1
|
Lee SR, Jeong KJ, Mukae M, Lee J, Hong EJ. Exercise promotes peripheral glycolysis in skeletal muscle through miR-204 induction via the HIF-1α pathway. Sci Rep 2025; 15:1487. [PMID: 39789226 PMCID: PMC11718284 DOI: 10.1038/s41598-025-85174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025] Open
Abstract
The mechanisms underlying exercise-induced insulin sensitization are of great interest, as exercise is a clinically critical intervention for diabetic patients. Some microRNAs (miRs) are secreted from skeletal muscle after exercise where they regulate insulin sensitivity, and have potential as diagnostic markers in diabetic patients. miR-204 is well-known for its involvement in development, cancer, and metabolism; however, its role in exercise-induced glycemic control remains unclear. In the present study, endurance exercise in mice increased miR-204 expression levels in skeletal muscle. In a chronic exercise model, miR-204 expression levels were elevated along with glycolytic enzymes in skeletal muscle. When muscular hypoxia was induced after exercise, miR-204 expression also increased with the upregulation of hypoxia-inducible factor 1-alpha (HIF-1α). Furthermore, HIF-1α overexpression led to increased miR-204 expression. Treatment with a miR-204 mimic in C2C12 cells significantly enhanced the glycolysis rate and the mRNA expression of glycolytic enzymes. Notably, intravenous administration of miR-204 in mice increased the glucose clearance rate following refeeding. miR-204 initially elevated blood glucose levels at an early stage of refeeding but later promoted blood glucose reduction as refeeding continued. Additionally, glycolytic enzymes were upregulated in the skeletal muscles of miR-204-injected mice. These findings suggest a novel physiological role for miR-204 in promoting skeletal muscle glycolysis, particularly in situations where insulin action is limited.
Collapse
Affiliation(s)
- Sang R Lee
- Laboratory of Biochemistry, College of Veterinary Medicine, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Korea
| | - Kang Joo Jeong
- Laboratory of Biochemistry, College of Veterinary Medicine, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Korea
| | - Moeka Mukae
- Laboratory of Biochemistry, College of Veterinary Medicine, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Korea
| | - Jinhee Lee
- Laboratory of Biochemistry, College of Veterinary Medicine, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Korea
| | - Eui-Ju Hong
- Laboratory of Biochemistry, College of Veterinary Medicine, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Korea.
| |
Collapse
|
2
|
Gong S, Zhang Y, Pang L, Wang L, He W. A novel CircRNA Circ_0001722 regulates proliferation and invasion of osteosarcoma cells through targeting miR-204-5p/RUNX2 axis. J Cancer Res Clin Oncol 2023; 149:12779-12790. [PMID: 37453970 PMCID: PMC10587032 DOI: 10.1007/s00432-023-05166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Osteosarcoma (OS) is the most prevalent primary fatal bone neoplasm in adolescents and children owing to limited therapeutic methods. Circular RNAs (circRNAs) are identified as vital regulators in a variety of cancers. However, the roles of circRNAs in OS are still unclear. METHODS Firstly, we evaluate the differentially expressed circRNAs in 3 paired OS and corresponding adjacent nontumor tissue samples by circRNA microarray assay, finding a novel circRNA, circ_001722, significantly upregulated in OS tissues and cells. The circular structure of candidate circRNA was confirmed through Sanger sequencing, divergent primer PCR, and RNase R treatments. Proliferation of OS cells was evaluated in vitro and in vivo. The microRNA (miRNA) sponge mechanism of circRNAs was verified by dual-luciferase assay and RNA immunoprecipitation assay. RESULTS A novel circRNA, circ_001722, is significantly upregulated in OS tissues and cells. Downregulation of circ_0001722 can suppress proliferation and invasion of human OS cells in vitro and in vivo. Computational algorithms predict miR-204-5p can bind with circ_0001722 and RUNX2 mRNA 3'UTR, which is verified by Dual-luciferase assay and RNA immunoprecipitation assay. Further functional experiments show that circ_0001722 competitively binds to miR-204-5p and prevents it to decrease the level of RUNX2, which upregulates proliferation and invasion of human OS cells. CONCLUSION Circ_001722 is a novel tumor promotor in OS, and promotes the progression of OS via miR-204-5p/RUNX2 axis.
Collapse
Affiliation(s)
- Shuai Gong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 of Jianshe Road, Er-Qi District, Zhengzhou City, 450052 Henan Province China
| | - Yi Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan Province China
| | - Lina Pang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 of Jianshe Road, Er-Qi District, Zhengzhou City, 450052 Henan Province China
| | - Liye Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 of Jianshe Road, Er-Qi District, Zhengzhou City, 450052 Henan Province China
| | - Wei He
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 of Jianshe Road, Er-Qi District, Zhengzhou City, 450052 Henan Province China
| |
Collapse
|
3
|
Wu JH, Cheng TC, Zhu B, Gao HY, Zheng L, Chen WX. Identification of cuproptosis-related gene SLC31A1 and upstream LncRNA-miRNA regulatory axis in breast cancer. Sci Rep 2023; 13:18390. [PMID: 37884650 PMCID: PMC10603161 DOI: 10.1038/s41598-023-45761-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023] Open
Abstract
Mounting evidence indicate that cuproptosis, a novel form of programmed cell death, contributes to cancer development and progression. However, a comprehensive analysis regarding the expressions, functions, and regulatory network of cuproptosis-related genes is still lacking. In the present work, cuproptosis-related genes, upstream miRNAs and lncRNAs, and clinical data of breast cancer from TCGA database were analyzed by R language including Cox regression analysis, correlation calculation, ROC curve construction, and survival evaluation, and were further verified by public-available databases. Chemosensitivity and immune infiltration were also evaluated by online tools. SLC31A1 was significantly increased in breast cancer samples than those in normal tissues. SLC31A1 was negatively related to a favorable outcome in breast cancer, and the AUC value increased with the prolongation of follow-up time. LINC01614 and miR-204-5p were potential upstream regulators of SLC31A1. Moreover, SLC31A1 was significantly positively correlated with different immune cells infiltration, immune cell biomarkers, and immune checkpoints in breast cancer. SLC31A1 was a potential cuproptosis-related gene in breast cancer, which was significantly upregulated and was able to predict diagnosis, prognosis, chemosensitivity, and immune infiltration. LINC01640/miR-204-5p/SLC31A1 might be a significant and promising axis during cuproptosis in breast cancer.
Collapse
Affiliation(s)
- Jia-Hao Wu
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China
- Graduate School, Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Tian-Cheng Cheng
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China
- Graduate School, Bengbu Medical College, Bengbu, 233000, Anhui Province, China
| | - Bei Zhu
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China
| | - Hai-Yan Gao
- Department of Breast Surgery, The Affiliated Changzhou Tumor Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, China
| | - Lin Zheng
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China
| | - Wei-Xian Chen
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China.
- Post-doctoral Working Station, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu Province, China.
| |
Collapse
|
4
|
Nag S, Bhattacharya B, Dutta S, Mandal D, Mukherjee S, Anand K, Eswaramoorthy R, Thorat N, Jha SK, Gorai S. Clinical Theranostics Trademark of Exosome in Glioblastoma Metastasis. ACS Biomater Sci Eng 2023; 9:5205-5221. [PMID: 37578350 DOI: 10.1021/acsbiomaterials.3c00212] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Glioblastoma (GBM) is an aggressive type of cancer that has led to the death of a large population. The traditional approach fails to develop a solution for GBM's suffering life. Extensive research into tumor microenvironments (TME) indicates that TME extracellular vesicles (EVs) play a vital role in cancer development and progression. EVs are classified into microvacuoles, apoptotic bodies, and exosomes. Exosomes are the most highlighted domains in cancer research. GBM cell-derived exosomes participate in multiple cancer progression events such as immune suppression, angiogenesis, premetastatic niche formation (PMN), ECM (extracellular matrix), EMT (epithelial-to-mesenchymal transition), metastasis, cancer stem cell development and therapeutic and drug resistance. GBM exosomes also carry the signature of a glioblastoma-related status. The exosome-based GBM examination is part of the new generation of liquid biopsy. It also solved early diagnostic limitations in GBM. Traditional therapeutic approaches do not cross the blood-brain barrier (BBB). Exosomes are a game changer in GBM treatment and it is emerging as a potential platform for effective, efficient, and specific therapeutic development. In this review, we have explored the exosome-GBM interlink, the clinical impact of exosomes on GBM biomarkers, the therapeutics signature of exosomes in GBM, exosome-based research challenges, and future directions in GBM. Therefore, the GBM-derived exosomes offer unique therapeutic opportunities, which are currently under preclinical and clinical testing.
Collapse
Affiliation(s)
- Sagnik Nag
- Department of Biosciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Bikramjit Bhattacharya
- Department of Applied Microbiology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Swagata Dutta
- Department of Agricultural and food Engineering, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Debashmita Mandal
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology (MAKAUT), Haringhata, Nadia, West Bengal 741249, India
| | - Sayantanee Mukherjee
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Rajalakshmanan Eswaramoorthy
- Department of Biomaterials, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha institute of Medical and Technical sciences (SIMATS) Chennai 600077, India
| | - Nanasaheb Thorat
- Limerick Digital Cancer Research Centre and Department of Physics, Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Limerick V94T9PX, Ireland
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Knowledge Park-III, Institutional Area, Greater Noida 201310, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Sukhamoy Gorai
- Rush University Medical Center, 1620 W Harrison Street, Chicago, Illinois 60612, United States
| |
Collapse
|
5
|
Kciuk M, Yahya EB, Mohamed MMI, Abdulsamad MA, Allaq AA, Gielecińska A, Kontek R. Insights into the Role of LncRNAs and miRNAs in Glioma Progression and Their Potential as Novel Therapeutic Targets. Cancers (Basel) 2023; 15:3298. [PMID: 37444408 DOI: 10.3390/cancers15133298] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Accumulating evidence supports that both long non-coding and micro RNAs (lncRNAs and miRNAs) are implicated in glioma tumorigenesis and progression. Poor outcome of gliomas has been linked to late-stage diagnosis and mostly ineffectiveness of conventional treatment due to low knowledge about the early stage of gliomas, which are not possible to observe with conventional diagnostic approaches. The past few years witnessed a revolutionary advance in biotechnology and neuroscience with the understanding of tumor-related molecules, including non-coding RNAs that are involved in the angiogenesis and progression of glioma cells and thus are used as prognostic biomarkers as well as novel therapeutic targets. The emerging research on lncRNAs and miRNAs highlights their crucial role in glioma progression, offering new insights into the disease. These non-coding RNAs hold significant potential as novel therapeutic targets, paving the way for innovative treatment approaches against glioma. This review encompasses a comprehensive discussion about the role of lncRNAs and miRNAs in gene regulation that is responsible for the promotion or the inhibition of glioma progression and collects the existing links between these key cancer-related molecules.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Muhanad A Abdulsamad
- Department of Molecular Biology, Faculty of Science, Sabratha University, Sabratha 00218, Libya
| | - Abdulmutalib A Allaq
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| |
Collapse
|
6
|
Shi CS, Hu Q, Fang SL, Sun CX, Shao DH. MicroRNA-204-5p Ameliorates Neurological Injury via the EphA4/PI3K/AKT Signaling Pathway in Ischemic Stroke. ACS Chem Neurosci 2023. [PMID: 37196241 DOI: 10.1021/acschemneuro.3c00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] Open
Abstract
Ischemic stroke has extremely high mortality and disability rates worldwide. miR-204-5p has been reported to be associated with neurological diseases. However, the relationship linking miR-204-5p to ischemic stroke and its molecular mechanism remain unclear. Herein, we found that expression of miR-204-5p was significantly decreased while EphA4 increased in vivo and vitro, which reached the peak at 24 h after cerebral ischemia/reperfusion. Then, we altered miR-204-5p expression in rats by cerebroventricular injection. Our study showed that miR-204-5p overexpression obviously reduced the brain infarction area and neurological score. We successfully cultured neurons to investigate the downstream mechanism. Upregulation of miR-204-5p increased cell viability and suppressed the release of LDH. Moreover, the proportion of apoptotic cells tested by TUNEL and flow cytometry and protein expression of Cleaved Caspase3 and Bax were inhibited. The relative expression of IL-6, TNF-α, and IL-1β was repressed. In contrary, knockdown of miR-204-5p showed the opposite results. Bioinformatics and a dual luciferase assay illustrated that EphA4 was a target gene. Further research studies demonstrated that the neuroprotective effects of miR-204-5p could be partially mitigated by upregulating EphA4. Next, we proved that the miR-204-5p/EphA4 axis furtherly activated the PI3K/AKT pathway. We thoroughly illustrated the role of neuroinflammation and apoptosis. However, whether there are other mechanisms associated with the EphA4/PI3K/AKT pathway needs further investigation. Altogether, the miR-204-5p axis ameliorates neurological injury via the EphA4/PI3K/AKT pathway, which is expected to serve as an effective treatment for ischemic stroke.
Collapse
Affiliation(s)
- Chang-Sheng Shi
- Department of Anesthesiology, The Affiliated People's Hospital of Jiangsu University, No.8 Dian Li Road, Zhenjiang, Jiangsu 212000, China
- Department of Medicine, The University of Jiangsu, No.301 Xue Fu Road, Zhenjiang, Jiangsu 212000, China
| | - Qi Hu
- Department of Anesthesiology, The Affiliated People's Hospital of Jiangsu University, No.8 Dian Li Road, Zhenjiang, Jiangsu 212000, China
| | - Shi-Lei Fang
- Department of Anesthesiology, The Affiliated People's Hospital of Jiangsu University, No.8 Dian Li Road, Zhenjiang, Jiangsu 212000, China
| | - Cai-Xia Sun
- Department of Anesthesiology, The Affiliated People's Hospital of Jiangsu University, No.8 Dian Li Road, Zhenjiang, Jiangsu 212000, China
| | - Dong-Hua Shao
- Department of Anesthesiology, The Affiliated People's Hospital of Jiangsu University, No.8 Dian Li Road, Zhenjiang, Jiangsu 212000, China
| |
Collapse
|
7
|
Li H, Ma L, Luo F, Liu W, Li N, Hu T, Zhong H, Guo Y, Hong G. Construct of qualitative diagnostic biomarkers specific for glioma by pairing serum microRNAs. BMC Genomics 2023; 24:96. [PMID: 36864382 PMCID: PMC9983174 DOI: 10.1186/s12864-023-09203-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Serum microRNAs (miRNAs) are promising non-invasive biomarkers for diagnosing glioma. However, most reported predictive models are constructed without a large enough sample size, and quantitative expression levels of their constituent serum miRNAs are susceptible to batch effects, decreasing their clinical applicability. METHODS We propose a general method for detecting qualitative serum predictive biomarkers using a large cohort of miRNA-profiled serum samples (n = 15,460) based on the within-sample relative expression orderings of miRNAs. RESULTS Two panels of miRNA pairs (miRPairs) were developed. The first was composed of five serum miRPairs (5-miRPairs), reaching 100% diagnostic accuracy in three validation sets for distinguishing glioma and non-cancer controls (n = 436: glioma = 236, non-cancers = 200). An additional validation set without glioma samples (non-cancers = 2611) showed a predictive accuracy of 95.9%. The second panel included 32 serum miRPairs (32-miRPairs), reaching 100% diagnostic performance in training set on specifically discriminating glioma from other cancer types (sensitivity = 100%, specificity = 100%, accuracy = 100%), which was reproducible in five validation datasets (n = 3387: glioma = 236, non-glioma cancers = 3151, sensitivity> 97.9%, specificity> 99.5%, accuracy> 95.7%). In other brain diseases, the 5-miRPairs classified all non-neoplastic samples as non-cancer, including stroke (n = 165), Alzheimer's disease (n = 973), and healthy samples (n = 1820), and all neoplastic samples as cancer, including meningioma (n = 16), and primary central nervous system lymphoma samples (n = 39). The 32-miRPairs predicted 82.2 and 92.3% of the two kinds of neoplastic samples as positive, respectively. Based on the Human miRNA tissue atlas database, the glioma-specific 32-miRPairs were significantly enriched in the spinal cord (p = 0.013) and brain (p = 0.015). CONCLUSIONS The identified 5-miRPairs and 32-miRPairs provide potential population screening and cancer-specific biomarkers for glioma clinical practice.
Collapse
Affiliation(s)
- Hongdong Li
- grid.440714.20000 0004 1797 9454School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000 China
| | - Liyuan Ma
- grid.440714.20000 0004 1797 9454School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000 China
| | - Fengyuan Luo
- grid.440714.20000 0004 1797 9454School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000 China
| | - Wenkai Liu
- grid.440714.20000 0004 1797 9454School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000 China
| | - Na Li
- grid.440714.20000 0004 1797 9454School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000 China
| | - Tao Hu
- grid.440714.20000 0004 1797 9454School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000 China
| | - Haijian Zhong
- grid.440714.20000 0004 1797 9454School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000 China
| | - You Guo
- Medical Big Data and Bioinformatics Research Centre at First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| | - Guini Hong
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
8
|
Yang F, Bian Z, Xu P, Sun S, Huang Z. MicroRNA-204-5p: A pivotal tumor suppressor. Cancer Med 2023; 12:3185-3200. [PMID: 35908280 PMCID: PMC9939231 DOI: 10.1002/cam4.5077] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/08/2022] [Accepted: 07/03/2022] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding single-stranded RNA molecules with a length of approximately 18-25 nt nucleotides that regulate gene expression post-transcriptionally. MiR-204-5p originates from the sixth intron of the transient receptor potential cation channel subfamily M member 3 (TRPM3) gene. MiR-204-5p is frequently downregulated in various cancer types and is related to the clinicopathological characteristics and prognosis of cancer patients. So far, many studies have determined that miR-204-5p functions as a tumor suppressor for its extensive and powerful capacity to inhibit tumor proliferation, metastasis, autophagy, and chemoresistance in multiple cancer types. MiR-204-5p appears to be a promising prognostic biomarker and a therapeutic target for human cancers. This review summarized the latest advances on the role of miR-204-5p in human cancers.
Collapse
Affiliation(s)
- Fan Yang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Zehua Bian
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Peiwen Xu
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Shengbai Sun
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Zhaohui Huang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| |
Collapse
|
9
|
Hu Q, Xu L, Yi Q, Yuan J, Wu G, Wang Y. miR-204 suppresses uveal melanoma cell migration and invasion through negative regulation of RAB22A. Funct Integr Genomics 2023; 23:49. [PMID: 36705739 DOI: 10.1007/s10142-022-00953-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/28/2023]
Abstract
Uveal melanoma (UM), a frequently seen adulthood primary ocular malignancy, shows high aggressiveness. Accumulating studies have revealed the crucial effects of microRNAs (miRNAs) on tumorigenesis and development in various human tumors. miR-204, the cancer-associated miRNA, shows dysregulation and is related to several human malignancies, but its effect on UM remains unknown. The present work focused on exploring miR-204's effect on UM and elucidating its possible molecular mechanisms. According to our results, miR-204 expression markedly increased within both UM tissues and cell lines. As revealed by functional analysis, miR-204 suppressed UM cell invasion and migration. Besides, RAB22A expression decreased through directly binding miR-204 into the corresponding 3' untranslated region (3'UTR) in UM cells. Furthermore, the RAB22A mRNA level increased, which was negatively related to the miR-204 level within UM samples. As revealed by mechanical research, miR-204 exerted its inhibition on the invasion and migration of UM cells via RAB22A. Taken together, this study suggested the tumor-suppressing effect of miR-204 on UM through down-regulating RAB22A. Thus, miR-204 may serve as the new anti-UM therapeutic target.
Collapse
Affiliation(s)
- Qidi Hu
- Department of Ophthalmology, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, No. 599 Beimingcheng Road, Ningbo, 315040, China
| | - Lingli Xu
- Department of Ophthalmology, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, No. 599 Beimingcheng Road, Ningbo, 315040, China
| | - Quanyong Yi
- Department of Ophthalmology, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, No. 599 Beimingcheng Road, Ningbo, 315040, China
| | - Jianshu Yuan
- Department of Ophthalmology, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, No. 599 Beimingcheng Road, Ningbo, 315040, China
| | - Guohai Wu
- Department of Ophthalmology, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, No. 599 Beimingcheng Road, Ningbo, 315040, China
| | - Yuwen Wang
- Department of Ophthalmology, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, No. 599 Beimingcheng Road, Ningbo, 315040, China.
| |
Collapse
|
10
|
Zhou L, Ma J. MIR99AHG/miR-204-5p/TXNIP/Nrf2/ARE Signaling Pathway Decreases Glioblastoma Temozolomide Sensitivity. Neurotox Res 2022; 40:1152-1162. [PMID: 35904670 DOI: 10.1007/s12640-022-00536-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 10/16/2022]
Abstract
Glioblastoma (GBM) is the most prevalent primary cerebral tumor in adults with high aggressiveness. Temozolomide (TMZ) is considered as the most widely used chemotherapy for GBM patients. Accumulating studies have proved that long non-coding RNAs (lncRNAs) participate in the pathogenesis of tumors. The aim of our study is to disclose the role of mir-99a-let-7c cluster host gene (MIR99AHG) in GBM. MIR99AHG expression was discovered to be elevated in GBM cells through quantitative real-time polymerase chain reaction (RT-qPCR) analysis. Loss-of-function experiments demonstrated that MIR99AHG silencing enhanced TMZ sensitivity of GBM both in vitro and in vivo. RNA pull down, RNA-binding protein immunoprecipitation (RIP), and luciferase reporter assays were implemented to unveil the underlying mechanism of MIR99AHG in GBM. The results of the mechanism assays implied that MIR99AHG interacted with microRNA-204-5p (miR-204-5p) and enhanced thioredoxin interacting protein (TXNIP) expression to inactivate the Nrf2/ARE signaling pathway. MIR99AHG/miR-204-5p/TXNIP regulatory axis was verified by rescue experiments in GBM. To summarize, MIR99AHG plays a promoting role in the TMZ resistance of GBM cells. The findings in this study might provide novel sight for the treatment for GBM.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Neurosurgery, Shanghai Fifth People's Hospital, Fudan University, No.801, Heqing Road, Minhang District, Shanghai, 200240, China
| | - Junfeng Ma
- Department of Neurosurgery, Shanghai Fifth People's Hospital, Fudan University, No.801, Heqing Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
11
|
Gierlikowski W, Gierlikowska B. MicroRNAs as Regulators of Phagocytosis. Cells 2022; 11:cells11091380. [PMID: 35563685 PMCID: PMC9106007 DOI: 10.3390/cells11091380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 12/10/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression and thus act as important regulators of cellular phenotype and function. As their expression may be dysregulated in numerous diseases, they are of interest as biomarkers. What is more, attempts of modulation of some microRNAs for therapeutic reasons have been undertaken. In this review, we discuss the current knowledge regarding the influence of microRNAs on phagocytosis, which may be exerted on different levels, such as through macrophages polarization, phagosome maturation, reactive oxygen species production and cytokines synthesis. This phenomenon plays an important role in numerous pathological conditions.
Collapse
Affiliation(s)
- Wojciech Gierlikowski
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
- Correspondence:
| | - Barbara Gierlikowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Żwirki i Wigury 63a, 02-091 Warsaw, Poland;
| |
Collapse
|
12
|
Mousavi SM, Derakhshan M, Baharloii F, Dashti F, Mirazimi SMA, Mahjoubin-Tehran M, Hosseindoost S, Goleij P, Rahimian N, Hamblin MR, Mirzaei H. Non-coding RNAs and glioblastoma: Insight into their roles in metastasis. Mol Ther Oncolytics 2022; 24:262-287. [PMID: 35071748 PMCID: PMC8762369 DOI: 10.1016/j.omto.2021.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glioma, also known as glioblastoma multiforme (GBM), is the most prevalent and most lethal primary brain tumor in adults. Gliomas are highly invasive tumors with the highest death rate among all primary brain malignancies. Metastasis occurs as the tumor cells spread from the site of origin to another site in the brain. Metastasis is a multifactorial process, which depends on alterations in metabolism, genetic mutations, and the cancer microenvironment. During recent years, the scientific study of non-coding RNAs (ncRNAs) has led to new insight into the molecular mechanisms involved in glioma. Many studies have reported that ncRNAs play major roles in many biological procedures connected with the development and progression of glioma. Long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are all types of ncRNAs, which are commonly dysregulated in GBM. Dysregulation of ncRNAs can facilitate the invasion and metastasis of glioma. The present review highlights some ncRNAs that have been associated with metastasis in GBM. miRNAs, circRNAs, and lncRNAs are discussed in detail with respect to their relevant signaling pathways involved in metastasis.
Collapse
Affiliation(s)
- Seyed Mojtaba Mousavi
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatereh Baharloii
- Department of Cardiology, Chamran Cardiovascular Research Education Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saereh Hosseindoost
- Brain and Spinal Cord Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
13
|
Jiang H, Ge R, Chen S, Huang L, Mao J, Sheng L. miRNA-204-5p acts as tumor suppressor to influence the invasion and migration of astrocytoma by targeting ezrin and is downregulated by DNA methylation. Bioengineered 2021; 12:9301-9312. [PMID: 34723710 PMCID: PMC8809991 DOI: 10.1080/21655979.2021.2000244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
microRNAs (miRNAs), through their regulation of the expression and activity of numerous proteins, are involved in almost all cellular processes. As a consequence, dysregulation of miRNA expression is closely associated with the development and progression of cancers. Recently, DNA methylation has been shown to play a key role in miRNA expression dysregulation in tumors. miRNA-204-5p commonly acts in the suppression of oncogenes in tumors. In this study, the levels of miRNA-204-5p were found to be down-regulated in the astrocytoma samples. miRNA-204-5p expression was also down-regulated in two astrocytoma cell lines (U87MG and LN382). Examination of online databases showed that the miRNA-204-5p promoter regions exist in CpG islands, which might be subjected to differential methylation. Subsequently, we showed that the miRNA-204-5p promoter region was hypermethylated in the astrocytoma tissue samples and cell lines. Then we found that ezrin expression was down-regulated with an increase in miRNA-204-5p expression in LN382 and U87MG cells after 5-aza-2'-deoxycytidine (5'AZA) treatment compared with control DMSO treatment. In addition, LN382 and U87MG cells treated with 5'AZA exhibited significantly inhibited cell invasion and migration . In a recovery experiment, cell invasion and migration returned to normal levels as miRNA-204-5p and ezrin levels were restored. Overall, our study suggests that miRNA-204-5p acts as a tumor suppressor to influence astrocytoma invasion and migration by targeting ezrin and that miRNA-204-5p expression is downregulated by DNA methylation. This study provides a new potential strategy for astrocytoma treatment.
Collapse
Affiliation(s)
- Haibo Jiang
- Department of Emergency Intensive Care Unit, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu City, China
| | - Ruixiang Ge
- Department of Neurosurgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu City, China
| | - Siwen Chen
- Department of Reproductive Medicine, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu City, China
| | - Laiquan Huang
- Department of Hematology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu City, China
| | - Jie Mao
- Department of Neurosurgery, Shenzhen Hospital of Southern Medical University, Shenzhen City, China
| | - Lili Sheng
- Department of Oncology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu City, China
| |
Collapse
|
14
|
Liu Q, Lei C. LINC01232 serves as a novel biomarker and promotes tumour progression by sponging miR-204-5p and upregulating RAB22A in clear cell renal cell carcinoma. Ann Med 2021; 53:2153-2164. [PMID: 34783622 PMCID: PMC8604453 DOI: 10.1080/07853890.2021.2001563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are involved in the progression of various cancers, including clear cell renal cell carcinoma (ccRCC). This study aimed to investigate the expression and prognostic value of long intergenic non-protein coding RNA (LINC) 01232 in ccRCC and preliminary explore the molecular mechanism underlying the role of LINC01232 in ccRCC progression. METHODS Tumour tissues and adjacent normal tissues of 122 patients with ccRCC were collected in this study. The levels of LINC01232, microRNA (miR)-204-5p and RAB22A were measured by quantitative real-time PCR. The proliferation, migration and invasion of ccRCC cells were detected by cell counting kit-8 assay and Transwell assay, respectively. The interaction among LINC01232, miR-204-5p and RAB22A was confirmed by bioinformatics analysis, dual-luciferase reporter assay and Pearson correlation analysis. The association of LINC01232 and miR-204-5p with ccRCC patient survival was verified by the Kaplan-Meier method and log-rank test. The prognostic value of LINC01232 in ccRCC was confirmed by Cox regression analysis. RESULTS LINC01232 expression was increased in ccRCC tumour tissues and ccRCC cells and independently predicted the prognosis of ccRCC patients. In addition, LINC01232 silencing inhibited ccRCC cell proliferation, migration and invasion. Moreover, LINC01232 served as a sponge for miR-204-5p, and miR-204-5p reduction reversed the inhibitory effect of LINC01232 silencing on ccRCC cell function. Furthermore, LINC01232 could sponge miR-204-5p, causing the elevation of RAB22A in ccRCC, thereby promoting ccRCC cell function. CONCLUSION LINC01232 may be an independent prognostic biomarker in ccRCC and plays an oncogenic role in ccRCC progression by sponging miR-204-5p and upregulating RAB22A.
Collapse
Affiliation(s)
- Qingling Liu
- Department of Clinical Laboratory, Zibo Maternal and Child Health Hospital, Shandong, China
| | - Chengbin Lei
- Department of Clinical Laboratory, Zibo Central Hospital, Shandong, China
| |
Collapse
|
15
|
Fu Z, Wang L, Li S, Chen F, Au-Yeung KKW, Shi C. MicroRNA as an Important Target for Anticancer Drug Development. Front Pharmacol 2021; 12:736323. [PMID: 34512363 PMCID: PMC8425594 DOI: 10.3389/fphar.2021.736323] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer has become the second greatest cause of death worldwide. Although there are several different classes of anticancer drugs that are available in clinic, some tough issues like side-effects and low efficacy still need to dissolve. Therefore, there remains an urgent need to discover and develop more effective anticancer drugs. MicroRNAs (miRNAs) are a class of small endogenous non-coding RNAs that regulate gene expression by inhibiting mRNA translation or reducing the stability of mRNA. An abnormal miRNA expression profile was found to exist widely in cancer cell, which induces limitless replicative potential and evading apoptosis. MiRNAs function as oncogenes (oncomiRs) or tumor suppressors during tumor development and progression. It was shown that regulation of specific miRNA alterations using miRNA mimics or antagomirs can normalize the gene regulatory network and signaling pathways, and reverse the phenotypes in cancer cells. The miRNA hence provides an attractive target for anticancer drug development. In this review, we will summarize the latest publications on the role of miRNA in anticancer therapeutics and briefly describe the relationship between abnormal miRNAs and tumorigenesis. The potential of miRNA-based therapeutics for anticancer treatment has been critically discussed. And the current strategies in designing miRNA targeting therapeutics are described in detail. Finally, the current challenges and future perspectives of miRNA-based therapy are conferred.
Collapse
Affiliation(s)
- Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Liu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Shijun Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Fen Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | | | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| |
Collapse
|
16
|
Mahmoud MM, Sanad EF, Hamdy NM. MicroRNAs' role in the environment-related non-communicable diseases and link to multidrug resistance, regulation, or alteration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36984-37000. [PMID: 34046834 DOI: 10.1007/s11356-021-14550-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 05/28/2023]
Abstract
The discovery of microRNAs (miRNAs) 20 years ago has advocated a new era of "small molecular genetics." About 2000 miRNAs are present that regulate one third of the genome. MiRNA dysregulated expression arising as a response to our environment insult or stress or changes may contribute to several diseases, namely non-communicable diseases, including tumor growth. Their presence in body fluids, reflecting level alteration in various cancers, merit circulating miRNAs as the "next-generation biomarkers" for early-stage tumor diagnosis and/or prognosis. Herein, we performed a comprehensive literature search focusing on the origin, biosynthesis, and role of miRNAs and summarized the foremost studies centering on miR value as non-invasive biomarkers in different environment-related non-communicable diseases, including various cancer types. Moreover, during chemotherapy, many miRNAs were linked to multidrug resistance, via modulating numerous, environment triggered or not, biological processes and/or pathways that will be highlighted as well.
Collapse
Affiliation(s)
- Marwa M Mahmoud
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Eman F Sanad
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt.
| |
Collapse
|
17
|
Wang X, Yuan T, Yin N, Ma X, Yang Y, Yang J, Shaukat A, Deng G. Interferon-τ regulates the expression and function of bovine leukocyte antigen by downregulating bta-miR-204. Exp Ther Med 2021; 21:594. [PMID: 33884032 PMCID: PMC8056107 DOI: 10.3892/etm.2021.10026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
IFN-τ is a pregnancy recognition factor that regulates embryo implantation in ruminants. IFN-τ has been suggested to be involved in the expression of microRNA (miRNA/miR) and bovine leukocyte antigen (BoLA), which is an analog of the human major histocompatibility complex class I. However, little is known about whether the miRNAs are involved in the expression of BoLA in ruminants. The present study firstly verified that bta-miR-204 was downregulated and that BoLA was upregulated in the uterine tissues of dairy cows during early pregnancy. Subsequently, luciferase reporter assays, reverse transcription-quantitative PCR and western blot analysis were used to validate BoLA as the target gene of bta-miR-204. Moreover, BoLA was markedly upregulated and bta-miR-204 was downregulated in bovine endometrial epithelial cells (bEECs) treated with IFN-τ. In addition, the results indicated that when the expression level of BoLA was increased by IFN-τ, the expression level of programmed death-ligand 1 (PD-L1) and programmed death-ligand 2 (PD-L2) was also increased. Furthermore, when BoLA was silenced in bEECs by small interfering RNA, the expression of PD-L1 and PD-L2 was not affected by IFN-τ. The expression level of PD-L1 and PD-L2 was also increased in the uterine tissues of pregnant dairy cattle. In conclusion, IFN-τ may function by suppressing the expression of bta-miR-204 to increase the expression of BoLA during the embryo implantation period in cattle. IFN-τ may induce PD-L1 and PD-L2 transcription by regulating BoLA, which may influence the T cell immune response, thereby regulating pregnant cattle immunization.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China.,College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, P.R. China
| | - Ting Yuan
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, P.R. China
| | - Nannan Yin
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Xiaofei Ma
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Yaping Yang
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Jing Yang
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Aftab Shaukat
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
18
|
Wang Z, Wang X, Cheng F, Wen X, Feng S, Yu F, Tang H, Liu Z, Teng X. Rapamycin Inhibits Glioma Cells Growth and Promotes Autophagy by miR-26a-5p/DAPK1 Axis. Cancer Manag Res 2021; 13:2691-2700. [PMID: 33790644 PMCID: PMC7997605 DOI: 10.2147/cmar.s298468] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Background Glioma is a common intracranial malignant tumor with high rates of invasiveness and mortality. This study aimed to investigate the mechanism of rapamycin in glioma. Methods U118-MG cells were treated with and without rapamycin in vivo and then collected for RNA sequencing. Differentially expressed miRNAs (DEMs) were screened and verified. MiR-26a-5p was selected for functional verification, and the target gene of miR-26a-5p was identified. The effects of miR-26a-5p on cell proliferation, cell cycle, apoptosis, and autophagy were also investigated. Results In total, 58 up-regulated and 41 down-regulated DEMs were identified between rapamycin-treated and untreated U118-MG cells. MiR-26-5p levels were up-regulated in U118-MG cells treated with 12.5 μM rapamycin, and death-associated protein kinase 1 (DAPK1) expression, a direct miR-26a-5p target gene, was down-regulated. Rapamycin substantially inhibited cell proliferation and cell percentage in the S phase and promoted cell apoptosis; miR-26a-5p inhibitor increased cell proliferation and cell cycle and decreased cell apoptosis; DAPK1 overexpression further induced cell proliferation, increased the cell number in the S phase, and inhibited apoptosis in glioma cells. Notably, rapamycin increased the autophagy-related Beclin1 protein expression levels and the LC3 II/I ratio. Conclusion Rapamycin exerts anti-tumor effects by promoting autophagy in glioma cells, which was dependent on the miR-26a-5p/DAPK1 pathway activation by rapamycin.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Neurology, Hangzhou Seventh People's Hospital, Hangzhou, People's Republic of China
| | - Xiaoxi Wang
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Fei Cheng
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xue Wen
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Shi Feng
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Fang Yu
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Hui Tang
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhengjin Liu
- Department of Pathology, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Xiaodong Teng
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
19
|
Zhang P, Hou Q, Yue Q. MiR-204-5p/TFAP2A feedback loop positively regulates the proliferation, migration, invasion and EMT process in cervical cancer. Cancer Biomark 2021; 28:381-390. [PMID: 32474464 DOI: 10.3233/cbm-191064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
MicroRNAs (MiRNAs) have been clarified as crucial regulators of the pathological processes in various carcinomas in the past years. Interestingly, existing evidence has manifested that microRNA-204-5p (miR-204-5p) is engaged in the initiation and progression of multiple carcinomas. However, the potential of miR-204-5p in cervical cancer remains to be disentombed. This study focused on unraveling the detailed role of miR-204-5p in cervical cancer. MiR-204-5p exhibited a low level in cervical cancer cells. The functional assays demonstrated that miR-204-5p upregulation exerted suppressive impact on the functions of cervical cancer cells, including proliferation, invasion, migration and epithelial-mesenchymal transition (EMT) process. Moreover, transcription factor AP-2 alpha (TFAP2A) was screened to be the most affected target gene by miR-204-5p, and TFAP2A was discovered to transcriptionally repress miR-204-5p in cervical cancer. The mutual regulation between TFAP2A and miR-204-5p was testified through molecular mechanism assays. Final rescued-function assays demonstrated that overexpression of TFAP2A could recover the suppressed cellular process caused by miR-204-5p upregulation. In conclusion, miR-204-5p/TFAP2A feedback loop promoted the proliferative and motorial capacities of cervical cancer cells. This finding suggested a novel modulatory loop of miR-204-5p/TFAP2A in cervical cancer, offering promising biomarkers for cervical cancer therapy.
Collapse
|
20
|
Caponnetto F, Dalla E, Mangoni D, Piazza S, Radovic S, Ius T, Skrap M, Di Loreto C, Beltrami AP, Manini I, Cesselli D. The miRNA Content of Exosomes Released from the Glioma Microenvironment Can Affect Malignant Progression. Biomedicines 2020; 8:biomedicines8120564. [PMID: 33287106 PMCID: PMC7761654 DOI: 10.3390/biomedicines8120564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Low-grade gliomas (LGG) are infiltrative primary brain tumors that in 70% of the cases undergo anaplastic transformation, deeply affecting prognosis. However, the timing of progression is heterogeneous. Recently, the tumor microenvironment (TME) has gained much attention either as prognostic factor or therapeutic target. Through the release of extracellular vesicles, the TME contributes to tumor progression by transferring bioactive molecules such as microRNA. The aim of the study was to take advantage of glioma-associated stem cells (GASC), an in vitro model of the glioma microenvironment endowed with a prognostic significance, and their released exosomes, to investigate the possible role of exosome miRNAs in favoring the anaplastic transformation of LGG. Therefore, by deep sequencing, we analyzed and compared the miRNA profile of GASC and exosomes obtained from LGG patients characterized by different prognosis. Results showed that exosomes presented a different signature, when compared to their cellular counterpart and that, although sharing several miRNAs, exosomes of patients with a bad prognosis, selectively expressed some miRNAs possibly responsible for the more aggressive phenotype. These findings get insights into the value of TME and exosomes as potential biomarkers for precision medicine approaches aimed at improving LGG prognostic stratification and therapeutic strategies.
Collapse
Affiliation(s)
- Federica Caponnetto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (E.D.); (C.D.L.); (A.P.B.); (D.C.)
- Correspondence: (F.C.); (I.M.); Tel.: +39-0432-559-412 (F.C. & I.M.)
| | - Emiliano Dalla
- Department of Medicine, University of Udine, 33100 Udine, Italy; (E.D.); (C.D.L.); (A.P.B.); (D.C.)
| | - Damiano Mangoni
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy;
| | - Silvano Piazza
- International Center for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy;
| | | | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100 Udine, Italy; (T.I.); (M.S.)
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100 Udine, Italy; (T.I.); (M.S.)
| | - Carla Di Loreto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (E.D.); (C.D.L.); (A.P.B.); (D.C.)
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy
| | - Antonio Paolo Beltrami
- Department of Medicine, University of Udine, 33100 Udine, Italy; (E.D.); (C.D.L.); (A.P.B.); (D.C.)
| | - Ivana Manini
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy
- Correspondence: (F.C.); (I.M.); Tel.: +39-0432-559-412 (F.C. & I.M.)
| | - Daniela Cesselli
- Department of Medicine, University of Udine, 33100 Udine, Italy; (E.D.); (C.D.L.); (A.P.B.); (D.C.)
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
21
|
Dai Y, Chen Z, Zhao W, Cai G, Wang Z, Wang X, Hu H, Zhang Y. miR-29a-5p Regulates the Proliferation, Invasion, and Migration of Gliomas by Targeting DHRS4. Front Oncol 2020; 10:1772. [PMID: 33014873 PMCID: PMC7511594 DOI: 10.3389/fonc.2020.01772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
Gliomas are the most common malignant primary brain tumors in adults and exhibit a spectrum of aberrantly aggressive phenotypes. MicroRNAs (miRNAs) play a regulatory role in various cancers, including gliomas; however, their specific roles and mechanisms have not been fully investigated. Studies have indicated that miR-29a is a tumor-suppressive miRNA, but the data are limited. In this study, we investigated the role of miR-29a-5p in glioma and further explored its underlying mechanisms. On the basis of bioinformatics, dehydrogenase/reductase 4 (DHRS4) was considered a potential target of miR-29a-5p and was also found to be highly expressed in gliomas in our experiments. Moreover, with a luciferase reporter assay, DHRS4 was found to be a target gene of miR-29a-5p and to be correlated with glioma proliferation, invasion, and migration in our in vivo and in vitro experiments. Simultaneously, we observed that the knockdown of DHRS4 rescued the downregulation of glioma proliferation, invasion, and migration caused by treatment with a mir-29a-5p inhibitor. The present findings demonstrate that miR-29a-5p suppresses cell proliferation, invasion, and migration by targeting DHRS4, and DHRS4 may be a potential new oncogene and prognostic factor in gliomas.
Collapse
Affiliation(s)
- Yong Dai
- Department of Neurosurgery, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zhenhua Chen
- Department of Neurosurgery, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Zhao
- Department of Neurosurgery, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Gang Cai
- Department of Neurosurgery, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zhifeng Wang
- Department of Neurosurgery, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xuejiang Wang
- Department of Neurosurgery, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Hongkang Hu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yi Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
22
|
Zhang C, Miyagishima KJ, Dong L, Rising A, Nimmagadda M, Liang G, Sharma R, Dejene R, Wang Y, Abu-Asab M, Qian H, Li Y, Kopera M, Maminishkis A, Martinez J, Miller S. Regulation of phagolysosomal activity by miR-204 critically influences structure and function of retinal pigment epithelium/retina. Hum Mol Genet 2020; 28:3355-3368. [PMID: 31332443 DOI: 10.1093/hmg/ddz171] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/04/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNA-204 (miR-204) is expressed in pulmonary, renal, mammary and eye tissue, and its reduction can result in multiple diseases including cancer. We first generated miR-204-/- mice to study the impact of miR-204 loss on retinal and retinal pigment epithelium (RPE) structure and function. The RPE is fundamentally important for maintaining the health and integrity of the retinal photoreceptors. miR-204-/- eyes evidenced areas of hyper-autofluorescence and defective photoreceptor digestion, along with increased microglia migration to the RPE. Migratory Iba1+ microglial cells were localized to the RPE apical surface where they participated in the phagocytosis of photoreceptor outer segments (POSs) and contributed to a persistent build-up of rhodopsin. These structural, molecular and cellular outcomes were accompanied by decreased light-evoked electrical responses from the retina and RPE. In parallel experiments, we suppressed miR-204 expression in primary cultures of human RPE using anti-miR-204. In vitro suppression of miR-204 in human RPE similarly showed abnormal POS clearance and altered expression of autophagy-related proteins and Rab22a, a regulator of endosome maturation. Together, these in vitro and in vivo experiments suggest that the normally high levels of miR-204 in RPE can mitigate disease onset by preventing generation of oxidative stress and inflammation originating from intracellular accumulation of undigested photoreactive POS lipids. More generally, these results implicate RPE miR-204-mediated regulation of autophagy and endolysosomal interaction as a critical determinant of normal RPE/retina structure and function.
Collapse
Affiliation(s)
- Congxiao Zhang
- Ophthalmic Genetics and Visual Function Branch, Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, MD USA
| | - Kiyoharu J Miyagishima
- Ophthalmic Genetics and Visual Function Branch, Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, MD USA
| | - Lijin Dong
- Genetic Engineering Facility, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aaron Rising
- Ophthalmic Genetics and Visual Function Branch, Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Malika Nimmagadda
- Ophthalmic Genetics and Visual Function Branch, Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Genqing Liang
- Ophthalmic Genetics and Visual Function Branch, Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ruchi Sharma
- Ophthalmic Genetics and Visual Function Branch, Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Roba Dejene
- Ophthalmic Genetics and Visual Function Branch, Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuan Wang
- Ophthalmic Genetics and Visual Function Branch, Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, MD USA
| | - Mones Abu-Asab
- Section of Histopathology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yichao Li
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Megan Kopera
- Genetic Engineering Facility, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arvydas Maminishkis
- Ophthalmic Genetics and Visual Function Branch, Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, MD USA
| | - Jennifer Martinez
- Inflammation and Autoimmunity, National Institute of Environmental Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Sheldon Miller
- Ophthalmic Genetics and Visual Function Branch, Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
23
|
Wang WJ, Wang H, Hua TY, Song W, Zhu J, Wang JJ, Huang YQ, Ding ZL. Establishment of a Prognostic Model Using Immune-Related Genes in Patients With Hepatocellular Carcinoma. Front Genet 2020; 11:55. [PMID: 32158466 PMCID: PMC7052339 DOI: 10.3389/fgene.2020.00055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/17/2020] [Indexed: 01/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent neoplasms worldwide, particularly in China. Immune-related genes (IRGs) and immune infiltrating lymphocytes play specific roles in tumor growth. Considering how important immunotherapy has become for HCC treatment in the past decade, our objective was to establish a prognostic model by screening survival-related IRGs in patients with HCC. Using edgeR, we identified differentially expressed IRGs (DEIRGs), DEmiRNAs, and DElncRNAs. Functional enrichment analysis of DEIRGs was performed to investigate the biological functions of IRGs via gene ontology annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Protein-protein interaction and competing endogenous RNA networks were established using Cytoscape. Survival-associated IRGs were selected via univariate COX regression analysis, a The Cancer Genome Atlas (TCGA) prognostic model and GSE76427 validation model were developed using multivariate COX regression analysis test by AIC (Akaike Information Criterion). We identified 116 DEIRGs in patients with HCC; the “cytokine-cytokine receptor interaction” pathway was found to be the most enriched pathway. Via the prognostic model helped us classify patients into high- and low-risk score groups based on overall survival (OS); high risk score was associated with worse OS, and a positive correlation was observed between the prognostic model and immune cell infiltration. To summarize, we established a prognostic model using survival-related IRGs that provides sufficient information for prognosis prediction and immunotherapy of patients with HCC.
Collapse
Affiliation(s)
- Wen-Jie Wang
- Department of Radio-Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Han Wang
- Department of Oncology, Jining Cancer Hospital, Jining, China
| | - Ting-Yan Hua
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Wei Song
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Zhu
- Department of Oncology, Changzhou Traditional Chinese Medical Hospital, Changzhou, China
| | - Jing-Jing Wang
- Department of Oncology, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, China
| | - Yue-Qing Huang
- Department of General Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zhi-Liang Ding
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
24
|
Zhou P, Shi J, Wei L, Ma T. MicroRNA-448 suppresses the proliferation, migration, and invasion of glioma cell line U251 by targeting B-cell lymphoma-2. Chin Med J (Engl) 2020; 133:114-116. [PMID: 31923119 PMCID: PMC7028205 DOI: 10.1097/cm9.0000000000000572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 11/25/2022] Open
Affiliation(s)
- Peng Zhou
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Jia Shi
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Li Wei
- Department of Blood Transfusion, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Tao Ma
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| |
Collapse
|
25
|
Shen G, Mao Y, Su Z, Du J, Yu Y, Xu F. PSMB8-AS1 activated by ELK1 promotes cell proliferation in glioma via regulating miR-574-5p/RAB10. Biomed Pharmacother 2019; 122:109658. [PMID: 31812014 DOI: 10.1016/j.biopha.2019.109658] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 01/22/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) get great involvements in the development of countless cancers. Nonetheless, the deep molecular mechanism by which lncRNA regulates the formation of glioma is unclear. In our study, the expression of PSMB8-AS1 was dramatically upregulated in glioma tissues and cells, further, PSMB8-AS1 silencing restrained cell proliferation in glioma, and the results of PSMB8-AS1 overexpression were opposite. Moreover, PSMB8-AS1 could bind with miR-574-5p, which was low expressed in glioma cells. In addition, RAB10 acted the target gene of miR-574-5p, and PSMB8-AS1 could regulate RAB10 via modulating miR-574-5p. Besides, miR-574-5p inhibitor/mimics remedied the repressive/simulative role of PSMB8-AS1 depletion/overexpression, and RAB10 downregulation/upregulation reversed the encouraging/blocked function caused by miR-574-5p inhibitor/mimics in PSMB8-AS1 depletion/overexpression transfected glioma cells. Additionally, ELK1, a transcription factor, could active PSMB8-AS1 expression. To be concluded, PSMB8-AS1 activated by ELK1 promotes cell proliferation in glioma via regulating miR-574-5p/RAB10, which may be contributory to find new targets to treat glioma.
Collapse
Affiliation(s)
- Gang Shen
- Department of Neurosurgery, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| | - Yuhang Mao
- Department of Neurosurgery, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| | - Zuopeng Su
- Department of Neurosurgery, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| | - Jiarui Du
- Department of Neurosurgery, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| | - Yong Yu
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| | - Fulin Xu
- Department of Neurosurgery, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China.
| |
Collapse
|
26
|
Sun X, Xu W, Zang C, Li N. miRNA-520c-3p accelerates progression of nasopharyngeal carcinoma via targeting RAB22A. Oncol Lett 2019; 19:771-776. [PMID: 31897193 PMCID: PMC6924133 DOI: 10.3892/ol.2019.11144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/13/2019] [Indexed: 12/29/2022] Open
Abstract
Biological function of microRNA-20c-3p (miRNA-520c-3p) in the progression of nasopharyngeal carcinoma (NPC) and the potential mechanism were investigated. Relative level of miRNA-520c-3p in NPC tissues and adjacent normal tissues was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Particularly, miRNA-520c-3p level in NPC with different tumor stages and tumor sizes was examined. Subsequently, miRNA-520c-3p level in nasopharyngeal epithelial cells and NPC cells was detected. The potential influence of miRNA-520c-3p on the proliferative ability and cell cycle progression of NPC cells were evaluated through cell counting kit-8 (CCK-8) and flow cytometry. The target gene of miRNA-520c-3p was verified by dual-luciferase reporter gene assay. Regulatory role of miRNA-520c-3p/RAB22A in the malignant progression of NPC was identified. miRNA-520c-3p was downregulated in NPC tissues and cell lines. Its level was lower in NPC with worse tumor grade and larger tumor size. Overexpression of miRNA-520c-3p suppressed the proliferative ability and arrested cell cycle in G0/G1 phase. RAB22A was confirmed to be the downstream target of miRNA-520c-3p. In NPC tissues and cell lines, RAB22A remained in higher abundance relative to controls. Overexpression of RAB22A reversed the inhibitory effects of overexpressed miRNA-520c-3p on proliferative ability and cell cycle progression of NPC cells. miRNA-520c-3p is downregulated in NPC, which accelerates the malignant progression of NPC by targeting RAB22A.
Collapse
Affiliation(s)
- Xiaohan Sun
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wenrui Xu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Chuanshan Zang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Na Li
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
27
|
Assessment of Circulating Microribonucleic Acids in Patients With Familial Mediterranean Fever. Arch Rheumatol 2019; 35:52-59. [PMID: 32637920 DOI: 10.5606/archrheumatol.2020.7414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/13/2019] [Indexed: 11/21/2022] Open
Abstract
Objectives This study aims to evaluate the plasma expression of microribonucleic acids (miRNAs) that may be associated with the pathogenesis of familial Mediterranean fever (FMF). Patients and methods Thirty patients with FMF (18 males, 12 females; mean age 9.1±4.7 years; range, 3 to 15.5 years) and 30 age- and sex-matched healthy children (18 males, 12 females; mean age 9.5±4.6 years; range, 4 to 16.5 years) were included in this study. The plasma levels of four candidate miRNAs (miRNA-16, miRNA-155, miRNA-204 and miRNA-451) were measured in all subjects. The plasma levels of miRNAs were analyzed with real- time polymerase chain reaction in attack and remission periods of patients and healthy controls (HCs). Results Plasma miRNA-204 levels of FMF patients were decreased 6.5 fold in remission period compared to HCs (p<0.001). This decrease was more prominent in M694V mutation carriers. Plasma miRNA-155 levels of FMF patients were lower in remission period (p=0.03). Conclusion Our findings showed significant alterations in the plasma expression of miRNA-155 and miRNA-204 in FMF patients compared to HCs. Our data suggest that miRNA-155 and miRNA-204 may be related to the pathogenesis of FMF. Further comprehensive and functional researches may help to clarify the role of miRNAs in FMF and elucidate the pathogenesis of the disease.
Collapse
|
28
|
Deng W, Fan C, Shen R, Wu Y, Du R, Teng J. Long noncoding MIAT acting as a ceRNA to sponge microRNA-204-5p to participate in cerebral microvascular endothelial cell injury after cerebral ischemia through regulating HMGB1. J Cell Physiol 2019; 235:4571-4586. [PMID: 31628679 DOI: 10.1002/jcp.29334] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022]
Abstract
This study is applied to the investigation of the long noncoding RNA myocardial infarction associated transcript's (MIAT's) role in regulating the expression of high-mobility group box 1 (HMGB1) in cerebral microvascular endothelial cell (CMEC) injury after cerebral ischemia by serving as a competitive endogenous RNA (ceRNA) to sponge microRNA-204-5p (miR-204-5p). The cerebral ischemia model of middle cerebral artery occlusion (MCAO) in rats was established by the suture method, in which rats were injected with empty plasmids and MIAT siRNA plasmids. The cerebral ischemia injury model in vitro was established through oxygen glucose deprivation (OGD) in primary cultured CMECs in rats. The cells were transfected with empty plasmids and MIAT siRNA plasmids. The MIAT/miR-204-5p/HMGB1 axis' function in damage and angiogenesis of CMECs were explored. The binding site between MIAT and miR-204-5p along with that between miR-204-5p and HMGB1 was determined. MIAT was overexpressed in MCAO rats' brain tissue and inhibited MIAT attenuated the injury of brain tissue in MCAO rats. Inhibition of MIAT promoted angiogenesis, promoted miR-204-5p expression and inhibited HMGB1 expression in brain tissue of MCAO rats. Inhibition of MIAT reduced CMEC damage, induced angiogenesis of CMECs, increased the number of surviving neurons, promoted miR-204-5p expression and inhibited HMGB1 expression in CMECs treated with OGD. MIAT promoted HMGB1 expression by competitive binding to miR-204-5p to regulate the injury of CMECs after cerebral ischemia. Our study showed that MIAT promoted HMGB1 expression by competitively binding to miR-204-5p to regulate the injury of CMECs after cerebral ischemia.
Collapse
Affiliation(s)
- Wenjing Deng
- The Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenghe Fan
- The Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruile Shen
- The Neurology Department, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Yanzhi Wu
- The Neurology Department, Zhengzhou Central Hospital, Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ran Du
- The Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junfang Teng
- The Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
29
|
Ji Y, Gu Y, Hong S, Yu B, Zhang J, Liu J. Comprehensive analysis of lncRNA‐TF crosstalks and identification of prognostic regulatory feedback loops of glioblastoma using lncRNA/TF‐mediated ceRNA network. J Cell Biochem 2019; 121:755-767. [DOI: 10.1002/jcb.29321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/15/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Yang Ji
- Department of Medical Technology Jiangsu Vocational College of Medicine 283 Jiefangnan Road Yangcheng 224005 China
| | - Yaqin Gu
- Department of Medical Technology Jiangsu Vocational College of Medicine 283 Jiefangnan Road Yangcheng 224005 China
| | - Shuai Hong
- Key Laboratory of Intelligent Information Processing, State Key Laboratory of Computer Architecture, Institute of Computing Technology Chinese Academy of Sciences Beijing China
| | - Bo Yu
- Key Laboratory of Intelligent Information Processing, State Key Laboratory of Computer Architecture, Institute of Computing Technology Chinese Academy of Sciences Beijing China
| | - Jian‐Hua Zhang
- Department of Blood Transfusion Peking University People's Hospital Beijing China
| | - Jin‐Na Liu
- Key Laboratory of Intelligent Information Processing, State Key Laboratory of Computer Architecture, Institute of Computing Technology Chinese Academy of Sciences Beijing China
| |
Collapse
|
30
|
Yang H, Liu Y, Qiu Y, Ding M, Zhang Y. MiRNA-204-5p and oxaliplatin-loaded silica nanoparticles for enhanced tumor suppression effect in CD44-overexpressed colon adenocarcinoma. Int J Pharm 2019; 566:585-593. [PMID: 31181310 DOI: 10.1016/j.ijpharm.2019.06.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/02/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022]
|
31
|
Zhou H, Ma Y, Zhong D, Yang L. Knockdown of lncRNA HOXD-AS1 suppresses proliferation, migration and invasion and enhances cisplatin sensitivity of glioma cells by sponging miR-204. Biomed Pharmacother 2019; 112:108633. [PMID: 30784927 DOI: 10.1016/j.biopha.2019.108633] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 01/26/2023] Open
Abstract
Increasing evidence suggests the involvement of long noncoding RNAs (lncRNAs) in various biological process including cancer progression and drug resistance. LncRNA HOXD cluster antisense RNA 1 (HOXD-AS1) had been demonstrated to act as an oncogenic gene, contributing to the development and progression of several cancers. However, its functional role and molecular mechanism underlying glioma progression and cisplatin (DDP) resistance has not been well elucidated. In this study, we found that HOXD-AS1 was up-regulated in glioma tissues and cells and negatively correlated with survival time. HOXD-AS1 knockdown suppressed proliferation, migration and invasion as well as enhanced DDP sensitivity of glioma cells. Moreover, HOXD-AS1 could function as a miR-204 sponge in glioma cells. Overexpression of miR-204 could mimic the functional role of down-regulated HOXD-AS1 in glioma cells. Furthermore, miR-204 inhibition reversed the effect of HOXD-AS1 knockdown on cancer progression and DDP sensitivity of glioma cells. In conclusion, knockdown of HOXD-AS1 suppressed proliferation, migration and invasion and enhanced DDP sensitivity of glioma cells through sequestering miR-204, providing a promising therapeutic target for glioma patients.
Collapse
Affiliation(s)
- Hui Zhou
- Department of neurosurgery, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510000, China
| | - Yabin Ma
- Department of neurosurgery, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510000, China
| | - Dequan Zhong
- Department of neurosurgery, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510000, China
| | - Li Yang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
32
|
Li M, Shen Y, Wang Q, Zhou X. MiR-204-5p promotes apoptosis and inhibits migration of osteosarcoma via targeting EBF2. Biochimie 2019; 158:224-232. [DOI: 10.1016/j.biochi.2018.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
|
33
|
Hong BS, Ryu HS, Kim N, Kim J, Lee E, Moon H, Kim KH, Jin MS, Kwon NH, Kim S, Kim D, Chung DH, Jeong K, Kim K, Kim KY, Lee HB, Han W, Yun J, Kim JI, Noh DY, Moon HG. Tumor Suppressor miRNA-204-5p Regulates Growth, Metastasis, and Immune Microenvironment Remodeling in Breast Cancer. Cancer Res 2019; 79:1520-1534. [PMID: 30737233 DOI: 10.1158/0008-5472.can-18-0891] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/29/2018] [Accepted: 01/31/2019] [Indexed: 11/16/2022]
Abstract
Various miRNAs play critical roles in the development and progression of solid tumors. In this study, we describe the role of miR-204-5p in limiting growth and progression of breast cancer. In breast cancer tissues, miR-204-5p was significantly downregulated compared with normal breast tissues, and its expression levels were associated with increased survival outcome in patients with breast cancer. Overexpression of miR-204-5p inhibited viability, proliferation, and migration capacity in human and murine breast cancer cells. In addition, miR-204-5p overexpression resulted in a significant alteration in metabolic properties of cancer cells and suppression of tumor growth and metastasis in mouse breast cancer models. The association between miR-204-5p expression and clinical outcomes of patients with breast cancer showed a nonlinear pattern that was reproduced in experimental assays of cancer cell behavior and metastatic capacities. Transcriptome and proteomic analysis revealed that various cancer-related pathways including PI3K/Akt and tumor-immune interactions were significantly associated with miR-204-5p expression. PIK3CB, a major regulator of PI3K/Akt pathway, was a direct target for miR-204-5p, and the association between PIK3CB-related PI3K/Akt signaling and miR-204-5p was most evident in the basal subtype. The sensitivity of breast cancer cells to various anticancer drugs including PIK3CB inhibitors was significantly affected by miR-204-5p expression. In addition, miR-204-5p regulated expression of key cytokines in tumor cells and reprogrammed the immune microenvironment by shifting myeloid and lymphocyte populations. These data demonstrate both cell-autonomous and non-cell-autonomous impacts of tumor suppressor miR-204-5p in breast cancer progression and metastasis. SIGNIFICANCE: This study demonstrates that regulation of PI3K/Akt signaling by miR-204-5p suppresses tumor metastasis and immune cell reprogramming in breast cancer.
Collapse
Affiliation(s)
- Bok Sil Hong
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul, South Korea
| | - Namshin Kim
- Personalized Genomic Medicine Research Center, Division of Strategic Research Groups, Korea Research Institute of Bioscience and Biotechnology, Daejeon
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, South Korea
| | - Jisun Kim
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Department of Pathology, Seoul National University School of Medicine, Seoul, South Korea
| | - Eunshin Lee
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Department of Pathology, Seoul National University School of Medicine, Seoul, South Korea
| | - Hyunhye Moon
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Kyoung Hyoun Kim
- Personalized Genomic Medicine Research Center, Division of Strategic Research Groups, Korea Research Institute of Bioscience and Biotechnology, Daejeon
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, South Korea
| | - Min-Sun Jin
- Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, South Korea
| | - Nam Hoon Kwon
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, South Korea
| | - Donghyun Kim
- Department of Pathology, Seoul National University School of Medicine, Seoul, South Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University School of Medicine, Seoul, South Korea
| | - Kyeonghun Jeong
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Kwangsoo Kim
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Ki Yoon Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
| | - Han-Byoel Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Wonshik Han
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Genomic Medicine Institute, Seoul National University Medical Research Center, Seoul, South Korea
| | - Jihui Yun
- Genomic Medicine Institute, Seoul National University Medical Research Center, Seoul, South Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Seoul National University Medical Research Center, Seoul, South Korea
| | - Dong-Young Noh
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Genomic Medicine Institute, Seoul National University Medical Research Center, Seoul, South Korea
| | - Hyeong-Gon Moon
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Genomic Medicine Institute, Seoul National University Medical Research Center, Seoul, South Korea
| |
Collapse
|
34
|
Liang WH, Li N, Yuan ZQ, Qian XL, Wang ZH. DSCAM-AS1 promotes tumor growth of breast cancer by reducing miR-204-5p and up-regulating RRM2. Mol Carcinog 2018; 58:461-473. [PMID: 30457164 DOI: 10.1002/mc.22941] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/17/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022]
Abstract
Breast cancer (BC) is a common malignancy worldwide. More than 3 700 000 women die of BC every year. DSCAM-AS1 was overexpressed several kinds of cancer and miR-204-5p was lowly expressed, which indicated that miR-204-5p had anti-tumor activity and DSCAM-AS1 had pro-tumor activity. We intended to analyze DSCAM-AS1, miR-204-5p, and ribonucleotide reductase M2 (RRM2). Microarray analysis and quantitative Real Time fluorescence Polymerase Chain Reaction (qRT-PCR) were employed to determine DSCAM-AS1 and miR-204-5p expression. Luciferase reporter assay was applied to examine the target relationship between DSCAM-AS1, miR-204-5p, and RRM2. Cell Counting Kit-8 (CCK-8 assay), transwell assay, and flow cytometry were used to detect cell proliferation, invasion, and apoptosis. The expression of DSCAM-AS1, miR-204-5p, and RRM2 were confirmed by Western blot. We also conducted in vivo assay to verify the effect of DSCAM-AS1. DSCAM-AS1 was up-regulated, while miR-204-5p was down-regulated in BC tissues and cells. DSCAM-AS1 directly targeted miR-204-5p. DSCAM-AS1 promoted the proliferation and invasion of BC cells by reducing miR-204-5p and inhibiting miR-204-5p expression. DSCAM-AS1 expression was related to the expression of RRM2, and miR-204-5p could reverse the function of DSCAM-AS1. RRM2 was up-regulated in BC cells, and miR-204-5p inhibited RRM2 expression by targeting RRM2. Overexpression of RRM2 stimulated proliferation and cell invasion and impeded apoptosis. In vivo experiments showed that knockdown of DSCAM-AS1 decreased the tumorigenesis of BC cells, increased the expression of miR-204-5p. DSCAM-AS1 promoted proliferation and impaired apoptosis of BC cells by reducing miR-204-5p and enhancing RRM2 expression. DSCAM-AS1/miR-204-5p/RRM2 may serve as novel therapeutic targets for BC.
Collapse
Affiliation(s)
- Wen-Hui Liang
- The Affiliated Center Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Na Li
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhi-Qing Yuan
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xin-Lai Qian
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhi-Hui Wang
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
35
|
Triiodothyronine Promotes Cell Proliferation of Breast Cancer via Modulating miR-204/Amphiregulin. Pathol Oncol Res 2018; 25:653-658. [PMID: 30406874 DOI: 10.1007/s12253-018-0525-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/25/2018] [Indexed: 12/13/2022]
Abstract
Breast cancer (BC) severely threatens women's life, and Triiodothyronine (T3) shows a positive role on BC cell proliferation, while the potential mechanism underlying it is still unclear. T3 was used to stimulate BC cell lines MCF-7 and T47-D. Real-time PCR was performed to determine the expression of miRNAs, while western blot was used to measure protein expression of Amphiregulin (AREG), AKT and p-AKT. The interaction between miR-204 and AREG was determined using luciferase reporter assay. MTT was performed to detect cell viability. The expression of miR-204 was decreased, while AREG and p-AKT was increased in T3 stimulated BC cell lines. T3 stimulation promoted cell viability. miR-204 targets AREG to regulate its expression. T3 promoted expression of AREG and p-AKT, while miR-204 overexpression reversed the effect of T3, however, pcDNA-AREG transfection abolished the effect of miR-204 mimic. T3 promoted cell viability of BC cells via modulating the AKT signaling pathway. The detailed mechanism was that the down-regulated miR-204 that induced by T3 stimulation promoted the expression of AREG, the up-regulated AREG activated AKT signaling pathway, while the activated AKT signaling promoted cell proliferation.
Collapse
|
36
|
Evaluation of plasma microRNA expressions in patients with juvenile idiopathic arthritis. Clin Rheumatol 2018; 37:3255-3262. [PMID: 30171379 DOI: 10.1007/s10067-018-4277-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 12/18/2022]
Abstract
Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease of childhood, yet its etiology is unknown. It is known that microribonucleic acids (miRNAs) play a role in immunoregulation. We aimed to evaluate the plasma expression of some candidate miRNAs that are associated with the pathogenesis of autoimmunity. Thirty-one patients diagnosed with JIA and age-sex-matched 31 healthy children were enrolled for the study. The plasma levels of four candidate miRNAs (miRNA-16, miRNA-155, miRNA-204, and miRNA-451), which are known to be associated with autoimmunity, were examined in all the subjects. The plasma levels of miRNAs were measured with real-time PCR in the patients in active and inactive periods and in the healthy controls. The groups were compared with each other. The plasma miRNA-155 levels were found to increase in the JIA patients compared to the healthy controls, and it was statistically more significant in the inactive period. We found that the JIA patients had the higher levels of miRNA-16 and the lower levels of miRNA-204/miRNA-451 expressions compare with the control group, but there was no statistically significant difference. A statistically significant decrease in the plasma levels of miRNA-204 was found in the patients that were in inactive disease with only methotrexate therapy. The plasma miRNA expressions were compared in the JIA subtypes, and it was observed that miRNA-204 levels were higher in polyarticular JIA and miRNA-451 levels were higher in enthesitis-related arthritis without statistical significance. The significant alterations in the plasma expression of miRNA-155 and miRNA-204 suggest to us that these molecules may be related to the pathogenesis of JIA. More comprehensive and functional researches about the role of these molecules are needed in this regard.
Collapse
|
37
|
Liang C, Yang Y, Guan J, Lv T, Qu S, Fu Q, Zhao H. LncRNA UCA1 sponges miR-204-5p to promote migration, invasion and epithelial-mesenchymal transition of glioma cells via upregulation of ZEB1. Pathol Res Pract 2018; 214:1474-1481. [PMID: 30107990 DOI: 10.1016/j.prp.2018.07.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022]
Abstract
Long non-coding RNA urothelial carcinoma associated 1 (lncRNA UCA1) promotes cancer progression and enhances chemoresistance through miR-204-5p in a few cancers. However, no studies have investigated whether UCA1 regulates glioma metastasis through miR-204-5p and its target. In the present study, cell migration, invasion and epithelial-mesenchymal transition (EMT) were evaluated in glioma cells overexpressing UCA1. The relationships among UCA1, miR-204-5p and ZEB1 were examined by real-time PCR, western blotting and dual-luciferase reporter assays. The effect of UCA1 knockdown on xenograft tumor growth was investigated. The levels of miR-204-5p, fibronectin, COL5 A1 and ZEB1 in tumor tissues were also determined. The results showed that UCA1 overexpression promoted cell migration, invasion and EMT. UCA1 interacted with miR-204-5p and decreased its level. ZEB1 was identified as a direct target of miR-204-5p and miR-204-5p negatively regulated ZEB1 expression. Moreover, UCA1 sponged miR-204-5p and partially rescued the inhibitory effect of miR-204-5p on ZEB1. In our in vivo studies, UCA1 knockdown reduced tumor volume and tumor weight. In addition, the levels of fibronectin, COL5 A1 and ZEB1 were decreased, while miR-204-5p level was increased. The present study provides the first evidence that UCA1 promotes glioma metastasis through the miR-204-5p/ZEB1 axis, contributing to the understanding of the pathogenesis of glioma.
Collapse
Affiliation(s)
- Chao Liang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China; Department of Neurosurgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Yang Yang
- Department of Neurosurgery, Jinzhou Central Hospital, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Junhong Guan
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Tao Lv
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Qiang Fu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Hongyu Zhao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China.
| |
Collapse
|
38
|
Palkina N, Komina A, Aksenenko M, Moshev A, Savchenko A, Ruksha T. miR-204-5p and miR-3065-5p exert antitumor effects on melanoma cells. Oncol Lett 2018; 15:8269-8280. [PMID: 29844810 PMCID: PMC5958817 DOI: 10.3892/ol.2018.8443] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022] Open
Abstract
MicroRNA (miR)-204-5p was previously identified to be downregulated in melanoma compared with melanocytic nevi. This observation prompted a functional study on miR-204-5p and the newly-identified miR-3065-5p, two miRNAs suggested to be tumor-suppressive oncomiRs. Application of miR-204-5p mimics or inhibitors resulted in a decrease or increase, respectively, in melanoma cell proliferation and colony formation. miR-204-5p mimics hindered invasion, whereas miR-204-5p inhibitors stimulated cancer cell migration. Modulation of miR-3065-5p led to a decrease in melanoma cell proliferation, altered cell cycle distribution and increased expression levels of its target genes HIPK1 and ITGA1, possibly due to functional modifications identified in these cells. miR-204-5p and miR-3065-5p demonstrated antitumor capacities that may need to be taken into account in the development of melanoma treatment approaches.
Collapse
Affiliation(s)
- Nadezhda Palkina
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Anna Komina
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Maria Aksenenko
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Anton Moshev
- Laboratory of Cell Molecular Physiology and Pathology, Federal Research Center, Krasnoyarsk Science Center of The Siberian Branch of The Russian Academy of Sciences, Krasnoyarsk 660022, Russia
| | - Andrei Savchenko
- Laboratory of Cell Molecular Physiology and Pathology, Federal Research Center, Krasnoyarsk Science Center of The Siberian Branch of The Russian Academy of Sciences, Krasnoyarsk 660022, Russia
| | - Tatiana Ruksha
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| |
Collapse
|
39
|
Yang YN, Zhang XH, Wang YM, Zhang X, Gu Z. miR-204 reverses temozolomide resistance and inhibits cancer initiating cells phenotypes by degrading FAP-α in glioblastoma. Oncol Lett 2018; 15:7563-7570. [PMID: 29725461 PMCID: PMC5920462 DOI: 10.3892/ol.2018.8301] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/07/2017] [Indexed: 12/16/2022] Open
Abstract
Malignant gliomas are treated with temozolomide (TMZ) at present, but often exhibit resistance to this agent. Cancer-initiating cells (CICs) have been suggested to lead to TMZ resistance. The mechanisms underlying CICs-based TMZ resistance are not fully understood. MicroRNAs (miRNAs) have been demonstrated to serve important roles in tumorigenesis and TMZ resistance. In the present study, a sphere forming assay and western blot analysis were performed to detect the formation of CICs and fibroblast activation protein α (FAP-α) protein expression. It was revealed that TMZ resistance promoted the formation of CICs and upregulated FAP-α expression in glioblastoma cells. Over-expressing FAP-α was also demonstrated to promote TMZ resistance and induce the formation of CICs in U251MG cells. In addition, using a reverse transcription-quantitative polymerase chain reaction, it was observed that miR-204 was downregulated in U251MG-resistant (-R) cells. miR-204 expression negatively correlated with the FAP-α levels in human glioblastoma tissues, and it may inhibit the formation of CICs and reverse TMZ resistance in U251MG-R cells. Therefore, it was concluded that miR-204 reversed temozolomide resistance and inhibited CICs phenotypes by degrading FAP-α in glioblastoma.
Collapse
Affiliation(s)
- Yun-Na Yang
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Xiang-Hua Zhang
- Department of Neurosurgery, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing 100050, P.R. China
| | - Yan-Ming Wang
- Department of Spinal Surgery, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Xi Zhang
- Department of Pharmacy, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Zheng Gu
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, P.R. China
| |
Collapse
|
40
|
Chen X, Chen Z, Yu S, Nie F, Yan S, Ma P, Chen Q, Wei C, Fu H, Xu T, Ren S, Sun M, Wang Z. Long Noncoding RNA LINC01234 Functions as a Competing Endogenous RNA to Regulate CBFB Expression by Sponging miR-204-5p in Gastric Cancer. Clin Cancer Res 2018; 24:2002-2014. [PMID: 29386218 DOI: 10.1158/1078-0432.ccr-17-2376] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/04/2017] [Accepted: 01/24/2018] [Indexed: 12/13/2022]
Abstract
Purpose: Long noncoding RNAs (lncRNAs) have emerged as important regulators in a variety of human diseases, including cancers. However, the overall biological roles and clinical significance of most lncRNAs in gastric carcinogenesis are not fully understood. We investigated the clinical significance, biological function, and mechanism of LINC01234 in gastric cancer.Experimental Design: First, we analyzed LINC01234 alterations in gastric cancerous and noncancerous tissues through an analysis of sequencing data obtained from The Cancer Genome Atlas. Next, we evaluated the effect of LINC01234 on the gastric cancer cell proliferation and apoptosis, and its regulation of miR-204-5p by acting as a competing endogenous RNA (ceRNA). The animal model was used to support the in vitro experimental findings.Results: We found that LINC01234 expression was significantly upregulated in gastric cancer tissues and was associated with larger tumor size, advanced TNM stage, lymph node metastasis, and shorter survival time. Furthermore, knockdown of LINC01234-induced apoptosis and growth arrest in vitro and inhibited tumorigenesis in mouse xenografts. Mechanistic investigations indicated that LINC01234 functioned as a ceRNA for miR-204-5p, thereby leading to the derepression of its endogenous target core-binding factor β (CBFB).Conclusions: LINC01234 is significantly overexpressed in gastric cancer, and LINC01234-miR-204-5p-CBFB axis plays a critical role in gastric cancer tumorigenesis. Our findings may provide a potential new target for gastric cancer diagnosis and therapy. Clin Cancer Res; 24(8); 2002-14. ©2018 AACR.
Collapse
Affiliation(s)
- Xin Chen
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenyao Chen
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shanxun Yu
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fengqi Nie
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuai Yan
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinnan Chen
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenchen Wei
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hangjiang Fu
- Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Tianwei Xu
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shengnan Ren
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Sun
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, Texas.
| | - Zhaoxia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China. .,Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
41
|
Suppression of miR-204 enables oral squamous cell carcinomas to promote cancer stemness, EMT traits, and lymph node metastasis. Oncotarget 2018; 7:20180-92. [PMID: 26933999 PMCID: PMC4991446 DOI: 10.18632/oncotarget.7745] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/05/2016] [Indexed: 12/13/2022] Open
Abstract
The feature of oral squamous cell carcinomas (OSCC) is commonly metastasizing to locoreginal lymph nodes, and the involvement of lymph nodes metastasis represents the one of important prognostic factors of poor clinical outcome. MicroRNAs (miRNAs) have been shown to be key players of cancer-related hallmarks including cancer stemness, EMT (epithelial-mesenchymal transition), and metastaisis. Herein we showed that OSCC-derived ALDH1+ cancer stem cells (OSCC-CSCs) express lower level of miR-204, and miR-204 over-expression suppresses cancer stemness and in vivo tumor-growth of OSCC-CSCs. miR-204 binds on their 3′UTR-regions of Slug and Sox4 and suppressing their expression in OSCC-CSCs. On the contrary, down-regulation of miR-204 significantly increased cancer stemness and the lymph nodes incidence of orthotopic animal models. Furthermore, co-knockdown with sh-Slug and sh-Sox4 synergistically rescued miR-204-supressing cancer stemness and EMT properties. Clinical results further revealed that a miR-204lowSlughighSox4high signature predicted the worse survival prognosis of OSCC patients by Kaplan-Meier survival analyses. Up-regulated miR-204-targeting Slug and Sox4 by epigallocatechin-3-gallate (EGCG) treatment significantly inhibited the proliferation rate, self-renewal capacity, and the percentage of ALDH1+ and CD44+ cells in OSCC-CSCs Oral-feeding of EGCG effectively alleviated tumor-progression in OSCC-CSCs-xenotransplanted immunocompromised mice through miR-204 activation. In conclusion, miR-204-mediated suppression of cancer stemness and EMT properties could be partially augmented by the anti-CSCs effect of EGCG.
Collapse
|
42
|
Xu C, Zhang JG, Lin D, Zhang L, Shen H, Deng HW. A Systemic Analysis of Transcriptomic and Epigenomic Data To Reveal Regulation Patterns for Complex Disease. G3 (BETHESDA, MD.) 2017; 7:2271-2279. [PMID: 28500050 PMCID: PMC5499134 DOI: 10.1534/g3.117.042408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/09/2017] [Indexed: 12/26/2022]
Abstract
Integrating diverse genomics data can provide a global view of the complex biological processes related to the human complex diseases. Although substantial efforts have been made to integrate different omics data, there are at least three challenges for multi-omics integration methods: (i) How to simultaneously consider the effects of various genomic factors, since these factors jointly influence the phenotypes; (ii) How to effectively incorporate the information from publicly accessible databases and omics datasets to fully capture the interactions among (epi)genomic factors from diverse omics data; and (iii) Until present, the combination of more than two omics datasets has been poorly explored. Current integration approaches are not sufficient to address all of these challenges together. We proposed a novel integrative analysis framework by incorporating sparse model, multivariate analysis, Gaussian graphical model, and network analysis to address these three challenges simultaneously. Based on this strategy, we performed a systemic analysis for glioblastoma multiforme (GBM) integrating genome-wide gene expression, DNA methylation, and miRNA expression data. We identified three regulatory modules of genomic factors associated with GBM survival time and revealed a global regulatory pattern for GBM by combining the three modules, with respect to the common regulatory factors. Our method can not only identify disease-associated dysregulated genomic factors from different omics, but more importantly, it can incorporate the information from publicly accessible databases and omics datasets to infer a comprehensive interaction map of all these dysregulated genomic factors. Our work represents an innovative approach to enhance our understanding of molecular genomic mechanisms underlying human complex diseases.
Collapse
Affiliation(s)
- Chao Xu
- Center of Genomics and Bioinformatics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, Louisiana 70112
| | - Ji-Gang Zhang
- Center of Genomics and Bioinformatics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, Louisiana 70112
| | - Dongdong Lin
- The Mind Research Network and Lovelace Biomedical and Environment Research Institute, Albuquerque, New Mexico 87106
| | - Lan Zhang
- Center of Genomics and Bioinformatics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, Louisiana 70112
| | - Hui Shen
- Center of Genomics and Bioinformatics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, Louisiana 70112
| | - Hong-Wen Deng
- Center of Genomics and Bioinformatics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, Louisiana 70112
- Laboratory of Molecular and Statistical Genetics, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
43
|
Ahn SH, Ahn JH, Ryu DR, Lee J, Cho MS, Choi YH. Effect of Necrosis on the miRNA-mRNA Regulatory Network in CRT-MG Human Astroglioma Cells. Cancer Res Treat 2017; 50:382-397. [PMID: 28546527 PMCID: PMC5912152 DOI: 10.4143/crt.2016.551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/25/2017] [Indexed: 12/14/2022] Open
Abstract
Purpose Glioblastoma multiforme (GBM) is the most common adult primary intracranial tumor. The remarkable features of GBM include central necrosis. MicroRNAs (miRNAs) have been considered as diagnostic/prognostic biomarkers for many cancers, including glioblastoma. However, the effect of necrosis on the miRNA expression profile and predicted miRNA-mRNA regulatory information remain unclear. The purpose of this study is to examine the effect of necrotic cells on the modulation of miRNA and mRNA expression profiles and miRNA-mRNA network in CRT-MG cells. Materials and Methods We used human astroglioma cells, CRT-MG, treated with necrotic CRT-MG cells to examine the effect of necrosis on the modulation of miRNA and mRNA by next-generation sequencing. For preparation of necrotic cells, CRT-MGcellswere frozen and thawed through cycle of liquid nitrogen–water bath. The putative miRNA-mRNA regulatory relationshipwas inferred through target information, using miRDB. Results The necrotic cells induced dysregulation of 106 miRNAs and 887 mRNAs. Among them, 11 miRNAs that had a negative correlation value of p < 0.05 by the hypergeometric test were screened, and their target mRNAs were analyzed by Gene Ontology enrichment analysis. Using the Kyoto Encyclopedia of Genes and Genomes database, we also found several necrotic cell treatment-activated pathways that were modulated by relevant gene targets of differentially expressed miRNAs. Conclusion Our result demonstrated that dysregulation of miRNA and mRNA expression profiles occurs when GBM cells are exposed to necrotic cells, suggesting that several miRNAs may have the potential to be used as biomarkers for predicting GBM progression and pathogenesis.
Collapse
Affiliation(s)
- So-Hee Ahn
- Department of Physiology, Ewha Womans University School of Medicine,Seoul, Korea.,Tissue Injury Defense Research Center, Ewha Womans University School of Medicine,Seoul, Korea
| | - Jung-Hyuck Ahn
- Tissue Injury Defense Research Center, Ewha Womans University School of Medicine,Seoul, Korea.,Department of Biochemistry, Ewha Womans University School of Medicine,Seoul, Korea
| | - Dong-Ryeol Ryu
- Tissue Injury Defense Research Center, Ewha Womans University School of Medicine,Seoul, Korea.,Department of Internal medicine, Ewha Womans University School of Medicine,Seoul, Korea
| | - Jisoo Lee
- Department of Internal medicine, Ewha Womans University School of Medicine,Seoul, Korea
| | - Min-Sun Cho
- Department of Pathology, Ewha Womans University School of Medicine,Seoul, Korea
| | - Youn-Hee Choi
- Department of Physiology, Ewha Womans University School of Medicine,Seoul, Korea.,Tissue Injury Defense Research Center, Ewha Womans University School of Medicine,Seoul, Korea
| |
Collapse
|
44
|
Shen SQ, Huang LS, Xiao XL, Zhu XF, Xiong DD, Cao XM, Wei KL, Chen G, Feng ZB. miR-204 regulates the biological behavior of breast cancer MCF-7 cells by directly targeting FOXA1. Oncol Rep 2017; 38:368-376. [DOI: 10.3892/or.2017.5644] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/30/2016] [Indexed: 11/06/2022] Open
|
45
|
Zhou Y, Wu B, Li JH, Nan G, Jiang JL, Chen ZN. Rab22a enhances CD147 recycling and is required for lung cancer cell migration and invasion. Exp Cell Res 2017; 357:9-16. [PMID: 28433697 DOI: 10.1016/j.yexcr.2017.04.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/01/2017] [Accepted: 04/18/2017] [Indexed: 10/25/2022]
Abstract
Rab22a is a member of the Ras-related small GTPase family, which plays a key role in regulating the recycling of cargo proteins entering cells through clathrin-independent endocytosis (CIE). Rab22a is overexpressed in different cancer types, including liver cancer, malignant melanoma, ovarian cancer and osteosarcoma. However, its oncogenic role remains unknown. In this study, we found that silencing of Rab22a suppressed the migration and invasion of lung cancer cells. Furthermore, Rab22a interacts with CD147, and knockdown of Rab22a blocks CD147 recycling and promotes CD147 degradation. Taken together, our findings indicate that Rab22a enhances recycling of CD147, which is required for lung cancer cell migration and invasion,and targeting CD147 recycling may be a rational strategy for lung cancer therapy.
Collapse
Affiliation(s)
- Yang Zhou
- National Translational Science Center for Molecular Medicine, Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, PR China.
| | - Bo Wu
- National Translational Science Center for Molecular Medicine, Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, PR China.
| | - Jiang-Hua Li
- National Translational Science Center for Molecular Medicine, Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, PR China.
| | - Gang Nan
- National Translational Science Center for Molecular Medicine, Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, PR China.
| | - Jian-Li Jiang
- National Translational Science Center for Molecular Medicine, Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, PR China.
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine, Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, PR China.
| |
Collapse
|
46
|
Hu B, Sun M, Liu J, Hong G, Lin Q. MicroRNA-204 suppressed proliferation and motility capacity of human hepatocellular carcinoma via directly targeting zinc finger E-box binding homeobox 2. Oncol Lett 2017; 13:3823-3830. [PMID: 28521482 DOI: 10.3892/ol.2017.5907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/26/2017] [Indexed: 01/08/2023] Open
Abstract
Abnormal expression levels of microRNA-204 (miR-204) have been identified in various types of human cancer. However, the expression and functions of miR-204, and the underlying molecular mechanism involved in the initiation and progression of hepatocellular carcinoma (HCC), require further investigation. The results of the present study demonstrated that miR-204 is downregulated in HCC tissues and cell lines. Notably, zinc finger E-box binding homeobox 2 (ZEB2) was identified as a direct target of miR-204 in HCC. In addition, miR-204 negatively regulates ZEB2 expression level in HCC cells at the post-transcriptional level. In functional studies, the overexpression of miR-204 inhibited the proliferation, migration and invasion of HCC cells. Furthermore, the knockdown of ZEB2 may mimic the functions of miR-204 in HCC cells, suggesting that ZEB2 is a direct functional target of miR-204. In conclusion, the results of the present study indicated that miR-204 suppresses the tumor growth, migration and invasion of HCC cells by directly targeting ZEB2, and may serve as a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Bin Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Ming Sun
- Department of Reproductive Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Jiajun Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Guolin Hong
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Qin Lin
- Department of Radiation Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| |
Collapse
|
47
|
Zhang Y, Huang B, Wang HY, Chang A, Zheng XFS. Emerging Role of MicroRNAs in mTOR Signaling. Cell Mol Life Sci 2017; 74:2613-2625. [PMID: 28238105 DOI: 10.1007/s00018-017-2485-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 12/15/2022]
Abstract
Mechanistic target of rapamycin (mTOR) is a conserved serine/threonine kinase that plays a critical role in the control of cellular growth and metabolism. Hyperactivation of mTOR pathway is common in human cancers, driving uncontrolled proliferation. MicroRNA (miRNA) is a class of short noncoding RNAs that regulate the expression of a wide variety of genes. Deregulation of miRNAs is a hallmark of cancer. Recent studies have revealed interplays between miRNAs and the mTOR pathway during cancer development. Such interactions appear to provide a fine-tuning of various cellular functions and contribute qualitatively to the behavior of cancer. Here we provide an overview of current knowledge regarding the reciprocal relationship between miRNAs and mTOR pathway: regulation of mTOR signaling by miRNAs and control of miRNA biogenesis by mTOR. Further research in this area may prove important for the diagnosis and therapy of human cancer.
Collapse
Affiliation(s)
- Yanjie Zhang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201999, China.
| | - Bo Huang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201999, China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ, 08854, USA.,Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| | - Augustus Chang
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| | - X F Steven Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China. .,Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ, 08854, USA. .,Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
48
|
RETRACTED: Downregulation of miR-204 expression correlates with poor clinical outcome of glioma patients. Hum Pathol 2017; 63:46-52. [PMID: 28232157 DOI: 10.1016/j.humpath.2016.12.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/03/2016] [Accepted: 12/07/2016] [Indexed: 12/30/2022]
Abstract
Glioma is the most common type of malignant neoplasm in the central nervous system, with high incidence and mortality rate. MicroRNAs, as a class of small noncoding RNAs, play an important role in carcinogenesis and correlate with glioma diagnosis and prognosis. In this study, we investigated the microRNA-204 (miR-204) concentration in glioma tissues and its relation to the expression of ezrin and bcl-2 mRNA, as well as its potential predictive and prognostic values in glioma. The concentrations of miR-204 were significantly lower in glioma tissues than in nontumor brain tissues and also were lower in high-grade than in low-grade gliomas (World Health Organization grades III and IV versus grades I and II). The miR-204 concentration was inversely correlated with the ezrin and bcl-2 concentrations. The miR-204 concentration was classified as high or low according to the median value, and low miR-204 correlated with higher World Health Organization grade, larger tumor, and worse Karnofsky performance score. Kaplan-Meier survival analysis demonstrated that patients with low miR-204 expression had shorter progression-free survival and overall survival than patients with high miR-204 expression. In addition, univariate and multivariate analyses showed that miR-204 expression was an independent prognostic feature of overall survival and progression-free survival. In conclusion, our study indicates that miR-204 is downregulated in glioma and may be a biomarker of poor prognosis in patients with this cancer.
Collapse
|
49
|
Jacob A, Linklater E, Bayless BA, Lyons T, Prekeris R. The role and regulation of Rab40b-Tks5 complex during invadopodia formation and cancer cell invasion. J Cell Sci 2016; 129:4341-4353. [PMID: 27789576 PMCID: PMC5201011 DOI: 10.1242/jcs.193904] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022] Open
Abstract
Invadopodia formation and extracellular matrix degradation are key events during cancer cell invasion, yet little is known about mechanisms mediating these processes. Here, we report that Rab40b plays a key role in mediating invadopodia function during breast cancer cell invasion. We also identify Tks5 (also known as SH3PXD2A), a known Src kinase substrate, as a new Rab40b effector protein and show that Tks5 functions as a tether that mediates Rab40b-dependent targeting of transport vesicles containing MMP2 and MMP9 to the extending invadopodia. Importantly, we also demonstrate that Rab40b and Tks5 levels are regulated by known tumor suppressor microRNA miR-204. This is the first study that identifies a new Rab40b–Tks5- and miR-204-dependent invadopodia transport pathway that regulates MMP2 and MMP9 secretion, and extracellular matrix remodeling during cancer progression. Highlighted Article: Rab40b plays a key role in mediating invadopodia function during breast cancer cell invasion by binding to Tks5 and functioning as a tether mediating MMP2 and MMP9 targeting to the extending invadopodia.
Collapse
Affiliation(s)
- Abitha Jacob
- Department of Cell and Developmental Biology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| | - Erik Linklater
- Department of Cell and Developmental Biology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| | - Brian A Bayless
- Department of Cell and Developmental Biology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| | - Traci Lyons
- Department of Medicine/Division of Medical Oncology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
50
|
miR-204-5p regulates cell proliferation and metastasis through inhibiting CXCR4 expression in OSCC. Biomed Pharmacother 2016; 82:202-7. [DOI: 10.1016/j.biopha.2016.04.060] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 01/12/2023] Open
|