1
|
Burgess C, Todd SM, Hungerford L, Lahmers K. Determining diagnostic sensitivity loss limits for sample pooling in duplex rtPCR surveillance testing: Theileria orientalis and Anaplasma marginale. J Vet Diagn Invest 2025; 37:71-78. [PMID: 39460723 PMCID: PMC11559834 DOI: 10.1177/10406387241287516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024] Open
Abstract
To expand surveillance testing capacity through sample pooling, a thorough understanding is needed of how sample dilution through pooling affects the sensitivity of candidate assays. We validated a robust and representative framework for assessing the dilution effect of sample pooling using duplex rtPCR surveillance of Theileria orientalis and Anaplasma marginale, both of which are causative agents of severe anemia in cattle and a serious threat to the cattle industry in Virginia and many other states. We used 200 known-positive samples with Ct values representative of typical surveillance results in a series of pools in which we re-tested each sample individually, followed by each sample diluted in equal volumes with negative samples to make pools of 2, 4, 6, 8, and 10 total samples. We compared the Ct values of the individual positives with the Ct values of each pool size to determine if Ct values increase past the limit of detection in the 45-cycle assay. We observed a maximum of 2% sensitivity loss (no more than 2 of 100 samples returned a false-negative result) for both T. orientalis and A. marginale during the pooling series, with lower-than-expected average Ct increase and sensitivity loss. We conclude that pooling up to 10 samples would be acceptable for regional surveillance of T. orientalis and A. marginale using our rtPCR assay. The described strategy is applicable to validate pooling for a wide range of single and duplex rtPCR assays, which could expand efficient disease surveillance.
Collapse
Affiliation(s)
- Catharine Burgess
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - S. Michelle Todd
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
- Virginia Tech Animal Laboratory Services(ViTALS), Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Laura Hungerford
- Department of Population Health Science, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Kevin Lahmers
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
- Virginia Tech Animal Laboratory Services(ViTALS), Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
2
|
Gobbo A, Fraiture MA, Van Poelvoorde L, De Keersmaecker SCJ, Garcia-Graells C, Van Hoorde K, Verhaegen B, Huwaert A, Maloux H, Hutse V, Ceyssens PJ, Roosens N. Strategy to develop and validate digital droplet PCR methods for global antimicrobial resistance wastewater surveillance. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11145. [PMID: 39467614 DOI: 10.1002/wer.11145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024]
Abstract
According to World Health Organization (WHO), antimicrobial resistance (AMR) is currently one of the world's top 10 health threats, causing infections to become difficult or impossible to treat, increasing the risk of disease spread, severe illness, disability, and death. Accurate surveillance is a key component in the fight against AMR. Wastewater is progressively becoming a new player in AMR surveillance, with the promise of a cost-effective real-time tracking of global AMR profiles in specific regions. One of the most useful analytical methods for wastewater surveillance is currently based on real-time PCR (qPCR) and digital droplet PCR (ddPCR) technologies. As stated in the EU Wastewater Treatment Directive proposal, methodological standardization, including a workflow for method development and validation, will play a crucial role in global monitoring of AMR in wastewater. However, according to our knowledge, there are currently no qPCR and ddPCR methods for AMR surveillance available that have been validated according to international standard performance criteria. Therefore, this study proposes a workflow for the development and validation of PCR-based methods for a harmonized and global AMR surveillance, including the construction of specific sequence databases and microbial collections for an efficient method development and method specificity evaluation. Following this strategy, we have developed and validated four duplex ddPCR methods responding to international standard performance criteria, focusing on seven AMR genes (ARG's), including extended spectrum beta-lactam (blaCTX-M), carbapenem (blaKPC-2/3), tetracycline (tet(M)), erythromycin (erm(B)), vancomycin (vanA), sulfonamide (sul2), and aminoglycoside (aac(3)-IV), as well as one indicator of antibiotic (multi-) resistance and horizontal gene transfer, named the class I integron (intl1). The performance of these ddPCR methods was successfully assessed for their specificity, as no false-positive and false-negative results were observed. These ddPCR methods were also considered to be highly sensitive as showing a limit of detection below 25 copies of the targets. In addition, their applicability was confirmed using 14 wastewater samples collected from two Belgian water resource recovery facilities. The proposed study represents therefore a step forward to reinforce method harmonization in the context of the global AMR surveillance in wastewater. PRACTITIONER POINTS: In the context of wastewater surveillance, no PCR-based methods for global AMR monitoring are currently validated according to international standards. Consequently, we propose a workflow to develop and validate PCR-based methods for a harmonized and global AMR surveillance. This workflow resulted here in four duplex ddPCR methods targeting seven ARGs and one general indicator for mobilizable resistance genes. The applicability of these validated ddPCR methods was confirmed on 14 wastewater samples from two Belgian water resource recovery facilities.
Collapse
Affiliation(s)
- Andrea Gobbo
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | | | | | | | | | | | | | - Hadrien Maloux
- Epidemiology of infectious diseases, Sciensano, Brussels, Belgium
| | - Veronik Hutse
- Epidemiology of infectious diseases, Sciensano, Brussels, Belgium
| | | | - Nancy Roosens
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| |
Collapse
|
3
|
Jaleta M, Junker V, Kolte B, Börger M, Werner D, Dolsdorf C, Schwenker J, Hölzel C, Zentek J, Amon T, Nübel U, Kabelitz T. Improvements of weaned pigs barn hygiene to reduce the spread of antimicrobial resistance. Front Microbiol 2024; 15:1393923. [PMID: 38812683 PMCID: PMC11135127 DOI: 10.3389/fmicb.2024.1393923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/17/2024] [Indexed: 05/31/2024] Open
Abstract
The spread of antimicrobial resistance (AMR) in animal husbandry is usually attributed to the use of antibiotics and poor hygiene and biosecurity. We therefore conducted experimental trials to improve hygiene management in weaned pig houses and assessed the impact on the spread. For each of the two groups examined, the experimental group (EG) and the control group (CG), three replicate batches of piglets from the same pig breeder, kept in pre-cleaned flat decks, were analyzed. In the flat decks of the experimental groups, the hygiene conditions (cleaning, disinfection, dust removal and fly control) were improved, while regular hygiene measures were carried out in the control groups. The occurrence and spread of AMR were determined in Escherichia coli (E. coli; resistance indicator) using cultivation-dependent (CFU) and -independent (qPCR) methods as well as whole genome sequencing of isolates in samples of various origins, including feces, flies, feed, dust and swabs. Surprisingly, there were no significant differences (p > 0.05) in the prevalence of resistant E. coli between the flat decks managed with conventional techniques and those managed with improved techniques. Selective cultivation delivered ampicillin- and sulfonamide-resistant E. coli proportions of up to 100% and 1.2%, respectively. While 0.5% E. coli resistant to cefotaxime and no ciprofloxacin resistance were detected. There was a significant difference (p < 0.01) in the abundance of the blaTEM-1 gene in fecal samples between EG and CG groups. The colonization of piglets with resistant pathogens before arrival, the movement of flies in the barn and the treatment of bacterial infections with antibiotics obscured the effects of hygiene improvement. Biocide tolerance tests showed no development of resistance to the farm regular disinfectant. Managing hygiene alone was insufficient for reducing antimicrobial resistances in piglet rearing. We conclude that the complex factors contributing to the presence and distribution of AMR in piglet barns underscore the necessity for a comprehensive management strategy.
Collapse
Affiliation(s)
- Megarsa Jaleta
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Dahlem Research School, Freie Universität Berlin, Berlin, Germany
| | - Vera Junker
- Leibniz-Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Baban Kolte
- Leibniz-Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
| | - Maria Börger
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Claudia Dolsdorf
- Teaching and Research Station for Animal Breeding and Husbandry (LVAT), Ruhlsdorf, Germany
| | - Julia Schwenker
- Faculty of Agricultural and Nutritional Sciences Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christina Hölzel
- Faculty of Agricultural and Nutritional Sciences Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jürgen Zentek
- Institute of Animal Nutrition, Free University Berlin, Berlin, Germany
| | - Thomas Amon
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Institute for Animal Hygiene and Environmental Health (ITU), Free University Berlin, Berlin, Germany
| | - Ulrich Nübel
- Leibniz-Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Tina Kabelitz
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| |
Collapse
|
4
|
Che M, Fresno AH, Calvo-Fernandez C, Hasman H, Kurittu PE, Heikinheimo A, Hansen LT. Comparison of IncK- blaCMY-2 Plasmids in Extended-Spectrum Cephalosporin-Resistant Escherichia coli Isolated from Poultry and Humans in Denmark, Finland, and Germany. Antibiotics (Basel) 2024; 13:349. [PMID: 38667025 PMCID: PMC11047599 DOI: 10.3390/antibiotics13040349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
Escherichia coli carrying IncK-blaCMY-2 plasmids mediating resistance to extended-spectrum cephalosporins (ESC) has been frequently described in food-producing animals and in humans. This study aimed to characterize IncK-blaCMY-2-positive ESC-resistant E. coli isolates from poultry production systems in Denmark, Finland, and Germany, as well as from Danish human blood infections, and further compare their plasmids. Whole-genome sequencing (Illumina) of all isolates (n = 46) confirmed the presence of the blaCMY-2 gene. Minimum inhibitory concentration (MIC) testing revealed a resistant phenotype to cefotaxime as well as resistance to ≥3 antibiotic classes. Conjugative transfer of the blaCMY-2 gene confirmed the resistance being on mobile plasmids. Pangenome analysis showed only one-third of the genes being in the core with the remainder being in the large accessory gene pool. Single nucleotide polymorphism (SNP) analysis on sequence type (ST) 429 and 1286 isolates showed between 0-60 and 13-90 SNP differences, respectively, indicating vertical transmission of closely related clones in the poultry production, including among Danish, Finnish, and German ST429 isolates. A comparison of 22 ST429 isolates from this study with 80 ST429 isolates in Enterobase revealed the widespread geographical occurrence of related isolates associated with poultry production. Long-read sequencing of a representative subset of isolates (n = 28) allowed further characterization and comparison of the IncK-blaCMY-2 plasmids with publicly available plasmid sequences. This analysis revealed the presence of highly similar plasmids in ESC-resistant E. coli from Denmark, Finland, and Germany pointing to the existence of common sources. Moreover, the analysis presented evidence of global plasmid transmission and evolution. Lastly, our results indicate that IncK-blaCMY-2 plasmids and their carriers had been circulating in the Danish production chain with an associated risk of spreading to humans, as exemplified by the similarity of the clinical ST429 isolate to poultry isolates. Its persistence may be driven by co-selection since most IncK-blaCMY-2 plasmids harbor resistance factors to drugs used in veterinary medicine.
Collapse
Affiliation(s)
- Meiyao Che
- National Food Institute, Technical University of Denmark, 2800 Lyngby, Denmark; (M.C.); (C.C.-F.)
| | - Ana Herrero Fresno
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, Campus Terra, Universidade da Santiago de Compostela (USC), 27002 Lugo, Spain;
| | - Cristina Calvo-Fernandez
- National Food Institute, Technical University of Denmark, 2800 Lyngby, Denmark; (M.C.); (C.C.-F.)
| | - Henrik Hasman
- Reference Laboratory for Antibiotic Resistance, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark;
| | - Paula E. Kurittu
- Department of Food Health and Environmental Hygiene, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland; (P.E.K.); (A.H.)
| | - Annamari Heikinheimo
- Department of Food Health and Environmental Hygiene, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland; (P.E.K.); (A.H.)
- Microbiology Unit, Finnish Food Authority, Mustialankatu 3, 00790 Helsinki, Finland
| | | |
Collapse
|
5
|
Nogacka AM, Saturio S, Alvarado-Jasso GM, Salazar N, de los Reyes Gavilán CG, Martínez-Faedo C, Suarez A, Wang R, Miyazawa K, Harata G, Endo A, Arboleya S, Gueimonde M. Probiotic-Induced Modulation of Microbiota Composition and Antibiotic Resistance Genes Load, an In Vitro Assessment. Int J Mol Sci 2024; 25:1003. [PMID: 38256076 PMCID: PMC10816173 DOI: 10.3390/ijms25021003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
The imbalance of the gut microbiota (GM) is known as dysbiosis and is associated with disorders such as obesity. The increasing prevalence of microorganisms harboring antibiotic resistance genes (ARG) in the GM has been reported as a potential risk for spreading multi-drug-resistant pathogens. The objective of this work was the evaluation, in a fecal culture model, of different probiotics for their ability to modulate GM composition and ARG levels on two population groups, extremely obese (OB) and normal-weight (NW) subjects. Clear differences in the basal microbiota composition were observed between NW and OB donors. The microbial profile assessed by metataxonomics revealed the broader impact of probiotics on the OB microbiota composition. Also, supplementation with probiotics promoted significant reductions in the absolute levels of tetM and tetO genes. Regarding the blaTEM gene, a minor but significant decrease in both donor groups was detected after probiotic addition. A negative association between the abundance of Bifidobacteriaceae and the tetM gene was observed. Our results show the ability of some of the tested strains to modulate GM. Moreover, the results suggest the potential application of probiotics for reducing the levels of ARG, which constitutes an interesting target for the future development of probiotics.
Collapse
Affiliation(s)
- Alicja Maria Nogacka
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain; (A.M.N.); (S.S.); (G.M.A.-J.); (N.S.); (C.G.d.l.R.G.); (S.A.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA-ISPA), 33011 Oviedo, Spain;
| | - Silvia Saturio
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain; (A.M.N.); (S.S.); (G.M.A.-J.); (N.S.); (C.G.d.l.R.G.); (S.A.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA-ISPA), 33011 Oviedo, Spain;
| | - Guadalupe Monserrat Alvarado-Jasso
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain; (A.M.N.); (S.S.); (G.M.A.-J.); (N.S.); (C.G.d.l.R.G.); (S.A.)
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain; (A.M.N.); (S.S.); (G.M.A.-J.); (N.S.); (C.G.d.l.R.G.); (S.A.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA-ISPA), 33011 Oviedo, Spain;
| | - Clara G. de los Reyes Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain; (A.M.N.); (S.S.); (G.M.A.-J.); (N.S.); (C.G.d.l.R.G.); (S.A.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA-ISPA), 33011 Oviedo, Spain;
| | - Ceferino Martínez-Faedo
- Endocrinology and Nutrition Service, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Spain;
- Endocrinology, Nutrition, Diabetes and Obesity Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Adolfo Suarez
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA-ISPA), 33011 Oviedo, Spain;
- Digestive Service, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Spain
| | - Ruipeng Wang
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama 241-0021, Japan; (R.W.); (K.M.); (G.H.)
| | - Kenji Miyazawa
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama 241-0021, Japan; (R.W.); (K.M.); (G.H.)
| | - Gaku Harata
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama 241-0021, Japan; (R.W.); (K.M.); (G.H.)
| | - Akihito Endo
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, Abashiri, Hokkaido 099-2493, Japan;
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain; (A.M.N.); (S.S.); (G.M.A.-J.); (N.S.); (C.G.d.l.R.G.); (S.A.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA-ISPA), 33011 Oviedo, Spain;
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain; (A.M.N.); (S.S.); (G.M.A.-J.); (N.S.); (C.G.d.l.R.G.); (S.A.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA-ISPA), 33011 Oviedo, Spain;
| |
Collapse
|
6
|
Kim JJ, Seong HJ, Johnson TA, Cha CJ, Sul WJ, Chae JC. Persistence of antibiotic resistance from animal agricultural effluents to surface water revealed by genome-centric metagenomics. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131761. [PMID: 37290355 DOI: 10.1016/j.jhazmat.2023.131761] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Concerns about antibiotic resistance genes (ARGs) released from wastewaters of livestock or fish farming into the natural environment are increasing, but studies on unculturable bacteria related to the dissemination of antibiotic resistance are limited. Here, we reconstructed 1100 metagenome-assembled genomes (MAGs) to assess the impact of microbial antibiotic resistome and mobilome in wastewaters discharged to Korean rivers. Our results indicate that ARGs harbored in the MAGs were disseminated from wastewater effluents into downstream rivers. Moreover, it was found that ARGs are more commonly co-localized with mobile genetic elements (MGEs) in agricultural wastewater than in river water. Among the effluent-derived phyla, uncultured members of the superphylum Patescibacteria possessed a high number of MGEs, along with co-localized ARGs. Our findings suggest that members of the Patesibacteria are a potential vector for propagating ARGs into the environmental community. Therefore, we propose that the dissemination of ARGs by uncultured bacteria should be further investigated in multiple environments.
Collapse
Affiliation(s)
- Jin Ju Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hoon Je Seong
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea; Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Timothy A Johnson
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Chang-Jun Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea.
| | - Jong-Chan Chae
- Division of Biotechnology, Jeonbuk National University, Iksan 54596, Republic of Korea.
| |
Collapse
|
7
|
Kausrud K, Skjerdal T, Johannessen GS, Ilag HK, Norström M. The Heat Is On: Modeling the Persistence of ESBL-Producing E. coli in Blue Mussels under Meal Preparation. Foods 2022; 12:foods12010014. [PMID: 36613230 PMCID: PMC9818077 DOI: 10.3390/foods12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Pathways for exposure and dissemination of antimicrobial-resistant (AMR) bacteria are major public health issues. Filter-feeding shellfish concentrate bacteria from the environment and thus can also harbor extended-spectrum β-lactamase—producing Escherichia coli (ESBL E. coli) as an example of a resistant pathogen of concern. Is the short steaming procedure that blue mussels (Mytilus edulis) undergo before consumption enough for food safety in regard to such resistant pathogens? In this study, we performed experiments to assess the survival of ESBL E. coli in blue mussel. Consequently, a predictive model for the dose of ESBL E. coli that consumers would be exposed to, after preparing blue mussels or similar through the common practice of brief steaming until opening of the shells, was performed. The output of the model is the expected number of colony forming units per gram (cfu/g) of ESBL E. coli in a meal as a function of the duration and the temperature of steaming and the initial contamination. In these experiments, the heat tolerance of the ESBL-producing E. coli strain was indistinguishable from that of non-ESBL E. coli, and the heat treatments often practiced are likely to be insufficient to avoid exposure to viable ESBL E. coli. Steaming time (>3.5−4.0 min) is a better indicator than shell openness to avoid exposure to these ESBL or indicator E. coli strains.
Collapse
Affiliation(s)
| | - Taran Skjerdal
- Norwegian Veterinary Institute, 1431 Ås, Norway
- Correspondence:
| | | | - Hanna K. Ilag
- Norwegian Veterinary Institute, 1431 Ås, Norway
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | | |
Collapse
|
8
|
Røken M, Forfang K, Wasteson Y, Haaland AH, Eiken HG, Hagen SB, Bjelland AM. Antimicrobial resistance- Do we share more than companionship with our dogs? J Appl Microbiol 2022; 133:1027-1039. [PMID: 35596927 PMCID: PMC9542740 DOI: 10.1111/jam.15629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/26/2022]
Abstract
Aims To investigate and compare antimicrobial resistance genes (ARGs) in faeces from cohabiting dogs and owners. Methods and Results DNA from faecal samples from 35 dogs and 35 owners was screened for the presence of 34 clinically relevant ARGs using high throughput qPCR. In total, 24 and 25 different ARGs were present in the dog and owner groups, respectively. The households had a mean of 9.9 ARGs present, with dogs and owners sharing on average 3.3 ARGs. ARGs were shared significantly more in households with dogs over 6 years old (3.5, interquartile range 2.75–5.0) than in households with younger dogs (2.5, interquartile range 2.0–3.0) (p = 0.02). Dogs possessed significantly more mecA and aminoglycoside resistance genes than owners. Conclusions Dogs and owners can act as reservoirs for a broad range of ARGs belonging to several antimicrobial resistance classes. A modest proportion of the same resistance genes were present in both dogs and owners simultaneously, indicating that ARG transmission between the dog and human gut is of minor concern in the absence of antimicrobial selection. Significance and Impact of the Study This study provides insight into the common dog and human gut resistomes, contributing to an improved knowledge base in risk assessments regarding ARG transmission between dogs and humans.
Collapse
Affiliation(s)
- Mari Røken
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine Department of Paraclinical Sciences, Ås, Norway
| | - Kristin Forfang
- Norwegian Institute of Bioeconomy Research, Division of Environment and Natural Resources, Ås, Norway
| | - Yngvild Wasteson
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine Department of Paraclinical Sciences, Ås, Norway
| | - Anita Haug Haaland
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine Department of Companion Animal Clinical Sciences, Ås, Norway
| | - Hans Geir Eiken
- Norwegian Institute of Bioeconomy Research, Division of Environment and Natural Resources, Ås, Norway
| | - Snorre B Hagen
- Norwegian Institute of Bioeconomy Research, Division of Environment and Natural Resources, Ås, Norway
| | - Ane Mohn Bjelland
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine Department of Paraclinical Sciences, Ås, Norway
| |
Collapse
|
9
|
Tolosi R, Carraro L, Laconi A, Piccirillo A. Optimization of five qPCR protocols toward the detection and the quantification of antimicrobial resistance genes in environmental samples. MethodsX 2021; 8:101488. [PMID: 34754761 PMCID: PMC8563462 DOI: 10.1016/j.mex.2021.101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/11/2021] [Indexed: 11/10/2022] Open
Abstract
Here, we describe the optimization and validation of five quantitative PCR (qPCR) assays by employing the SYBRGreen chemistry paired with melting curve analysis to detect and quantify clinically relevant antimicrobial resistance genes (ARGs) (i.e. ermB, blaCTXM1-like, blaCMY-2, qnrA and qnrS) from environmental samples (i.e. soil and manure). These five protocols accurately detected and quantified the aforementioned ARGs in complex environmental matrices and represent useful tools for both diagnostic and monitoring activities of resistant bacteria and ARGs into the environment.
Collapse
Affiliation(s)
- Roberta Tolosi
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, Padua 35020, Italy
| | - Lisa Carraro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, Padua 35020, Italy
| | - Andrea Laconi
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, Padua 35020, Italy
| | - Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, Padua 35020, Italy
| |
Collapse
|
10
|
Sobrino OJ, Alba C, Arroyo R, Pérez I, Sariego L, Delgado S, Fernández L, de María J, Fumanal P, Fumanal A, Rodríguez JM. Replacement of Metaphylactic Antimicrobial Therapy by Oral Administration of Ligilactobacillus salivarius MP100 in a Pig Farm. Front Vet Sci 2021; 8:666887. [PMID: 34136556 PMCID: PMC8200559 DOI: 10.3389/fvets.2021.666887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/06/2021] [Indexed: 01/04/2023] Open
Abstract
Antibiotic use in swine production contributes to the emergence and spread of resistant bacteria, which poses a threat on human health. Therefore, alternative approaches must be developed. The objective of this work was the characterization of the probiotic properties of a Ligilactobacillus salivarius strain isolated from sow's milk and its application as an inoculated fermented feed to pregnant sows and piglets. The study was carried in a farm in which metaphylactic use of antimicrobials (including zinc oxide) was eliminated at the time of starting the probiotic intervention, which lasted for 2 years. Feces from 8-week-old piglets were collected before and after the treatment and microbiological and biochemical analyses were performed. The procedure led to an increase in the concentrations of clostridia and lactobacilli-related bacteria. Parallel, an increase in the concentration of butyrate, propionate and acetate was observed and a notable reduction in the presence of antibiotic resistant lactobacilli became apparent. In conclusion, replacement of antimicrobials by a microbiota-friendly approach was feasible and led to positive microbiological and biochemical changes in the enteric environment.
Collapse
Affiliation(s)
- Odón J. Sobrino
- Scientific Society of Veterinary Public and Community Health (SOCIVESC), Madrid, Spain
| | - Claudio Alba
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Rebeca Arroyo
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Inés Pérez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Lydia Sariego
- Department of Microbiology and Biochemistry, Dairy Research Institute of Asturias, Villaviciosa, Spain
| | - Susana Delgado
- Department of Microbiology and Biochemistry, Dairy Research Institute of Asturias, Villaviciosa, Spain
| | - Leónides Fernández
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, Madrid, Spain
| | | | | | | | - Juan M. Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
11
|
Bangsgaard EO, Græsbøll K, Andersen VD, Clasen J, Jasinskytė D, Hansen JE, Folkesson A, Christiansen LE. Mixed effect modeling of tetracycline resistance levels in Danish slaughter pigs. Prev Vet Med 2021; 191:105362. [PMID: 33895502 DOI: 10.1016/j.prevetmed.2021.105362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/10/2021] [Accepted: 04/12/2021] [Indexed: 11/24/2022]
Abstract
Mathematical and statistical modeling can be a very useful tool in understanding and fighting antimicrobial resistance (AMR). Here we present investigations of mixed effect models of varying complexity in order to identify and address possible management factors affecting the tetracycline AMR levels in Danish pig farms. Besides antimicrobial exposure during pigs life cycle, the type of production seems to also have an influence. The results concludes that not only fully integrated farms (CHR integrated) but also farms in a production network with a single ownership (CVR integrated) might have a preventive effect on levels of tetracycline AMR compared to more complex trading patterns.
Collapse
Affiliation(s)
| | - Kaare Græsbøll
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | | | - Julie Clasen
- Department of Bioengineering and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Džiuginta Jasinskytė
- Department of Bioengineering and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Julie Elvekjær Hansen
- Department of Bioengineering and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Anders Folkesson
- Department of Bioengineering and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Lasse Engbo Christiansen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
12
|
The Effect of Antimicrobial Resistance Plasmids Carrying blaCMY-2 on Biofilm Formation by Escherichia coli from the Broiler Production Chain. Microorganisms 2021; 9:microorganisms9010104. [PMID: 33466318 PMCID: PMC7824781 DOI: 10.3390/microorganisms9010104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/05/2022] Open
Abstract
Extended-spectrum cephalosporin-resistant Escherichia coli (ESCR E. coli) with plasmids carrying the blaCMY-2 resistance gene have been isolated from the Norwegian broiler production chain through the Norwegian monitoring program for antimicrobial resistance in animals, food and feed, NORM-VET. The aim of the present study was to investigate the biofilm forming abilities of these strains, and in particular to see whether these might be influenced by the carriage of blaCMY-2 plasmids. The ESCR E. coli from the broiler production chain displayed relatively low biofilm forming abilities in the crystal violet biofilm assay as compared to quinolone-resistant E. coli (QREC) from the same population (mean ± SD = 0.686 ± 0.686 vs. 1.439 ± 0.933, respectively). Acquisition of two different blaCMY-2 plasmids by QREC strains reduced their biofilm production in microtiter plates, but not their biofilm production on Congo Red agar plates. Furthermore, motility was reduced, but not planktonic growth. We hypothesize that genes carried by these plasmids may have caused the observed reduction in biofilm formation, possibly mediated through changes in flagellar expression or function. Furthermore, this may help explain the different biofilm forming abilities observed between ESCR E. coli and QREC. The results also indicate that the risk of biofilm reservoirs of antimicrobial resistant E. coli on in the broiler production is lower for ESCR E. coli than for QREC.
Collapse
|
13
|
Græsbøll K, Larsen I, Clasen J, Birkegård AC, Nielsen JP, Christiansen LE, Olsen JE, Angen Ø, Folkesson A. Effect of tetracycline treatment regimens on antibiotic resistance gene selection over time in nursery pigs. BMC Microbiol 2019; 19:269. [PMID: 31791243 PMCID: PMC6889206 DOI: 10.1186/s12866-019-1619-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022] Open
Abstract
Background The majority of antimicrobials given during the production of pigs are given to nursery pigs. The influence of antimicrobial use on the levels of antimicrobial resistant (AMR) genes is important to quantify to be able to assess the impact of resistance on the food chain and risk to human and animal health. Results This study investigated the response on the levels of nine AMR genes to five different treatment strategies with oxytetracycline, and the dynamics of gene abundance over time by following 1167 pigs from five different farms in Denmark. The results showed no significant difference between treatments and an increase in abundance for the efflux pump encoding tet(A) gene and the genes encoding the ribosomal protection proteins tet(O) and tet(W) tetracycline resistant genes following treatment, while tet(M) showed no response to treatment. However, it was also observed that the levels of tet(O), tet(W), and ermB in some farms would drift more over time compared to a single treatment-course with antibiotic. Conclusion This study underlines the large variation in AMR levels under natural conditions and the need for increased investigation of the complex interactions of antimicrobial treatment and other environmental and managerial practices in swine production on AMR gene abundance.
Collapse
Affiliation(s)
- Kaare Græsbøll
- DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Inge Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julie Clasen
- DTU Vet. Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Jens Peter Nielsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Øystein Angen
- DTU Vet. Technical University of Denmark, Kongens Lyngby, Denmark.,Present address: SSI, Copenhagen, Denmark
| | - Anders Folkesson
- DTU BioEngineering, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
14
|
Mo SS, Urdahl AM, Nesse LL, Slettemeås JS, Ramstad SN, Torp M, Norström M. Occurrence of and risk factors for extended-spectrum cephalosporin-resistant Enterobacteriaceae determined by sampling of all Norwegian broiler flocks during a six month period. PLoS One 2019; 14:e0223074. [PMID: 31557254 PMCID: PMC6762140 DOI: 10.1371/journal.pone.0223074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022] Open
Abstract
All broiler flocks reared and slaughtered in Norway from May-October 2016 (n = 2110) were screened for the presence of extended-spectrum cephalosporin (ESC) -resistant Enterobacteriaceae. Furthermore, we investigated possible risk factors for occurrence of such bacteria in broiler flocks. The odds of a flock being positive for ESC-resistant Enterobacteriaceae increased if the previous flock in the same house was positive, and if the flock was reared during September-October. However, we cannot exclude seasonal fluctuations in occurrence of ESC-resistant Enterobacteriaceae during the months November to April. The overall occurrence of ESC-resistant Enterobacteriaceae was 10.4%, and primarily linked to the presence of blaCMY (82.6%) in positive isolates. We describe the first findings of Escherichia coli with blaCTX-M-1, Klebsiella pneumoniae with both blaCTX-M-15 and blaSHV-12, and K. pneumoniae with blaCMY isolated from Norwegian broiler production. This study gives us a unique overview and estimate of the true occurrence of ESC-resistant Enterobacteriaceae in Norwegian broilers over a six-month period. To the best of our knowledge, this is the most comprehensive study performed on the occurrence of ESC-resistant Enterobacteriaceae in a broiler population.
Collapse
Affiliation(s)
- Solveig Sølverød Mo
- Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
- * E-mail:
| | - Anne Margrete Urdahl
- Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Live Lingaas Nesse
- Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Jannice Schau Slettemeås
- Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Silje Nøstvedt Ramstad
- Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Mona Torp
- Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Madelaine Norström
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
15
|
Slettemeås JS, Sunde M, Ulstad CR, Norström M, Wester AL, Urdahl AM. Occurrence and characterization of quinolone resistant Escherichia coli from Norwegian turkey meat and complete sequence of an IncX1 plasmid encoding qnrS1. PLoS One 2019; 14:e0212936. [PMID: 30856202 PMCID: PMC6411123 DOI: 10.1371/journal.pone.0212936] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/12/2019] [Indexed: 11/19/2022] Open
Abstract
Plasmid-mediated quinolone resistance (PMQR) is frequent among Escherichia coli from various food products and animals in several countries. The objective of this study was to characterize quinolone resistant E. coli (QREC) from Norwegian turkey meat regarding resistance profiles, genetic mechanisms for quinolone resistance, genetic relatedness, and to investigate whether PMQR genes were present. In total, 78 QREC were isolated by a selective method from 156 samples throughout 2013. Isolates were subjected to susceptibility testing, characterization of resistance mechanisms, serotyping, phylotyping and multi-locus variable-tandem repeat analysis (MLVA). All 78 isolates were resistant to ciprofloxacin, while 77 were also resistant to nalidixic acid. The nalidixic acid sensitive isolate had a resistance profile indicating the presence of a PMQR gene. Both PCR and whole genome sequencing confirmed the presence of a 47 304 kb IncX1 plasmid containing the qnrS1 gene. The mechanism conferring quinolone resistance in the remaining isolates was mediated by mutations in the quinolone resistance-determining region of the chromosomal gyrA gene and for most of the isolates also in the parC gene. Molecular typing by MLVA showed a high degree of genetic diversity, although four clusters dominated. Two clusters contained strains belonging to phylogroup D/serogroup O176, the third contained isolates of phylogroup B1/serogroup O19, whereas the fourth contained isolates of phylogroup B1/non-typeable serogroup. Isolates within the latter cluster had MLVA profiles identical to QREC isolated from day-old imported turkey parent animals investigated in a preliminary study at the Norwegian Veterinary Institute. This finding suggests that QREC obtained from turkey may have been introduced via import of breeding animals to Norway. This is the first time the qnrS1 gene is described from E. coli isolated from Norwegian turkey meat. Compared to available qnrS1 carrying plasmids in Genbank, the current IncX1 plasmid showed high degree of similarity to other IncX1 plasmids containing qnrS1 isolated from both Shigella flexneri and E. coli found in different geographical areas and sources. To conclude, this study showed that mutations in gyrA and parC are the main mechanism conferring quinolone resistance in E. coli isolated from Norwegian turkey meat, and that PMQR has not been widely dispersed throughout the E. coli population in Norwegian turkey.
Collapse
Affiliation(s)
- Jannice Schau Slettemeås
- Section of Food Safety and Emerging Health Threats, Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Marianne Sunde
- Section of Food Safety and Emerging Health Threats, Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | | | - Madelaine Norström
- Section of Epidemiology, Department of Analysis and Diagnostics, Norwegian Veterinary Institute, Oslo, Norway
| | - Astrid Louise Wester
- Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway
- Water and Sanitation Unit, Department for Public Health, Environmental and Social Determinants of Human Health, World Health Organization, Genève, Switzerland
| | - Anne Margrete Urdahl
- Section of Food Safety and Emerging Health Threats, Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
16
|
Campos M, Capilla R, Naya F, Futami R, Coque T, Moya A, Fernandez-Lanza V, Cantón R, Sempere JM, Llorens C, Baquero F. Simulating Multilevel Dynamics of Antimicrobial Resistance in a Membrane Computing Model. mBio 2019; 10:e02460-18. [PMID: 30696743 PMCID: PMC6355984 DOI: 10.1128/mbio.02460-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
Membrane computing is a bio-inspired computing paradigm whose devices are the so-called membrane systems or P systems. The P system designed in this work reproduces complex biological landscapes in the computer world. It uses nested "membrane-surrounded entities" able to divide, propagate, and die; to be transferred into other membranes; to exchange informative material according to flexible rules; and to mutate and be selected by external agents. This allows the exploration of hierarchical interactive dynamics resulting from the probabilistic interaction of genes (phenotypes), clones, species, hosts, environments, and antibiotic challenges. Our model facilitates analysis of several aspects of the rules that govern the multilevel evolutionary biology of antibiotic resistance. We examined a number of selected landscapes where we predict the effects of different rates of patient flow from hospital to the community and vice versa, the cross-transmission rates between patients with bacterial propagules of different sizes, the proportion of patients treated with antibiotics, and the antibiotics and dosing found in the opening spaces in the microbiota where resistant phenotypes multiply. We also evaluated the selective strengths of some drugs and the influence of the time 0 resistance composition of the species and bacterial clones in the evolution of resistance phenotypes. In summary, we provide case studies analyzing the hierarchical dynamics of antibiotic resistance using a novel computing model with reciprocity within and between levels of biological organization, a type of approach that may be expanded in the multilevel analysis of complex microbial landscapes.IMPORTANCE The work that we present here represents the culmination of many years of investigation in looking for a suitable methodology to simulate the multihierarchical processes involved in antibiotic resistance. Everything started with our early appreciation of the different independent but embedded biological units that shape the biology, ecology, and evolution of antibiotic-resistant microorganisms. Genes, plasmids carrying these genes, cells hosting plasmids, populations of cells, microbial communities, and host's populations constitute a complex system where changes in one component might influence the other ones. How would it be possible to simulate such a complexity of antibiotic resistance as it occurs in the real world? Can the process be predicted, at least at the local level? A few years ago, and because of their structural resemblance to biological systems, we realized that membrane computing procedures could provide a suitable frame to approach these questions. Our manuscript describes the first application of this modeling methodology to the field of antibiotic resistance and offers a bunch of examples-just a limited number of them in comparison with the possible ones to illustrate its unprecedented explanatory power.
Collapse
Affiliation(s)
- Marcelino Campos
- Department of Microbiology, Ramón y Cajal University Hospital, IRYCIS, Madrid, Spain
- Department of Information Systems and Computation (DSIC), Universitat Politècnica de València, Valencia, Spain
- Network Research Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain
| | | | | | | | - Teresa Coque
- Department of Microbiology, Ramón y Cajal University Hospital, IRYCIS, Madrid, Spain
- Antibiotic Resistance and Bacterial Virulence Unit (HRYC-CSIC), Superior Council of Scientific Research (CSIC), Madrid, Spain
- Network Research Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain
| | - Andrés Moya
- Integrative Systems Biology Institute, University of Valencia and Spanish Research Council (CSIC), Paterna, Valencia, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research in the Valencian Community (FISABIO), Valencia, Spain
| | - Val Fernandez-Lanza
- Department of Microbiology, Ramón y Cajal University Hospital, IRYCIS, Madrid, Spain
- Bioinformatics Support Unit, IRYCIS, Madrid, Spain
| | - Rafael Cantón
- Department of Microbiology, Ramón y Cajal University Hospital, IRYCIS, Madrid, Spain
- Antibiotic Resistance and Bacterial Virulence Unit (HRYC-CSIC), Superior Council of Scientific Research (CSIC), Madrid, Spain
- Network Research Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain
| | - José M Sempere
- Department of Information Systems and Computation (DSIC), Universitat Politècnica de València, Valencia, Spain
| | | | - Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, IRYCIS, Madrid, Spain
- Antibiotic Resistance and Bacterial Virulence Unit (HRYC-CSIC), Superior Council of Scientific Research (CSIC), Madrid, Spain
- Network Research Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain
| |
Collapse
|
17
|
Wang M, Chen SY, Zhang JX, He XX, Xiong WG, Sun YX. Variations of antibiotic resistance profiles in chickens during administration of amoxicillin, chlortetracycline and florfenicol. J Appl Microbiol 2018; 125:1692-1701. [PMID: 30091825 DOI: 10.1111/jam.14065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 01/11/2023]
Abstract
AIM To assess the effect of antibiotics administered in feed on the resistance phenotypes and genotypes of Escherichia coli in the chicken intestine. METHOD AND RESULTS Chickens were administered amoxicillin, chlortetracycline and florfenicol in feed and 203 intestinal E. coli were examined for their susceptibility to 11 antimicrobial agents and for the presence of antibiotic resistance genes (ARG) using PCR. DNA was extracted from chicken stool samples in 15, 20, 30 and 40 day old chickens. We found that while antibiotic resistance rates increased with time, the relative gene abundance of tet(W), tet(A), cmlA, cfr and sul1 decreased. In contrast, the relative abundance of gene blaTEM and mcr-1 increased over the experimental period. Pearson correlation analysis indicated that sul1 was correlated with tet(W) (R = 0·630, P < 0·01) and cmlA was correlated with cfr (R = 0·587, P < 0·01). Interestingly, mcr-1 correlated with tet(W) (R = -0·546, P < 0·05). CONCLUSIONS Administration of different antibiotic reduced the relative abundance of ARG in chickens but did not halt the expansion of antibiotic resistance. SIGNIFICANCE AND IMPACT OF THE STUDY Changing the pattern of antibiotic types used to prevent antibiotic resistance in chickens is not a viable method to prevent the spread of ARG.
Collapse
Affiliation(s)
- M Wang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs (SCAU), South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bactria, South China Agricultural University, Guangzhou, China
| | - S-Y Chen
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs (SCAU), South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bactria, South China Agricultural University, Guangzhou, China
| | - J-X Zhang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs (SCAU), South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bactria, South China Agricultural University, Guangzhou, China
| | - X-X He
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs (SCAU), South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bactria, South China Agricultural University, Guangzhou, China
| | - W-G Xiong
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs (SCAU), South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bactria, South China Agricultural University, Guangzhou, China
| | - Y-X Sun
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs (SCAU), South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bactria, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
What does the fox say? Monitoring antimicrobial resistance in the environment using wild red foxes as an indicator. PLoS One 2018; 13:e0198019. [PMID: 29799852 PMCID: PMC5969755 DOI: 10.1371/journal.pone.0198019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/12/2018] [Indexed: 02/06/2023] Open
Abstract
The objective of this study was to estimate and compare the occurrence of AMR in wild red foxes in relation to human population densities. Samples from wild red foxes (n = 528) included in the Norwegian monitoring programme on antimicrobial resistance in bacteria from food, feed and animals were included. All samples were divided into three different groups based on population density in the municipality where the foxes were hunted. Of the 528 samples included, 108 (20.5%), 328 (62.1%) and 92 (17.4%) originated from areas with low, medium and high population density, respectively. A single faecal swab was collected from each fox. All samples were plated out on a selective medium for Enterobacteriaceae for culturing followed by inclusion and susceptibility testing of one randomly selected Escherichia coli to assess the overall occurrence of AMR in the Gram-negative bacterial population. Furthermore, the samples were subjected to selective screening for detection of E. coli displaying resistance towards extended-spectrum cephalosporins and fluoroquinolones. In addition, a subset of samples (n = 387) were subjected to selective culturing to detect E. coli resistant to carbapenems and colistin, and enterococci resistant to vancomycin. Of these, 98 (25.3%), 200 (51.7%) and 89 (23.0%) originated from areas with low, medium and high population density, respectively. Overall, the occurrence of AMR in indicator E. coli from wild red foxes originating from areas with different human population densities in Norway was low to moderate (8.8%). The total occurrence of AMR was significantly higher; χ2 (1,N = 336) = 6.53, p = 0.01 in areas with high population density compared to areas with medium population density. Similarly, the occurrence of fluoroquinolone resistant E. coli isolated using selective detection methods was low in areas with low population density and more common in areas with medium or high population density. In conclusion, we found indications that occurrence of AMR in wild red foxes in Norway is associated with human population density. Foxes living in urban areas are more likely to be exposed to AMR bacteria and resistance drivers from food waste, garbage, sewage, waste water and consumption of contaminated prey compared to foxes living in remote areas. The homerange of red fox has been shown to be limited thereby the red fox constitutes a good sentinel for monitoring antimicrobial resistance in the environment. Continuous monitoring on the occurrence of AMR in different wild species, ecological niches and geographical areas can facilitate an increased understanding of the environmental burden of AMR in the environment. Such information is needed to further assess the impact for humans, and enables implementation of possible control measures for AMR in humans, animals and the environment in a true “One Health” approach.
Collapse
|
19
|
Abundances of Clinically Relevant Antibiotic Resistance Genes and Bacterial Community Diversity in the Weihe River, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15040708. [PMID: 29642605 PMCID: PMC5923750 DOI: 10.3390/ijerph15040708] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/30/2018] [Accepted: 04/07/2018] [Indexed: 12/17/2022]
Abstract
The spread of antibiotic resistance genes in river systems is an emerging environmental issue due to their potential threat to aquatic ecosystems and public health. In this study, we used droplet digital polymerase chain reaction (ddPCR) to evaluate pollution with clinically relevant antibiotic resistance genes (ARGs) at 13 monitoring sites along the main stream of the Weihe River in China. Six clinically relevant ARGs and a class I integron-integrase (intI1) gene were analyzed using ddPCR, and the bacterial community was evaluated based on the bacterial 16S rRNA V3–V4 regions using MiSeq sequencing. The results indicated Proteobacteria, Actinobacteria, Cyanobacteria, and Bacteroidetes as the dominant phyla in the water samples from the Weihe River. Higher abundances of blaTEM, strB, aadA, and intI1 genes (103 to 105 copies/mL) were detected in the surface water samples compared with the relatively low abundances of strA, mecA, and vanA genes (0–1.94 copies/mL). Eight bacterial genera were identified as possible hosts of the intI1 gene and three ARGs (strA, strB, and aadA) based on network analysis. The results suggested that the bacterial community structure and horizontal gene transfer were associated with the variations in ARGs.
Collapse
|
20
|
Birkegård AC, Halasa T, Græsbøll K, Clasen J, Folkesson A, Toft N. Association between selected antimicrobial resistance genes and antimicrobial exposure in Danish pig farms. Sci Rep 2017; 7:9683. [PMID: 28852034 PMCID: PMC5575052 DOI: 10.1038/s41598-017-10092-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/03/2017] [Indexed: 11/08/2022] Open
Abstract
Bacterial antimicrobial resistance (AMR) in pigs is an important public health concern due to its possible transfer to humans. We aimed at quantifying the relationship between the lifetime exposure of antimicrobials and seven antimicrobial resistance genes in Danish slaughter pig farms. AMR gene levels were quantified by qPCR of total-community DNA in faecal samples obtained from 681 batches of slaughter pigs. The lifetime exposure to antimicrobials was estimated at batch level for the piglet, weaner, and finisher periods individually for the sampled batches. We showed that the effect of antimicrobial exposure on the levels of AMR genes was complex and unique for each individual gene. Several antimicrobial classes had both negative and positive correlations with the AMR genes. From 10-42% of the variation in AMR gene levels could be explained in the final regression models, indicating that antimicrobial exposure is not the only important determinant of the AMR gene levels.
Collapse
Affiliation(s)
- Anna Camilla Birkegård
- Division for Diagnostics & Scientific Advice, National Veterinary Institute, Technical University of Denmark, Kemitorvet Building 204, 2800 Kgs. Lyngby, Denmark.
| | - Tariq Halasa
- Division for Diagnostics & Scientific Advice, National Veterinary Institute, Technical University of Denmark, Kemitorvet Building 204, 2800 Kgs. Lyngby, Denmark
| | - Kaare Græsbøll
- Division for Diagnostics & Scientific Advice, National Veterinary Institute, Technical University of Denmark, Kemitorvet Building 204, 2800 Kgs. Lyngby, Denmark
| | - Julie Clasen
- Division for Diagnostics & Scientific Advice, National Veterinary Institute, Technical University of Denmark, Kemitorvet Building 204, 2800 Kgs. Lyngby, Denmark
| | - Anders Folkesson
- Division for Diagnostics & Scientific Advice, National Veterinary Institute, Technical University of Denmark, Kemitorvet Building 204, 2800 Kgs. Lyngby, Denmark
| | - Nils Toft
- Division for Diagnostics & Scientific Advice, National Veterinary Institute, Technical University of Denmark, Kemitorvet Building 204, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
21
|
Katakweba AAS, Muhairwa AP, Lupindu AM, Damborg P, Rosenkrantz JT, Minga UM, Mtambo MMA, Olsen JE. First Report on a Randomized Investigation of Antimicrobial Resistance in Fecal Indicator Bacteria from Livestock, Poultry, and Humans in Tanzania. Microb Drug Resist 2017; 24:260-268. [PMID: 28759321 DOI: 10.1089/mdr.2016.0297] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study provides an estimate of antimicrobial resistance in intestinal indicator bacteria from humans (n = 97) and food animals (n = 388) in Tanzania. More than 70% of all fecal samples contained tetracycline (TE), sulfamethoxazole (STX), and ampicillin (AMP)-resistant coliforms, while cefotaxime (CTX)-resistant coliforms were observed in 40% of all samples. The average Log10 colony forming units/g of CTX-resistant coliforms in samples from humans were 2.20. Of 390 Escherichia coli tested, 66.4% were resistant to TE, 54.9% to STX, 54.9% to streptomycin, and 36.4% to CTX. Isolates were commonly (65.1%) multiresistant. All CTX-resistant isolates contained blaCTX-M gene type. AMP- and vancomycin-resistant enterococci were rare, and the average concentrations in positive samples were low (log10 0.9 and 0.4, respectively). A low-to-moderate resistance (2.1-15%) was detected in 240 enterococci isolates to the drugs tested, except for rifampicin resistance (75.2% of isolates). The average number of sulII gene copies varied between Log10 5.37 and 5.68 with no significant difference between sample source, while cattle had significantly higher number of tetW genes than humans. These findings, based on randomly obtained samples, will be instrumental in designing antimicrobial resistance (AMR) intervention strategies for Tanzania.
Collapse
Affiliation(s)
- Abdul A S Katakweba
- 1 Department of Public Health, Pest Management Centre, Sokoine University of Agriculture , Morogoro, Tanzania
| | - Amandus P Muhairwa
- 2 Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture , Morogoro, Tanzania
| | - Athumani M Lupindu
- 2 Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture , Morogoro, Tanzania
| | - Peter Damborg
- 3 Department of Veterinary and Animal Sciences, University of Copenhagen , Frederiksberg C, Denmark
| | - Jesper T Rosenkrantz
- 3 Department of Veterinary and Animal Sciences, University of Copenhagen , Frederiksberg C, Denmark
| | - Uswege M Minga
- 4 Provost's Office, Tumaini University Dar es Salaam College (TUDARCo) , Dar es Salaam, Tanzania
| | - Madundo M A Mtambo
- 2 Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture , Morogoro, Tanzania
| | - John E Olsen
- 3 Department of Veterinary and Animal Sciences, University of Copenhagen , Frederiksberg C, Denmark
| |
Collapse
|
22
|
The association between measurements of antimicrobial use and resistance in the faeces microbiota of finisher batches. Epidemiol Infect 2017; 145:2827-2837. [DOI: 10.1017/s0950268817001285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SUMMARYThe objectives were to present three approaches for calculating antimicrobial (AM) use in pigs that take into account the rearing period and rearing site, and to study the association between these measurements and phenotypical resistance and abundance of resistance genes in faeces samples from 10 finisher batches. The AM use was calculated relative to the rearing period of the batches as (i) ‘Finisher Unit Exposure’ at unit level, (ii) ‘Lifetime Exposure’ at batch level and (iii) ‘Herd Exposure’ at herd level. A significant effect on the occurrence of tetracycline resistance measured by cultivation was identified for Lifetime Exposure for the AM class: tetracycline. Furthermore, for Lifetime Exposure for the AM classes: macrolide, broad-spectrum penicillin, sulfonamide and tetracycline use as well as Herd Unit Exposure for the AM classes: aminoglycoside, lincosamide and tetracycline use, a significant effect was observed on the occurrence of genes coding for the AM resistance classes: aminoglycoside, lincosamide, macrolide, β-lactam, sulfonamide and tetracycline. No effect was observed for Finisher Unit Exposure. Overall, the study shows that Lifetime Exposure is an efficient measurement of AM use in finisher batches, and has a significant effect on the occurrence of resistance, measured either by cultivation or metagenomics.
Collapse
|
23
|
Transfer Potential of Plasmids Conferring Extended-Spectrum-Cephalosporin Resistance in Escherichia coli from Poultry. Appl Environ Microbiol 2017; 83:AEM.00654-17. [PMID: 28411217 PMCID: PMC5452821 DOI: 10.1128/aem.00654-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/06/2017] [Indexed: 12/25/2022] Open
Abstract
Escherichia coli strains resistant to extended-spectrum cephalosporins (ESC) are widely distributed in Norwegian broiler production, and the majority harbor transferable IncK or IncI1 plasmids carrying blaCMY-2. Persistent occurrence in broiler farms may occur through the survival of ESC-resistant E. coli strains in the farm environment, or by transfer and maintenance of resistance plasmids within a population of environmental bacteria with high survival abilities. The aim of this study was to determine the transferability of two successful blaCMY-2-carrying plasmids belonging to the incompatibility groups IncK and IncI1 into E. coli and Serratia species recipients. Initially, conjugative plasmid transfer from two E. coli donors to potential recipients was tested in an agar assay. Conjugation was further investigated for selected mating pairs in surface and planktonic assays at temperatures from 12°C to 37°C. Transfer of plasmids was observed on agar, in broth, and in biofilm at temperatures down to 25°C. The IncK plasmid was able to transfer into Serratia marcescens, and transconjugants were able to act as secondary plasmid donors to different E. coli and Serratia species recipients. All transconjugants displayed an AmpC phenotype corresponding to the acquisition of blaCMY-2. In summary, the results indicate that the IncK plasmid may transfer between E. coli and Serratia spp. under conditions relevant for broiler production. IMPORTANCE Certain blaCMY-2-carrying plasmids are successful and disseminated in European broiler production. Traditionally, plasmid transferability has been studied under conditions that are optimal for bacterial growth. Plasmid transfer has previously been reported between E. coli bacteria in biofilms at 37°C and in broth at temperatures ranging from 8 to 37°C. However, intergenus transfer of blaCMY-2-carrying plasmids from E. coli to environmental bacteria in the food-processing chain has not been previously studied. We demonstrate that blaCMY-2-carrying plasmids are capable of conjugative transfer between different poultry-associated bacterial genera under conditions relevant for broiler production. Transfer to Serratia spp. and to hosts with good biofilm-forming abilities and with the potential to act as secondary plasmid donors to new hosts might contribute to the persistence of these resistance plasmids. These results contribute to increased knowledge of factors affecting the persistence of ESC resistance in broiler production and can provide a basis for improvement of routines and preventive measures.
Collapse
|
24
|
Herrero-Fresno A, Ahmed S, Hansen MH, Denwood M, Zachariasen C, Olsen JE. Genotype variation and genetic relationship among Escherichia coli from nursery pigs located in different pens in the same farm. BMC Microbiol 2017; 17:5. [PMID: 28056788 PMCID: PMC5217417 DOI: 10.1186/s12866-016-0912-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 12/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND So far, little is known about the genetic diversity and relatedness among Escherichia coli (E. coli) populations in the gut of swine. Information on this is required to improve modeling studies on antimicrobial resistance aiming to fight its occurrence and development. This work evaluated the genotype variation of E. coli isolated from swine fecal samples at the single pig and pen level, as well as between pens using repetitive extragenic palindromic (REP) PCR fingerprinting and pulsed field gel electrophoresis (PFGE). The genetic diversity of strains collected from media supplemented with ampicillin or tetracycline was also investigated. Besides, the genetic relationship of strains within each pen, between pens, as well as among strains within each group isolated from media with or without antibiotic, was assessed. RESULTS REP-PCR patterns (N = 75) were generated for all the isolates (N = 720). Two profiles (REP_2 and REP_5) dominated, accounting for 23.7 and 23.3% of all isolates, respectively. At the pig and at the pen level, the number of different strains ranged from two to eight, and from 27 to 31, respectively, and multiple isolates from a single pen were found to be identical; however, in some of the pens, additional strains occurred at a lower frequency. E. coli isolates yielding different REP profiles were subjected to PFGE and led to 41 different genotypes which were also compared. CONCLUSIONS Despite the presence of dominant strains, our results suggest a high genetic diversity of E. coli strains exist at the pen level and between pens. Selection with antibiotic seems to not affect the genetic diversity. The dominant REP profiles were the same found in a previous study in Denmark, which highlights that the same predominant strains are circulating in pigs of this country and might represent the archetypal E.coli commensal in pigs.
Collapse
Affiliation(s)
- Ana Herrero-Fresno
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Shahana Ahmed
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Monica Hegstad Hansen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Matthew Denwood
- Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Camilla Zachariasen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - John Elmerdahl Olsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
25
|
Munk P, Andersen VD, de Knegt L, Jensen MS, Knudsen BE, Lukjancenko O, Mordhorst H, Clasen J, Agersø Y, Folkesson A, Pamp SJ, Vigre H, Aarestrup FM. A sampling and metagenomic sequencing-based methodology for monitoring antimicrobial resistance in swine herds. J Antimicrob Chemother 2016; 72:385-392. [PMID: 28115502 DOI: 10.1093/jac/dkw415] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/28/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Reliable methods for monitoring antimicrobial resistance (AMR) in livestock and other reservoirs are essential to understand the trends, transmission and importance of agricultural resistance. Quantification of AMR is mostly done using culture-based techniques, but metagenomic read mapping shows promise for quantitative resistance monitoring. METHODS We evaluated the ability of: (i) MIC determination for Escherichia coli; (ii) cfu counting of E. coli; (iii) cfu counting of aerobic bacteria; and (iv) metagenomic shotgun sequencing to predict expected tetracycline resistance based on known antimicrobial consumption in 10 Danish integrated slaughter pig herds. In addition, we evaluated whether fresh or manure floor samples constitute suitable proxies for intestinal sampling, using cfu counting, qPCR and metagenomic shotgun sequencing. RESULTS Metagenomic read-mapping outperformed cultivation-based techniques in terms of predicting expected tetracycline resistance based on antimicrobial consumption. Our metagenomic approach had sufficient resolution to detect antimicrobial-induced changes to individual resistance gene abundances. Pen floor manure samples were found to represent rectal samples well when analysed using metagenomics, as they contain the same DNA with the exception of a few contaminating taxa that proliferate in the extraintestinal environment. CONCLUSIONS We present a workflow, from sampling to interpretation, showing how resistance monitoring can be carried out in swine herds using a metagenomic approach. We propose metagenomic sequencing should be part of routine livestock resistance monitoring programmes and potentially of integrated One Health monitoring in all reservoirs.
Collapse
Affiliation(s)
- Patrick Munk
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs Lyngby, Denmark
| | - Vibe Dalhoff Andersen
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs Lyngby, Denmark
| | - Leonardo de Knegt
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs Lyngby, Denmark
| | - Marie Stengaard Jensen
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs Lyngby, Denmark
| | - Berith Elkær Knudsen
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs Lyngby, Denmark
| | - Oksana Lukjancenko
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs Lyngby, Denmark
| | - Hanne Mordhorst
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs Lyngby, Denmark
| | - Julie Clasen
- Section for Bacteriology and Pathology, National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870 Frederiksberg C, Denmark
| | - Yvonne Agersø
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs Lyngby, Denmark
| | - Anders Folkesson
- Section for Bacteriology and Pathology, National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870 Frederiksberg C, Denmark
| | - Sünje Johanna Pamp
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs Lyngby, Denmark
| | - Håkan Vigre
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs Lyngby, Denmark
| | - Frank Møller Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
26
|
Risk factors for occurrence of cephalosporin-resistant Escherichia coli in Norwegian broiler flocks. Prev Vet Med 2016; 130:112-8. [DOI: 10.1016/j.prevetmed.2016.06.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/10/2016] [Accepted: 06/19/2016] [Indexed: 01/24/2023]
|
27
|
Clasen J, Mellerup A, Olsen JE, Angen Ø, Folkesson A, Halasa T, Toft N, Birkegård AC. Determining the optimal number of individual samples to pool for quantification of average herd levels of antimicrobial resistance genes in Danish pig herds using high-throughput qPCR. Vet Microbiol 2016; 189:46-51. [DOI: 10.1016/j.vetmic.2016.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 01/17/2023]
|
28
|
Plasmid and Host Strain Characteristics of Escherichia coli Resistant to Extended-Spectrum Cephalosporins in the Norwegian Broiler Production. PLoS One 2016; 11:e0154019. [PMID: 27111852 PMCID: PMC4844124 DOI: 10.1371/journal.pone.0154019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/07/2016] [Indexed: 11/19/2022] Open
Abstract
Escherichia coli resistant to extended-spectrum cephalosporins have been detected in the Norwegian broiler production, despite the fact that antimicrobial agents are rarely used. The genetic mechanism responsible for cephalosporin resistance is mainly attributed to the presence of the blaCMY-2 gene encoding a plasmid-mediated AmpC-beta-lactamase (pAmpC). The aim of this study was to characterize and compare blaCMY-2 containing Escherichia coli isolated from the intestinal flora of broilers and retail chicken meat (fillets) to identify possible successful clones and/or resistance plasmids widespread in the Norwegian broiler production. Methods used included PCR based phylotyping, conjugation experiments, plasmid replicon typing, pulsed-field gel electrophoresis, multiple locus variable-number tandem-repeats analysis and whole genome sequencing. The nucleotide sequence of an IncK plasmid carrying blaCMY-2 was determined. Intestinal isolates displayed a higher degree of genetic diversity than meat isolates. A cluster of genetically related isolates belonging to ST38, phylogroup D, carrying blaCMY-2 containing IncK plasmids was identified. Furthermore, genes encoding plasmid stability systems (relBE/stbDE and pndAC) were identified on the IncK plasmid. Single nucleotide polymorphism (SNP) analysis of a subset of isolates confirmed a close genetic relationship within the two most prevalent STs. The IncK plasmids within these two STs also shared a high degree of similarity. Cephalosporin-resistant E. coli with the same genetic characteristics have been identified in the broiler production in other European countries, and the IncK plasmid characterized in this study showed close homology to a plasmid isolated from retail chicken meat in the Netherlands. The results indicate that both clonal expansion and horizontal transfer of blaCMY-2 containing plasmids contribute to dissemination of cephalosporin resistant E. coli in the broiler production. The presence of plasmid stability systems may explain why the IncK plasmid containing blaCMY-2 is maintained and disseminated in the Norwegian broiler production in absence of selection pressure from the use of antimicrobial agents.
Collapse
|