1
|
Alginate-Based Composites for Corneal Regeneration: The Optimization of a Biomaterial to Overcome Its Limits. Gels 2022; 8:gels8070431. [PMID: 35877516 PMCID: PMC9316786 DOI: 10.3390/gels8070431] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 12/27/2022] Open
Abstract
For many years, corneal transplantation has been the first-choice treatment for irreversible damage affecting the anterior part of the eye. However, the low number of cornea donors and cases of graft rejection highlighted the need to replace donor corneas with new biomaterials. Tissue engineering plays a fundamental role in achieving this goal through challenging research into a construct that must reflect all the properties of the cornea that are essential to ensure correct vision. In this review, the anatomy and physiology of the cornea are described to point out the main roles of the corneal layers to be compensated and all the requirements expected from the material to be manufactured. Then, a deep investigation of alginate as a suitable alternative to donor tissue was conducted. Thanks to its adaptability, transparency and low immunogenicity, alginate has emerged as a promising candidate for the realization of bioengineered materials for corneal regeneration. Chemical modifications and the blending of alginate with other functional compounds allow the control of its mechanical, degradation and cell-proliferation features, enabling it to go beyond its limits, improving its functionality in the field of corneal tissue engineering and regenerative medicine.
Collapse
|
2
|
Xu H, Sapienza JS, Jin Y, Lin J, Zheng X, Dong H, Diao H, Zhao Y, Gao J, Tang J, Feng X, Micceri D, Zeng H, Lin D. Lamellar Keratoplasty Using Acellular Bioengineering Cornea (BioCorneaVetTM) for the Treatment of Feline Corneal Sequestrum: A Retrospective Study of 62 Eyes (2018–2021). Animals (Basel) 2022; 12:ani12081016. [PMID: 35454262 PMCID: PMC9026742 DOI: 10.3390/ani12081016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Corneal sequestrum is a specific and common corneal disease in cats. Surgery treatment is the recommended option. Acellular bioengineering cornea (ABC) is a popular and effective corneal transplantation material. However, no study has been published to evaluate the effectiveness and outcome of ABC lamellar transplantation for the treatment of feline corneal sequestrum (FCS). The purpose of this retrospective study was to evaluate the surgical effect of ABC lamellar transplantation in the treatment of FCS. All cats were diagnosed with FCS. All eyes received ABC lamellar transplantation for the first time, including 61 cats (62 eyes), aged 6–120 months. The average sequestrum size was 7.98 mm, with a medium of 7.75 mm (range, 4.75–11.75 mm), and the sequestrum thickness included 200 microns for 1 eye (1.61%), 300 microns for 28 eyes (45.16%), 400 microns for 29 eyes (46.77%), and 450 microns for 4 eyes (6.45%). All eyes retained vision after surgical treatment, and there was no recurrence during the follow-up period. This study has several limitations, including incomplete unification and standardization of data collection, some vacancies of follow-up time, inconsistency between then optical coherence tomography(OCT) examination and postoperative photo collection. Despite several limitations, our results show that ABC is easy to obtain and store, and has the choice of different sizes and thicknesses to achieve rapid corneal healing, and satisfactory visual and cosmetic effects in FCS treatment. Acellular bioengineering cornea can be a good alternative for the treatment of FCS. Abstract To retrospectively evaluate the effectiveness and outcome of lamellar keratoplasty using acellular bioengineering cornea (BioCorneaVetTM) for the treatment of feline corneal sequestrum (FCS). The medical records of cats diagnosed with FCS that underwent lamellar keratoplasty with BioCorneaVetTM between 2018 and 2021 with a minimum of 3 months of follow-up were reviewed. Follow-up examinations were performed weekly for 3 months, and then optical coherence tomography (OCT) examination was performed on select patients at 0, 3, 6, and 12 months post-operatively. A total of 61 cats (30 left eyes and 32 right eyes) were included. The Persian breed was overrepresented, 48/61 (78.69%). Four different thicknesses of acellular bioengineering cornea were used (200, 300, 400, or 450 microns), and the mean graft size was 8.23 mm (range, 5.00–12.00 mm). Minor complications were composed of partial dehiscence, and protrusion of the graft occurred in 7/62 eyes (11.29%). The median postoperative follow-up was 12.00 months (range, 3–41 months). A good visual outcome was achieved in 60/62 eyes (96.77%), and a mild to moderate corneal opacification occurred in 2/62 (3.23%). No recurrence of corneal sequestrum was observed. From the results, lamellar keratoplasty using acellular bioengineering cornea (BioCorneaVetTM) is an effective treatment for FCS, providing a good tectonic support and natural collagen framework, and resulting in satisfactory visual and cosmetic effects.
Collapse
Affiliation(s)
- Huihao Xu
- College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (H.X.); (Y.J.); (J.L.); (H.D.); (H.D.); (Y.Z.); (J.G.)
- College of Veterinary Medicine, Southwest University, No. 160, Xueyuan Road, Rongchang District, Chongqing 402460, China; (X.Z.); (J.T.); (X.F.); (H.Z.)
| | - John S. Sapienza
- Long Island Veterinary Specialists, Plainview, NY 11803, USA; (J.S.S.); (D.M.)
| | - Yipeng Jin
- College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (H.X.); (Y.J.); (J.L.); (H.D.); (H.D.); (Y.Z.); (J.G.)
| | - Jiahao Lin
- College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (H.X.); (Y.J.); (J.L.); (H.D.); (H.D.); (Y.Z.); (J.G.)
| | - Xiaobo Zheng
- College of Veterinary Medicine, Southwest University, No. 160, Xueyuan Road, Rongchang District, Chongqing 402460, China; (X.Z.); (J.T.); (X.F.); (H.Z.)
| | - Haodi Dong
- College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (H.X.); (Y.J.); (J.L.); (H.D.); (H.D.); (Y.Z.); (J.G.)
| | - Hongxiu Diao
- College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (H.X.); (Y.J.); (J.L.); (H.D.); (H.D.); (Y.Z.); (J.G.)
| | - Ying Zhao
- College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (H.X.); (Y.J.); (J.L.); (H.D.); (H.D.); (Y.Z.); (J.G.)
| | - Jiafeng Gao
- College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (H.X.); (Y.J.); (J.L.); (H.D.); (H.D.); (Y.Z.); (J.G.)
| | - Jing Tang
- College of Veterinary Medicine, Southwest University, No. 160, Xueyuan Road, Rongchang District, Chongqing 402460, China; (X.Z.); (J.T.); (X.F.); (H.Z.)
| | - Xueqian Feng
- College of Veterinary Medicine, Southwest University, No. 160, Xueyuan Road, Rongchang District, Chongqing 402460, China; (X.Z.); (J.T.); (X.F.); (H.Z.)
| | - Danielle Micceri
- Long Island Veterinary Specialists, Plainview, NY 11803, USA; (J.S.S.); (D.M.)
| | - Haoran Zeng
- College of Veterinary Medicine, Southwest University, No. 160, Xueyuan Road, Rongchang District, Chongqing 402460, China; (X.Z.); (J.T.); (X.F.); (H.Z.)
| | - Degui Lin
- College of Veterinary Medicine, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (H.X.); (Y.J.); (J.L.); (H.D.); (H.D.); (Y.Z.); (J.G.)
- Correspondence:
| |
Collapse
|
3
|
Holland G, Pandit A, Sánchez-Abella L, Haiek A, Loinaz I, Dupin D, Gonzalez M, Larra E, Bidaguren A, Lagali N, Moloney EB, Ritter T. Artificial Cornea: Past, Current, and Future Directions. Front Med (Lausanne) 2021; 8:770780. [PMID: 34869489 PMCID: PMC8632951 DOI: 10.3389/fmed.2021.770780] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
Corneal diseases are a leading cause of blindness with an estimated 10 million patients diagnosed with bilateral corneal blindness worldwide. Corneal transplantation is highly successful in low-risk patients with corneal blindness but often fails those with high-risk indications such as recurrent or chronic inflammatory disorders, history of glaucoma and herpetic infections, and those with neovascularisation of the host bed. Moreover, the need for donor corneas greatly exceeds the supply, especially in disadvantaged countries. Therefore, artificial and bio-mimetic corneas have been investigated for patients with indications that result in keratoplasty failure. Two long-lasting keratoprostheses with different indications, the Boston type-1 keratoprostheses and osteo-odonto-keratoprostheses have been adapted to minimise complications that have arisen over time. However, both utilise either autologous tissue or an allograft cornea to increase biointegration. To step away from the need for donor material, synthetic keratoprostheses with soft skirts have been introduced to increase biointegration between the device and native tissue. The AlphaCor™, a synthetic polymer (PHEMA) hydrogel, addressed certain complications of the previous versions of keratoprostheses but resulted in stromal melting and optic deposition. Efforts are being made towards creating synthetic keratoprostheses that emulate native corneas by the inclusion of biomolecules that support enhanced biointegration of the implant while reducing stromal melting and optic deposition. The field continues to shift towards more advanced bioengineering approaches to form replacement corneas. Certain biomolecules such as collagen are being investigated to create corneal substitutes, which can be used as the basis for bio-inks in 3D corneal bioprinting. Alternatively, decellularised corneas from mammalian sources have shown potential in replicating both the corneal composition and fibril architecture. This review will discuss the limitations of keratoplasty, milestones in the history of artificial corneal development, advancements in current artificial corneas, and future possibilities in this field.
Collapse
Affiliation(s)
- Gráinne Holland
- School of Medicine, College of Medicine, Nursing and Health Sciences, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Abhay Pandit
- CÚRAM Science Foundation Ireland Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Laura Sánchez-Abella
- CIDETEC, Basque Research and Technology Alliance, Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain
| | - Andrea Haiek
- CIDETEC, Basque Research and Technology Alliance, Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain
| | - Iraida Loinaz
- CIDETEC, Basque Research and Technology Alliance, Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain
| | - Damien Dupin
- CIDETEC, Basque Research and Technology Alliance, Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain
| | | | | | - Aritz Bidaguren
- Ophthalmology Department, Donostia University Hospital, San Sebastián, Spain
| | - Neil Lagali
- Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Elizabeth B. Moloney
- School of Medicine, College of Medicine, Nursing and Health Sciences, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
- CÚRAM Science Foundation Ireland Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Thomas Ritter
- School of Medicine, College of Medicine, Nursing and Health Sciences, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
- CÚRAM Science Foundation Ireland Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| |
Collapse
|
4
|
Yun HW, Song BR, Shin DI, Yin XY, Truong MD, Noh S, Jin YJ, Kwon HJ, Min BH, Park DY. Fabrication of decellularized meniscus extracellular matrix according to inner cartilaginous, middle transitional, and outer fibrous zones result in zone-specific protein expression useful for precise replication of meniscus zones. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112312. [PMID: 34474863 DOI: 10.1016/j.msec.2021.112312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 11/15/2022]
Abstract
Meniscus is a fibrocartilage composite tissue with three different microstructual zones, inner fibrocartilage, middle transitional, and outer fibrous zone. We hypothesized that decellularized meniscus extracellular matrix (DMECM) would have different characteristics according to zone of origin. We aimed to compare zone-specific DMECM in terms of biochemical characteristics and cellular interactions associated with tissue engineering. Micronized DMECM was fabricated from porcine meniscus divided into three microstructural zones. Characterization of DMECM was done by biochemical and proteomic analysis. Inner DMECM showed the highest glycosaminoglycan content, while middle DMECM showed the highest collagen content among groups. Proteomic analysis showed significant differences among DMECM groups. Inner DMECM showed better adhesion and migration potential to meniscus cells compared to other groups. DMECM resulted in expression of zone-specific differentiation markers when co-cultured with synovial mesenchymal stem cells (SMSCs). SMSCs combined with inner DMECM showed the highest glycosaminoglycan in vivo. Outer DMECM constructs, on the other hand, showed more fibrous tissue features, while middle DMECM constructs showed both inner and outer zone characteristics. In conclusion, DMECM showed different characteristics according to microstructural zones, and such material may be useful for zone-specific tissue engineering of meniscus.
Collapse
Affiliation(s)
- Hee-Woong Yun
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Bo Ram Song
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Dong Il Shin
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Xiang Yun Yin
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Minh-Dung Truong
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Sujin Noh
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Young Jun Jin
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Hyeon Jae Kwon
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Byoung-Hyun Min
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Do Young Park
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea.
| |
Collapse
|
5
|
Mahdavi SS, Abdekhodaie MJ, Mashayekhan S, Baradaran-Rafii A, Djalilian AR. Bioengineering Approaches for Corneal Regenerative Medicine. Tissue Eng Regen Med 2020; 17:567-593. [PMID: 32696417 PMCID: PMC7373337 DOI: 10.1007/s13770-020-00262-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Since the cornea is responsible for transmitting and focusing light into the eye, injury or pathology affecting any layer of the cornea can cause a detrimental effect on visual acuity. Aging is also a reason for corneal degeneration. Depending on the level of the injury, conservative therapies and donor tissue transplantation are the most common treatments for corneal diseases. Not only is there a lack of donor tissue and risk of infection/rejection, but the inherent ability of corneal cells and layers to regenerate has led to research in regenerative approaches and treatments. METHODS In this review, we first discussed the anatomy of the cornea and the required properties for reconstructing layers of the cornea. Regenerative approaches are divided into two main categories; using direct cell/growth factor delivery or using scaffold-based cell delivery. It is expected delivered cells migrate and integrate into the host tissue and restore its structure and function to restore vision. Growth factor delivery also has shown promising results for corneal surface regeneration. Scaffold-based approaches are categorized based on the type of scaffold, since it has a significant impact on the efficiency of regeneration, into the hydrogel and non-hydrogel based scaffolds. Various types of cells, biomaterials, and techniques are well covered. RESULTS The most important characteristics to be considered for biomaterials in corneal regeneration are suitable mechanical properties, biocompatibility, biodegradability, and transparency. Moreover, a curved shape structure and spatial arrangement of the fibrils have been shown to mimic the corneal extracellular matrix for cells and enhance cell differentiation. CONCLUSION Tissue engineering and regenerative medicine approaches showed to have promising outcomes for corneal regeneration. However, besides proper mechanical and optical properties, other factors such as appropriate sterilization method, storage, shelf life and etc. should be taken into account in order to develop an engineered cornea for clinical trials.
Collapse
Affiliation(s)
- S Sharareh Mahdavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 1393 Azadi Ave., Tehran, 11365-11155, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 1393 Azadi Ave., Tehran, 11365-11155, Iran.
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 1393 Azadi Ave., Tehran, 11365-11155, Iran
| | - Alireza Baradaran-Rafii
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, SBUMS, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839-63113, Iran
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1200 W Harrison St, Chicago, IL, 60607, USA
| |
Collapse
|
6
|
Fernández-Pérez J, Madden PW, Ahearne M. Engineering a Corneal Stromal Equivalent Using a Novel Multilayered Fabrication Assembly Technique. Tissue Eng Part A 2020; 26:1030-1041. [PMID: 32368948 PMCID: PMC7580631 DOI: 10.1089/ten.tea.2020.0019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To overcome the serious shortage of donor corneas for transplantation, alternatives based on tissue engineering need to be developed. Decellularized corneas are one potential alternative, but their densely packed collagen architecture inhibits recellularization in vitro. Therefore, a new rapid method of recellularizing these constructs to ensure high cellularity throughout the collagen scaffold is needed. In this study, we developed a novel method for fabricating corneal constructs by using decellularized porcine corneal sheets assembled using a bottom-up approach by layering multiple sheets between cell-laden collagen I hydrogel. Corneal lenticules were cut from porcine corneas by cryosectioning, then decellularized with detergents and air-dried for storage as sheets. Human corneal stromal cells were encapsulated in collagen I hydrogel and cast between the dried sheets. Constructs were cultured in serum-free medium supplemented with ascorbic acid and insulin for 2 weeks. Epithelial cells were then seeded on the surface and cultured for an additional week. Transparency, cell viability, and phenotype were analyzed by qPCR, histology, and immunofluorescence. Constructs without epithelial cells were sutured onto an ex vivo porcine cornea and cultured for 1 week. Lenticules were successfully decellularized, achieving dsDNA values of 13 ± 1.2 ng/mg dry tissue, and were more resistant to degradation than the collagen I hydrogels. Constructs maintained high cell viability with a keratocyte-like phenotype with upregulation of keratocan, decorin, lumican, collagen I, ALDH3A1, and CD34 and the corneal epithelial cells stratified with a cobblestone morphology. The construct was amenable to surgical handling and no tearing occurred during suturing. After 7 days ex vivo, constructs were covered by a neoepithelium from the host porcine cells and integration into the host stroma was observed. This study describes a novel approach toward fabricating anterior corneal substitutes in a simple and rapid manner, obtaining mature and suturable constructs using only tissue-derived materials.
Collapse
Affiliation(s)
- Julia Fernández-Pérez
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland.,Trinity Center for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Peter W Madden
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland.,Trinity Center for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Mark Ahearne
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland.,Trinity Center for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
7
|
da Mata Martins TM, da Silva Cunha P, Rodrigues MA, de Carvalho JL, de Souza JE, de Carvalho Oliveira JA, Gomes DA, de Goes AM. Epithelial basement membrane of human decellularized cornea as a suitable substrate for differentiation of embryonic stem cells into corneal epithelial-like cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111215. [PMID: 32806330 DOI: 10.1016/j.msec.2020.111215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
The ability to decellularize and recellularize the corneas deemed unsuitable for transplantation may increase the number of available grafts. Decellularized corneas (DCs) may provide a natural microenvironment for cell adhesion and differentiation. Despite this, no study to date has evaluated their efficacy as a substrate for the induction of stem cell differentiation into corneal cells. The present study aimed to compare the efficiency of NaCl and NaCl plus nucleases methods to decellularize whole human corneas, and to investigate the effect of epithelial basement membrane (EBM) of whole DCs on the ability of human embryonic stem cells (hESCs) to differentiate into corneal epithelial-like cells when cultured in animal serum-free differentiation medium. As laminin is the major component of EBM, we also investigated its effect on hESCs differentiation. The decellularization efficiency and integrity of the extracellular matrix (ECM) obtained were investigated by histology, electron microscopy, DNA quantification, immunofluorescence, and nuclear staining. The ability of hESCs to differentiate into corneal epithelial-like cells when seeded on the EBM of DCs or laminin-coated wells was evaluated by immunofluorescence and RT-qPCR analyses. NaCl treatment alone, without nucleases, was insufficient to remove cellular components, while NaCl plus nucleases treatment resulted in efficient decellularization and preservation of the ECM. Unlike cells induced to differentiate on laminin, hESCs differentiated on DCs expressed high levels of corneal epithelial-specific markers, keratin 3 and keratin 12. It was demonstrated for the first time that the decellularized matrices had a positive effect on the differentiation of hESCs towards corneal epithelial-like cells. Such a strategy supports the potential applications of human DCs and hESCs in corneal epithelium tissue engineering.
Collapse
Affiliation(s)
- Thaís Maria da Mata Martins
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Pricila da Silva Cunha
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Michele Angela Rodrigues
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Juliana Lott de Carvalho
- Department of Genomic Sciences and Biotechnology, Catholic University of Brasilia, QS 07 - Lote 01, EPCT - Taguatinga, Brasília, Distrito Federal 71966-700, Brazil; Faculty of Medicine, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil
| | - Joyce Esposito de Souza
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Junnia Alvarenga de Carvalho Oliveira
- Department of Microbiology, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Dawidson Assis Gomes
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Alfredo Miranda de Goes
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| |
Collapse
|
8
|
Han F, Wang J, Ding L, Hu Y, Li W, Yuan Z, Guo Q, Zhu C, Yu L, Wang H, Zhao Z, Jia L, Li J, Yu Y, Zhang W, Chu G, Chen S, Li B. Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Front Bioeng Biotechnol 2020; 8:83. [PMID: 32266221 PMCID: PMC7105900 DOI: 10.3389/fbioe.2020.00083] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Exploring innovative solutions to improve the healthcare of the aging and diseased population continues to be a global challenge. Among a number of strategies toward this goal, tissue engineering and regenerative medicine (TERM) has gradually evolved into a promising approach to meet future needs of patients. TERM has recently received increasing attention in Asia, as evidenced by the markedly increased number of researchers, publications, clinical trials, and translational products. This review aims to give a brief overview of TERM development in Asia over the last decade by highlighting some of the important advances in this field and featuring major achievements of representative research groups. The development of novel biomaterials and enabling technologies, identification of new cell sources, and applications of TERM in various tissues are briefly introduced. Finally, the achievement of TERM in Asia, including important publications, representative discoveries, clinical trials, and examples of commercial products will be introduced. Discussion on current limitations and future directions in this hot topic will also be provided.
Collapse
Affiliation(s)
- Fengxuan Han
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiayuan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luguang Ding
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yuanbin Hu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Wenquan Li
- Department of Otolaryngology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Caihong Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Li Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Huan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Zhongliang Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luanluan Jia
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiaying Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yingkang Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Song Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
9
|
Sun X, Yang X, Song W, Ren L. Construction and Evaluation of Collagen-Based Corneal Grafts Using Polycaprolactone To Improve Tension Stress. ACS OMEGA 2020; 5:674-682. [PMID: 31956817 PMCID: PMC6964271 DOI: 10.1021/acsomega.9b03297] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/18/2019] [Indexed: 05/09/2023]
Abstract
The emergence of innovative surgical procedures using partial thickness corneal transplant has created a need for the development of corneal grafts to replace pathologic corneal tissue. Corneal repair materials have been successfully prepared in the past 10 years, but they were difficult to be used in clinics because of the unbearable tension caused by interrupted suture during routine surgery. However, polycaprolactone (PCL), a medical polymer material, can solve this problem. Therefore, a hierarchical collagen (Col)-based corneal graft with curvature, consisting of a transparent core part composed of collagen in the center and a mechanically robust fixed part containing collagen and polycaprolactone in the edge, was used as a potential corneal graft for corneal repair and regeneration in this study. The hierarchical collagen-based corneal grafts [collagen-polycaprolactone (Col-PCL) membranes] that are capable of mimicking the native cornea were developed based on chemical and thermal crosslinking mechanisms. The water adsorption of Col-PCL membranes could reach over 80% similar to that of human cornea, and its swelling could reach over 400%. More importantly, the formed Col-PCL membranes could resist a larger tensile strength (1.1 ± 0.03 MPa) before rupturing in comparison with pure collagen membranes and polycaprolactone membranes. Furthermore, the biodegradable Col-PCL membranes could facilitate cell adhesion and proliferation as well as cell migration (exhibiting epithelial wound coverage in <5 days), which showed promise as corneal grafts for cornea tissue engineering.
Collapse
Affiliation(s)
- Xiaomin Sun
- School
of Materials Science and Engineering, Key Laboratory of Biomedical Engineering
of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering
of the Ministry of Education, and Innovation Center for Tissue Restoration and
Reconstruction, South China University of
Technology, Guangzhou 510006, P. R. China
- National
Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
| | - Xiangjing Yang
- School
of Materials Science and Engineering, Key Laboratory of Biomedical Engineering
of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering
of the Ministry of Education, and Innovation Center for Tissue Restoration and
Reconstruction, South China University of
Technology, Guangzhou 510006, P. R. China
- National
Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
| | - Wenjing Song
- School
of Materials Science and Engineering, Key Laboratory of Biomedical Engineering
of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering
of the Ministry of Education, and Innovation Center for Tissue Restoration and
Reconstruction, South China University of
Technology, Guangzhou 510006, P. R. China
- National
Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
| | - Li Ren
- School
of Materials Science and Engineering, Key Laboratory of Biomedical Engineering
of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering
of the Ministry of Education, and Innovation Center for Tissue Restoration and
Reconstruction, South China University of
Technology, Guangzhou 510006, P. R. China
- National
Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
- Sino-Singapore
International Joint Research Institute, Guangzhou 510555, P. R. China
- Guangzhou
Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, P. R. China
| |
Collapse
|
10
|
Li S, Deng Y, Tian B, Huang H, Zhang H, Yang R, Zhong J, Wang B, Peng L, Yuan J. Healing characteristics of acellular porcine corneal stroma following therapeutic keratoplasty. Xenotransplantation 2019; 27:e12566. [PMID: 31692139 DOI: 10.1111/xen.12566] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/03/2019] [Accepted: 10/13/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Acellular porcine corneal stroma (APCS) has proven to be a promising alternative to traditional corneal grafts. This prospective case series was conducted to further investigate the healing characteristics of APCS following keratoplasty. METHODS Twenty-seven patients undergoing APCS implantation to treat infectious keratitis were included. The patients were followed up for 12 months after surgery. The main outcome measures included visual acuity, corneal transparency, graft thickness, and cellular and nerve regeneration. RESULTS In the operated eyes, the best-corrected visual acuity (BCVA, in logarithm of the minimal angle of resolution [logMAR] units) increased from 1.23 ± 0.95 logMAR before surgery to 0.23 ± 0.18 logMAR at 12 months after surgery (P < .001). The contrast sensitivity was still evidently reduced, especially at higher spatial frequencies. Gradual transparency improvement was observed in APCS grafts post-operatively. After implantation, the APCS graft thickness initially increased (day 1 = 592.41 ± 52.69 µm) but then continuously decreased until 3 months after surgery (1 month = 449.26 ± 50.38 µm; 3 months = 359.63 ± 34.14 µm, P < .001). Graft reepithelialization was completed within 1 week. In the in vivo confocal microscopy scans, host keratocytes began to repopulate the APCS grafts between 3 and 6 months post-operatively; subbasal nerve regeneration was only noted in 18.52% (5/27) of the eyes by 12 months after surgery. CONCLUSIONS Acellular porcine corneal stroma functions as an effective alternative to human corneal tissue in lamellar keratoplasty. However, APCS is somewhat different from fresh human cornea in term of the post-operative healing process, which warrants the attention of both clinicians and patients.
Collapse
Affiliation(s)
- Saiqun Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuqing Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bishan Tian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Haixiang Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Henan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ruhui Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bowen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lulu Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Abstract
The corneal stroma comprises 90% of the corneal thickness and is critical for the cornea's transparency and refractive function necessary for vision. When the corneal stroma is altered by disease, injury, or scarring, however, an irreversible loss of transparency can occur. Corneal stromal pathology is the cause of millions of cases of blindness globally, and although corneal transplantation is the standard therapy, a severe global deficit of donor corneal tissue and eye banking infrastructure exists, and is unable to meet the overwhelming need. An alternative approach is to harness the endogenous regenerative ability of the corneal stroma, which exhibits self-renewal of the collagenous extracellular matrix under appropriate conditions. To mimic endogenous stromal regeneration, however, is a challenge. Unlike the corneal epithelium and endothelium, the corneal stroma is an exquisitely organized extracellular matrix containing stromal cells, proteoglycans and corneal nerves that is difficult to recapitulate in vitro. Nevertheless, much progress has recently been made in developing stromal equivalents, and in this review the most recent approaches to stromal regeneration therapy are described and discussed. Novel approaches for stromal regeneration include human or animal corneal and/or non-corneal tissue that is acellular or is decellularized and/or re-cellularized, acellular bioengineered stromal scaffolds, tissue adhesives, 3D bioprinting and stromal stem cell therapy. This review highlights the techniques and advances that have achieved first clinical use or are close to translation for eventual therapeutic application in repairing and regenerating the corneal stroma, while the potential of these novel therapies for achieving effective stromal regeneration is discussed.
Collapse
Affiliation(s)
- Neil Lagali
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Medicine, Linköping University, Linköping, Sweden.,Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
| |
Collapse
|
12
|
Re-epithelialization and remodeling of decellularized corneal matrix in a rabbit corneal epithelial wound model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:238-246. [DOI: 10.1016/j.msec.2019.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022]
|
13
|
Cui Z, Zeng Q, Liu S, Zhang Y, Zhu D, Guo Y, Xie M, Mathew S, Cai D, Zhang J, Chen J. Cell-laden and orthogonal-multilayer tissue-engineered corneal stroma induced by a mechanical collagen microenvironment and transplantation in a rabbit model. Acta Biomater 2018; 75:183-199. [PMID: 29883810 DOI: 10.1016/j.actbio.2018.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/26/2018] [Accepted: 06/03/2018] [Indexed: 01/04/2023]
Abstract
The development of functional therapies for corneal repair and regeneration is a pressing issue. Corneal stroma provides the principal functions of the cornea. However, because of the highly organized nature of the stromal matrix, the attempts to reproduce corneal stroma might follow a scar model. Here, we have developed a protocol for the efficient generation of a cell-laden and orthogonal-multilayer tissue-engineered (TE) corneal stroma, which is induced by the mechanical effects of compressed collagen (CC) or stretched compressed collagen (SCC). Within SCC, with applied compression and force extension, collagen microfibres and corneal stromal cells (CSCs) are arranged orderly, while collagen fibres and CSCs in CC are randomly arranged. Dehydrated SCC has higher tensile strength than dehydrated CC. Hydrated SCC has similar transparency with hydrated native corneal stroma. Compared with those cultured on tissue culture plates (TCP), down-regulation of the genes and proteins of cytoskeleton, activation, proliferation, collagen and TRPV4, up-regulation of proteoglycans, gap junction proteins and TRPA1 are in CSCs of CC and SCC. Moreover, SCC and CC grafts displayed biocompatibility and integration with host corneal tissue after rabbit intra-corneal stromal transplantation by wk 6 under slit lamp microscopy, in vivo confocal microscopy and histological examination. The SCC model facilitates the construction of physiological feature TE corneal stroma, which serves as a foundation for physiological TE construction of other tissues. STATEMENT OF SIGNIFICANCE The development of functional therapies for corneal repair and regeneration is a pressing issue. Corneal stroma provides the principal functions of the cornea. Here, we have developed a protocol for the efficient generation of a cell-laden and orthogonal-multilayer tissue-engineered (TE) corneal stroma, which is induced by the mechanical effects of compressed collagen (CC) or stretched compressed collagen (SCC). These models facilitate the construction of physiological feature TE corneal stroma, which serves as a foundation for physiological TE construction of other tissues and helps to reverse fibrosis pathologies in general.
Collapse
Affiliation(s)
- Zekai Cui
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Qiaolang Zeng
- The Department of Ophthalmology, the First Clinical Medical College, Jinan University, Guangzhou 510632, PR China
| | - Shiwei Liu
- The Department of Ophthalmology, the First Clinical Medical College, Jinan University, Guangzhou 510632, PR China
| | - Yanan Zhang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Educational Institutes, Jinan University, Guangzhou 510632, PR China
| | - Deliang Zhu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Yonglong Guo
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Mengyuan Xie
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Educational Institutes, Jinan University, Guangzhou 510632, PR China
| | - Sanjana Mathew
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Dongqing Cai
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Jun Zhang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Educational Institutes, Jinan University, Guangzhou 510632, PR China.
| | - Jiansu Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, PR China; The Department of Ophthalmology, the First Clinical Medical College, Jinan University, Guangzhou 510632, PR China; Institute of Ophthalmology, Medical College, Jinan University, Guangzhou 510632, PR China; Aier Eye Institute, #198 Furong Middle Road, Changsha 410015, PR China.
| |
Collapse
|
14
|
Matthyssen S, Van den Bogerd B, Dhubhghaill SN, Koppen C, Zakaria N. Corneal regeneration: A review of stromal replacements. Acta Biomater 2018; 69:31-41. [PMID: 29374600 DOI: 10.1016/j.actbio.2018.01.023] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
Corneal blindness is traditionally treated by transplantation of a donor cornea, or in severe cases by implantation of an artificial cornea or keratoprosthesis. Due to severe donor shortages and the risks of complications that come with artificial corneas, tissue engineering in ophthalmology has become more focused on regenerative strategies using biocompatible materials either with or without cells. The stroma makes up the bulk of the corneal thickness and mainly consists of a tightly interwoven network of collagen type I, making it notoriously difficult to recreate in a laboratory setting. Despite the challenges that come with corneal stromal tissue engineering, there has recently been enormous progress in this field. A large number of research groups are working towards developing the ideal biomimetic, cytocompatible and transplantable stromal replacement. Here we provide an overview of the approaches directed towards tissue engineering the corneal stroma, from classical collagen gels, films and sponges to less traditional components such as silk, fish scales, gelatin and polymers. The perfect stromal replacement has yet to be identified and future research should be directed at combined approaches, in order to not only host native stromal cells but also restore functionality. STATEMENT OF SIGNIFICANCE In the field of tissue engineering and regenerative medicine in ophthalmology the focus has shifted towards a common goal: to restore the corneal stroma and thereby provide a new treatment option for patients who are currently blind due to corneal opacification. Currently the waiting lists for corneal transplantation include more than 10 million patients, due to severe donor shortages. Alternatives to the transplantation of a donor cornea include the use of artificial cornea, but these are by no means biomimetic and therefore do not provide good outcomes. In recent years a lot of work has gone into the development of tissue engineered scaffolds and other biomaterials suitable to replace the native stromal tissue. Looking at all the different approaches separately is a daunting task and up until now there was no review article in which every approach is discussed. This review does include all approaches, from classical tissue engineering with collagen to the use of various alternative biomaterials and even fish scales. Therefore, this review can serve as a reference work for those starting in the field and but also to stimulate collaborative efforts in the future.
Collapse
|
15
|
SANGEETHA P, MAITI SK, GAUTAM PANKAJ, SINGH KIRANJEET, GOPINATHAN ASWATHY, SINGH KP, MOHAN DIVYA, NINU AR, KUMAR NAVEEN. Evaluation of bio-engineered corneal scaffold for the repair of corneal defect in rabbit model. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2017. [DOI: 10.56093/ijans.v87i11.75864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Clinically healthy adult New Zealand white rabbits (27) of either sex, were randomly divided into three groups (A, B and C) having 9 animals each. Porcine cornea was made acellular by treating it with 1% sodium dodecyl sulphate (SDS). Rabbit bone marrow derived mesenchymal stem cells were seeded over this acellular matrix. A 5mm diameter lamellar keratectomy wound was created over the peripheral cornea of rabbits in all the 3 groups. Ingroup A, the corneal defect was managed by simple tarsorrhaphy without any graft and is treated as control. In group B, defect was repaired with decellularized porcine cornea and in group C, corneal defect was repaired with r-MSC seeded decellularized cornea. On the basis of clinical, pathological and scanning electron microscopic examinations, mesenchymal stem cell seeded corneal scaffold showed better healing and vision when compared tononseeded scaffolds. Cell seeded corneal matrix was found to be an alternative to conventional means of surgical management of corneal ulcer.
Collapse
|
16
|
Tang X, Qin H, Gu X, Fu X. China’s landscape in regenerative medicine. Biomaterials 2017; 124:78-94. [DOI: 10.1016/j.biomaterials.2017.01.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/24/2017] [Accepted: 01/28/2017] [Indexed: 12/15/2022]
|
17
|
Abstract
In recent years, the cultivation and expansion of primary corneal cells has made significant progress. The transplantation of cultured limbal epithelial cells represents a successful and established treatment of the ocular surface. Cultivated corneal endothelial cells are undergoing a clinical trial in Japan. Stromal keratocytes can now be expanded in vitro. A wide range of stem cell sources is being tested in vitro and animal models for their possible application in corneal cell therapy. This article gives an overview of recent advancements and prevailing limitations for the use of different cell sources in the therapy of corneal disease.
Collapse
Affiliation(s)
- M Fuest
- Klinik für Augenheilkunde, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland.
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapur, Singapur.
| | - G Hin-Fai Yam
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapur, Singapur
- Eye-ACP, Duke-NUS Graduate Medical School, Singapur, Singapur
| | - G Swee-Lim Peh
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapur, Singapur
- Eye-ACP, Duke-NUS Graduate Medical School, Singapur, Singapur
| | - P Walter
- Klinik für Augenheilkunde, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland
| | - N Plange
- Klinik für Augenheilkunde, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland
| | - J S Mehta
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapur, Singapur
- Eye-ACP, Duke-NUS Graduate Medical School, Singapur, Singapur
- Singapore National Eye Centre, Singapur, Singapur
- School of Material Science and Engineering, Nanyang Technological University, Singapur, Singapur
| |
Collapse
|
18
|
Gibney R, Matthyssen S, Patterson J, Ferraris E, Zakaria N. The Human Cornea as a Model Tissue for Additive Biomanufacturing: A Review. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.procir.2017.04.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Abstract
Corneal integrity is essential for visual function. Transplantation remains the most common treatment option for advanced corneal diseases. A global donor material shortage requires a search for alternative treatments. Different stem cell populations have been induced to express corneal cell characteristics in vitro and in animal models. Yet before their application to humans, scientific and ethical issues need to be solved. The in vitro propagation and implantation of primary corneal cells has been rapidly evolving with clinical practices of limbal epithelium transplantation and a clinical trial for endothelial cells in progress, implying cultivated ocular cells as a promising option for the future. This review reports on the latest developments in primary ocular cell and stem cell research for corneal therapy.
Collapse
Affiliation(s)
- Matthias Fuest
- Tissue Engineering & Stem Cell Group, Singapore Eye Research Institute, Singapore.,Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Gary Hin-Fai Yam
- Tissue Engineering & Stem Cell Group, Singapore Eye Research Institute, Singapore.,Eye-ACP, Duke-NUS Graduate Medical School, Singapore
| | - Gary Swee-Lim Peh
- Tissue Engineering & Stem Cell Group, Singapore Eye Research Institute, Singapore.,Eye-ACP, Duke-NUS Graduate Medical School, Singapore
| | - Jodhbir S Mehta
- Tissue Engineering & Stem Cell Group, Singapore Eye Research Institute, Singapore.,Eye-ACP, Duke-NUS Graduate Medical School, Singapore.,Singapore National Eye Centre, Singapore.,School of Materials Science & Engineering, Nanyang Technological University, Singapore
| |
Collapse
|