of any detectable IL-6 in response to mAb-iBTLR2 requires both TLR2 and FcγR signaling, making it an excellent system for the study of receptor synergy. Using genetic, pharmacological and immunological approaches, we demonstrate that the murine MØ IL-6 response to mAb-iBTLR2 requires activation of both the TLR/NF-κB and FcγR/ITAM signaling pathways. mAb-iBTLR2 engagement of TLR2 drives NF-κB activation and up-regulation of IL-6 mRNA but fails to result in IL-6 cytokine production/release. Here, Src family kinase-driven FcγR ITAM signaling is necessary to enable IL-6 mRNA incorporation into polysomes and translation. These results reveal a novel mechanism by which FcγR ITAM signaling synergizes with TLR signaling, by “licensing” cytokine mRNA ribosome binding/translation to drive a strong murine MØ cytokine response.
Collapse
Affiliation(s)
- Danielle Hunt
- Albany Medical College, Department of Immunology and Microbial Disease, Albany, NY, United States of America
| | - Lisa A. Drake
- Albany Medical College, Department of Immunology and Microbial Disease, Albany, NY, United States of America
| | - James R. Drake
- Albany Medical College, Department of Immunology and Microbial Disease, Albany, NY, United States of America
- * E-mail:
| |
Collapse
|
4
|
Duffy EB, Periasamy S, Hunt D, Drake JR, Harton JA. FcγR mediates TLR2- and Syk-dependent NLRP3 inflammasome activation by inactivated Francisella tularensis LVS immune complexes. J Leukoc Biol 2016; 100:1335-1347. [PMID: 27365531 PMCID: PMC5110000 DOI: 10.1189/jlb.2a1215-555rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 01/08/2023] Open
Abstract
IgG (mAb)-opsonized, inactivated Francisella tularensis LVS (iFt-mAb) enhances TLR2-dependent IL-6 production by macrophages via Fcγ receptors (FcγR). In mice, vaccination with iFt-mAb provides IgA-dependent protection against lethal challenge with Ft LVS. Because inflammasome maturation of IL-1β is thought important for antibody-mediated immunity, we considered the possibility that iFt-mAb elicits an FcγR-dependent myeloid cell inflammasome response. Herein, we find that iFt-mAb enhances macrophage and dendritic cell IL-1β responses in a TLR2- and FcγR-dependent fashion. Although iFt-mAb complexes bind FcγR and are internalized, sensing of cytosolic DNA by absent in melanoma 2 (AIM2) is not required for the IL-1β response. In contrast, ASC, caspase-1, and NLR family pyrin domain-containing 3 (NLRP3) are indispensable. Further, FcγR-mediated spleen tyrosine kinase (Syk) signaling is required for this NLRP3-dependent IL-1β response, but the alternative IL-1β convertase caspase-8 is insufficient. Finally, iFt-mAb-vaccinated wild-type mice exhibit a significant delay in time to death, but IL-1R1- or Nlrp3-deficient mice vaccinated in this way are not protected and lack appreciable Francisella-specific antibodies. This study demonstrates that FcγR-mediated Syk activation leads to NLRP3 inflammasome-dependent IL-1β production in macrophages and suggests that an Nlrp3- and IL-1R-dependent process contributes to the IgA response important for protection against Ft LVS. These findings extend our understanding of cellular responses to inactivated pathogen-opsonized vaccine, establish FcγR-elicited Syk kinase-mediated NLRP3 inflammasome activation, and provide additional insight toward understanding crosstalk between TLR and FcγR signals.
Collapse
Affiliation(s)
- Ellen B Duffy
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Sivakumar Periasamy
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Danielle Hunt
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - James R Drake
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Jonathan A Harton
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| |
Collapse
|
5
|
Dillon LAL, Suresh R, Okrah K, Corrada Bravo H, Mosser DM, El-Sayed NM. Simultaneous transcriptional profiling of Leishmania major and its murine macrophage host cell reveals insights into host-pathogen interactions. BMC Genomics 2015; 16:1108. [PMID: 26715493 PMCID: PMC4696162 DOI: 10.1186/s12864-015-2237-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/24/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Parasites of the genus Leishmania are the causative agents of leishmaniasis, a group of diseases that range in manifestations from skin lesions to fatal visceral disease. The life cycle of Leishmania parasites is split between its insect vector and its mammalian host, where it resides primarily inside of macrophages. Once intracellular, Leishmania parasites must evade or deactivate the host's innate and adaptive immune responses in order to survive and replicate. RESULTS We performed transcriptome profiling using RNA-seq to simultaneously identify global changes in murine macrophage and L. major gene expression as the parasite entered and persisted within murine macrophages during the first 72 h of an infection. Differential gene expression, pathway, and gene ontology analyses enabled us to identify modulations in host and parasite responses during an infection. The most substantial and dynamic gene expression responses by both macrophage and parasite were observed during early infection. Murine genes related to both pro- and anti-inflammatory immune responses and glycolysis were substantially upregulated and genes related to lipid metabolism, biogenesis, and Fc gamma receptor-mediated phagocytosis were downregulated. Upregulated parasite genes included those aimed at mitigating the effects of an oxidative response by the host immune system while downregulated genes were related to translation, cell signaling, fatty acid biosynthesis, and flagellum structure. CONCLUSIONS The gene expression patterns identified in this work yield signatures that characterize multiple developmental stages of L. major parasites and the coordinated response of Leishmania-infected macrophages in the real-time setting of a dual biological system. This comprehensive dataset offers a clearer and more sensitive picture of the interplay between host and parasite during intracellular infection, providing additional insights into how pathogens are able to evade host defenses and modulate the biological functions of the cell in order to survive in the mammalian environment.
Collapse
Affiliation(s)
- Laura A L Dillon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA. .,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, 20742, USA.
| | - Rahul Suresh
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| | - Kwame Okrah
- Department of Mathematics, University of Maryland, College Park, MD, 20742, USA.
| | - Hector Corrada Bravo
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, 20742, USA. .,Department of Computer Science, University of Maryland, College Park, MD, 20742, USA.
| | - David M Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| | - Najib M El-Sayed
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA. .,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, 20742, USA. .,Present Address: 3128 Bioscience Research Bldg., University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|