1
|
Chance R, Kang AS. Eukaryotic ribosome display for antibody discovery: A review. Hum Antibodies 2024; 32:107-120. [PMID: 38788063 DOI: 10.3233/hab-240001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Monoclonal antibody biologics have significantly transformed the therapeutic landscape within the biopharmaceutical industry, partly due to the utilisation of discovery technologies such as the hybridoma method and phage display. While these established platforms have streamlined the development process to date, their reliance on cell transformation for antibody identification faces limitations related to library diversification and the constraints of host cell physiology. Cell-free systems like ribosome display offer a complementary approach, enabling antibody selection in a completely in vitro setting while harnessing enriched cellular molecular machinery. This review aims to provide an overview of the fundamental principles underlying the ribosome display method and its potential for advancing antibody discovery and development.
Collapse
|
2
|
Hou S, Ma J, Cheng Y, Wang Z, Yan Y. Overview-gold nanoparticles-based sensitive nanosensors in mycotoxins detection. Crit Rev Food Sci Nutr 2023; 63:11734-11749. [PMID: 35916760 DOI: 10.1080/10408398.2022.2095973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food-borne mycotoxins is one of the food safety concerns in the world. At present, nanosensors are widely used in the detection and analysis of mycotoxins due to their high specificity and sensitivity. In nanosensor-based mycotoxindetections, the sensitivity is mainly improved from two aspects. On the one hand, based on the principle of immune response, antigens and antibodies can be modified and developed. Such as single-domain heavy chain antibodies, aptamers, peptides, and antigen mimotopes. On the other hand, improvements and innovations have been made on signal amplification materials, including gold nanoparticles (AuNPs), quantum dots, and graphene, etc. Among them, gold nanoparticles can not only be used as a signal amplification material, but also can be used as carriers for identification elements, which can be used for signal amplification in detection. In this article, we systematically summarized the emerging strategies for enhancing the detection sensitivity of traditional gold nanoparticles-based nanosensors, in terms of recognition elements and signal amplification. Representative examples were selected to illustrate the potential mechanism of each strategy in enhancing the colorimetric signal intensity of AuNP and its potential application in biosensing. Finally, our review suggested the challenges and future prospects of gold particles in detection of mycotoxins.
Collapse
Affiliation(s)
- Silu Hou
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaofei Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Li L, Wu S, Si Y, Li H, Yin X, Peng D. Single-chain fragment variable produced by phage display technology: Construction, selection, mutation, expression, and recent applications in food safety. Compr Rev Food Sci Food Saf 2022; 21:4354-4377. [PMID: 35904244 DOI: 10.1111/1541-4337.13018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 01/28/2023]
Abstract
Immunoassays are reliable, efficient, and accurate methods for the analysis of small-molecule harmful substances (such as pesticides, veterinary drugs, and biological toxins) that may be present in food. However, traditional polyclonal and monoclonal antibodies are limited by animal hosts and hinder further development of immunoassays. With the gradual application of phage display technology as an efficient in vitro selection technology, the single-chain fragment variable (scFv) now provides an exciting alternative to traditional antibodies. Efficiently constructed scFv source libraries and specifically designed biopanning schemes can now yield scFvs possessing specific recognition capabilities. A rational mutation strategy further enhances the affinity of scFv, and allows it to reach a level that cannot be achieved by immunization. Finally, appropriate prokaryotic expression measures ensure stable and efficient production of scFv. Therefore, when developing excellent scFvs, it is necessary to focus on three key aspects of this process that include screening, mutation, and expression. In this review, we analyze in detail the preparation and affinity improvement process for scFv and provide insights into the research progress and development trend of scFv-based immunoassay methods for monitoring small-molecule harmful substances.
Collapse
Affiliation(s)
- Long Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuangmin Wu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yu Si
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huaming Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaoyang Yin
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China.,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Li J, Ding Y, Chen H, Sun W, Huang Y, Liu F, Wang M, Hua X. Development of an indirect competitive enzyme-linked immunosorbent assay for propiconazole based on monoclonal antibody. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Wang Y, Zhang C, Wang J, Knopp D. Recent Progress in Rapid Determination of Mycotoxins Based on Emerging Biorecognition Molecules: A Review. Toxins (Basel) 2022; 14:73. [PMID: 35202100 PMCID: PMC8874725 DOI: 10.3390/toxins14020073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species, which pose significant risk to humans and livestock. The mycotoxins which are produced from Aspergillus, Penicillium, and Fusarium are considered most important and therefore regulated in food- and feedstuffs. Analyses are predominantly performed by official laboratory methods in centralized labs by expert technicians. There is an urgent demand for new low-cost, easy-to-use, and portable analytical devices for rapid on-site determination. Most significant advances were realized in the field bioanalytical techniques based on molecular recognition. This review aims to discuss recent progress in the generation of native biomolecules and new bioinspired materials towards mycotoxins for the development of reliable bioreceptor-based analytical methods. After brief presentation of basic knowledge regarding characteristics of most important mycotoxins, the generation, benefits, and limitations of present and emerging biorecognition molecules, such as polyclonal (pAb), monoclonal (mAb), recombinant antibodies (rAb), aptamers, short peptides, and molecularly imprinted polymers (MIPs), are discussed. Hereinafter, the use of binders in different areas of application, including sample preparation, microplate- and tube-based assays, lateral flow devices, and biosensors, is highlighted. Special focus, on a global scale, is placed on commercial availability of single receptor molecules, test-kits, and biosensor platforms using multiplexed bead-based suspension assays and planar biochip arrays. Future outlook is given with special emphasis on new challenges, such as increasing use of rAb based on synthetic and naïve antibody libraries to renounce animal immunization, multiple-analyte test-kits and high-throughput multiplexing, and determination of masked mycotoxins, including stereoisomeric degradation products.
Collapse
Affiliation(s)
- Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Cui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Dietmar Knopp
- Chair for Analytical Chemistry and Water Chemistry, Institute of Hydrochemistry, Technische Universitat München, Elisabeth-Winterhalter-Weg 6, D-81377 München, Germany
| |
Collapse
|
6
|
Peltomaa R, Barderas R, Benito-Peña E, Moreno-Bondi MC. Recombinant antibodies and their use for food immunoanalysis. Anal Bioanal Chem 2022; 414:193-217. [PMID: 34417836 PMCID: PMC8380008 DOI: 10.1007/s00216-021-03619-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022]
Abstract
Antibodies are widely employed as biorecognition elements for the detection of a plethora of compounds including food and environmental contaminants, biomarkers, or illicit drugs. They are also applied in therapeutics for the treatment of several disorders. Recent recommendations from the EU on animal protection and the replacement of animal-derived antibodies by non-animal-derived ones have raised a great controversy in the scientific community. The application of recombinant antibodies is expected to achieve a high growth rate in the years to come thanks to their versatility and beneficial characteristics in comparison to monoclonal and polyclonal antibodies, such as stability in harsh conditions, small size, relatively low production costs, and batch-to-batch reproducibility. This review describes the characteristics, advantages, and disadvantages of recombinant antibodies including antigen-binding fragments (Fab), single-chain fragment variable (scFv), and single-domain antibodies (VHH) and their application in food analysis with especial emphasis on the analysis of biotoxins, antibiotics, pesticides, and foodborne pathogens. Although the wide application of recombinant antibodies has been hampered by a number of challenges, this review demonstrates their potential for the sensitive, selective, and rapid detection of food contaminants.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Department of Life Sciences, University of Turku, 20014, Turku, Finland
- Turku Collegium for Science and Medicine, University of Turku, 20014, Turku, Finland
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Madrid, Spain
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - María C Moreno-Bondi
- Department of Analytical Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
7
|
Huang W, Tu Z, Ning Z, He Q, Li Y. Development of Real-Time Immuno-PCR Based on Phage Displayed an Anti-Idiotypic Nanobody for Quantitative Determination of Citrinin in Monascus. Toxins (Basel) 2019; 11:toxins11100572. [PMID: 31575068 PMCID: PMC6832940 DOI: 10.3390/toxins11100572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 01/01/2023] Open
Abstract
Citrinin (CIT) is a mycotoxin that has been detected in agricultural products, feedstuff, and Monascus products. At present, research has been performed to develop methods for CIT detection, mainly through TLC, HPLC, biosensor, and immunoassay. The immunoassay method is popular with researchers because of its speed, economy, simplicity, and ease of control. However, mycotoxins are inevitably introduced during the determination. Immunoassays require the use of toxins coupled to carrier proteins or enzymes to make competitive antigens. In this study, anti-idiotypic nanobody X27 as CIT mimetic antigen was used as non-toxic surrogate reagents in immunoassay. Therefore, the X27-based real-time immuno-PCR (rtIPCR) method had been established after optimal experiments of annealing temperature and amplification efficiency of real-time PCR, concentration of coating antibody, phage X27, and methyl alcohol. The IC50 value of the established method in the present study is 9.86 ± 2.52 ng/mL, which is nearly equivalent to the traditional phage ELISA method. However, the linear range is of 0.1-1000 ng/mL, which has been broadened 10-fold compared to the phage ELISA method. Besides, the X27-based rtIPCR method has no cross-reactivity to the common mycotoxins, like aflatoxin B1 (AFB1), deoxynivalenol (DON), ochratoxin A (OTA), and zearalenone (ZEN). The method has also been applied to the determination of CIT in rice flour and flour samples, and the recovery was found to be in the range of 90.0-104.6% and 75.8-110.0% respectively. There was no significant difference in the results between the rtIPCR and UPLC-MS. The anti-idiotypic nanobody as a non-toxic surrogate of CIT makes rtIPCR a promising method for actual CIT analysis in Monascus products.
Collapse
Affiliation(s)
- Wenping Huang
- State Key Laboratory of Food Science and Technology, Jiangxi-OAI Joint Research Institute, Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang 330047, China.
| | - Zhui Tu
- State Key Laboratory of Food Science and Technology, Jiangxi-OAI Joint Research Institute, Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang 330047, China.
| | - Zhenqiang Ning
- State Key Laboratory of Food Science and Technology, Jiangxi-OAI Joint Research Institute, Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang 330047, China.
| | - Qinghua He
- State Key Laboratory of Food Science and Technology, Jiangxi-OAI Joint Research Institute, Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang 330047, China.
| | - Yanping Li
- State Key Laboratory of Food Science and Technology, Jiangxi-OAI Joint Research Institute, Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
8
|
Li R, Kang G, Hu M, Huang H. Ribosome Display: A Potent Display Technology used for Selecting and Evolving Specific Binders with Desired Properties. Mol Biotechnol 2018; 61:60-71. [DOI: 10.1007/s12033-018-0133-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
The Preparation and Identification of a Monoclonal Antibody against Citrinin and the Development of Detection via Indirect Competitive ELISA. Toxins (Basel) 2017; 9:toxins9030110. [PMID: 28304351 PMCID: PMC5371865 DOI: 10.3390/toxins9030110] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/11/2017] [Accepted: 03/13/2017] [Indexed: 12/02/2022] Open
Abstract
Citrinin (CTN) is a hepato-nephrotoxic mycotoxin produced by fungi genera of Aspergillus, Monauscus, and Penicillium. CTN contaminates grains, fruits, juices and vegetables, and causes various toxic effects to humans and animals. It has small molecular weight, which is non-immunogenic to animals. Thus, CTN was conjugated to bovine serum albumin (BSA) and ovalbumin (OVA), respectively, by amide bonds using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Mice were immunized with CTN-BSA conjugates, and spleen cells of the immunized mice were fused with Sp2/0 myeloma cells to obtain 21H27 hybriodoma cell. Ascitic fluid of hybridoma cell was produced in mice abdomen, and purified using caprylic/ammonium sulfate precipitation method. The 21H27 anti-CTN mcAb was the IgG2a antibody subclass, and cross-reactivity results indicated that anti-CTN mcAb is specific to CTN with high affinity (2.0 × 108 L/mol). Indirect competitive ELISA (ic-ELISA) results showed that the linear range of detection was 0.01–5.96 ng/mL and the IC50 was 0.28 ng/mL with a lower detection limit (LOD) of 0.01 ng/mL. The average recovery was 93.8% ± 1.6% with a coefficient variation of 1.0%–4.3%. Hence, anti-CTN mcAb secreted by 21H27 hybridoma cell was successfully produced and can be used to detect CTN contaminated feed and foodstuffs.
Collapse
|