1
|
Song CW, Kim H, Kim MS, Park HJ, Paek SH, Terezakis S, Cho LC. Role of HIF-1α in the Responses of Tumors to Radiotherapy and Chemotherapy. Cancer Res Treat 2025; 57:1-10. [PMID: 38853541 PMCID: PMC11729307 DOI: 10.4143/crt.2024.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
Tumor microenvironment is intrinsically hypoxic with abundant hypoxia-inducible factors-1α (HIF-1α), a primary regulator of the cellular response to hypoxia and various stresses imposed on the tumor cells. HIF-1α increases radioresistance and chemoresistance by reducing DNA damage, increasing repair of DNA damage, enhancing glycolysis that increases antioxidant capacity of tumors cells, and promoting angiogenesis. In addition, HIF-1α markedly enhances drug efflux, leading to multidrug resistance. Radiotherapy and certain chemotherapy drugs evoke profound anti-tumor immunity by inducing immunologic cell death that release tumor-associated antigens together with numerous pro-immunological factors, leading to priming of cytotoxic CD8+ T cells and enhancing the cytotoxicity of macrophages and natural killer cells. Radiotherapy and chemotherapy of tumors significantly increase HIF-1α activity in tumor cells. Unfortunately, HIF-1α effectively promotes various immune suppressive pathways including secretion of immune suppressive cytokines, activation of myeloid-derived suppressor cells, activation of regulatory T cells, inhibition of T cells priming and activity, and upregulation of immune checkpoints. Consequently, the anti-tumor immunity elevated by radiotherapy and chemotherapy is counterbalanced or masked by the potent immune suppression promoted by HIF-1α. Effective inhibition of HIF-1α may significantly increase the efficacy of radiotherapy and chemotherapy by increasing radiosensitivity and chemosensitivity of tumor cells and also by upregulating anti-tumor immunity.
Collapse
Affiliation(s)
- Chang W Song
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Hyunkyung Kim
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Mi-Sook Kim
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Heon J Park
- Department of Microbiology, College of Medicine, Inha University, Incheon, Korea
| | - Sun-Ha Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Stephanie Terezakis
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - L Chinsoo Cho
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
2
|
Quenneville J, Feghaly A, Tual M, Thomas K, Major F, Gagnon E. Long-term severe hypoxia adaptation induces non-canonical EMT and a novel Wilms Tumor 1 (WT1) isoform. Cancer Gene Ther 2024; 31:1237-1250. [PMID: 38977895 PMCID: PMC11327107 DOI: 10.1038/s41417-024-00795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/03/2024] [Accepted: 05/30/2024] [Indexed: 07/10/2024]
Abstract
The majority of cancer deaths are caused by solid tumors, where the four most prevalent cancers (breast, lung, colorectal and prostate) account for more than 60% of all cases (1). Tumor cell heterogeneity driven by variable cancer microenvironments, such as hypoxia, is a key determinant of therapeutic outcome. We developed a novel culture protocol, termed the Long-Term Hypoxia (LTHY) time course, to recapitulate the gradual development of severe hypoxia seen in vivo to mimic conditions observed in primary tumors. Cells subjected to LTHY underwent a non-canonical epithelial to mesenchymal transition (EMT) based on miRNA and mRNA signatures as well as displayed EMT-like morphological changes. Concomitant to this, we report production of a novel truncated isoform of WT1 transcription factor (tWt1), a non-canonical EMT driver, with expression driven by a yet undescribed intronic promoter through hypoxia-responsive elements (HREs). We further demonstrated that tWt1 initiates translation from an intron-derived start codon, retains proper subcellular localization and DNA binding. A similar tWt1 is also expressed in LTHY-cultured human cancer cell lines as well as primary cancers and predicts long-term patient survival. Our study not only demonstrates the importance of culture conditions that better mimic those observed in primary cancers, especially with regards to hypoxia, but also identifies a novel isoform of WT1 which correlates with poor long-term survival in ovarian cancer.
Collapse
Affiliation(s)
- Jordan Quenneville
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada.
- Department of Molecular Biology, Université de Montréal, Montréal, QC, Canada.
| | - Albert Feghaly
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Margaux Tual
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Microbiology, Infectiology, and Immunology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Kiersten Thomas
- Department of Integrative Oncology, BC Cancer Research Center, Vancouver, BC, Canada
| | - François Major
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Computer Science and Operations Research, Faculty of Arts and Sciences, Université de Montréal, Montréal, QC, Canada
| | - Etienne Gagnon
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada.
- Department of Microbiology, Infectiology, and Immunology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
3
|
Skryabin GO, Beliaeva AA, Enikeev AD, Tchevkina EM. Extracellular Vesicle miRNAs in Diagnostics of Gastric Cancer. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1211-1238. [PMID: 39218020 DOI: 10.1134/s0006297924070058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 09/04/2024]
Abstract
Gastric cancer (GC) poses a significant global health challenge because of its high mortality rate attributed to the late-stage diagnosis and lack of early symptoms. Early cancer diagnostics is crucial for improving the survival rates in GC patients, which emphasizes the importance of identifying GC markers for liquid biopsy. The review discusses a potential use of extracellular vesicle microRNAs (EV miRNAs) as biomarkers for the diagnostics and prognostics of GC. Methods. Original articles on the identification of EV miRNA as GC markers published in the Web of Science and Scopus indexed issues were selected from the PubMed and Google Scholar databases. We focused on the methodological aspects of EV analysis, including the choice of body fluid, methods for EV isolation and validation, and approaches for EV miRNA analysis. Conclusions. Out of 33 found articles, the majority of authors investigated blood-derived extracellular vesicles (EVs); only a few utilized EVs from other body fluids, including tissue-specific local biofluids (washing the tumor growth areas), which may be a promising source of EVs in the context of cancer diagnostics. GC-associated miRNAs identified in different studies using different methods of EV isolation and analysis varied considerably. However, three miRNAs (miR-10b, miR-21, and miR-92a) have been found in several independent studies and shown to be associated with GC in experimental models. Further studies are needed to determine the optimal miRNA marker panel. Another essential step necessary to improve the reliability and reproducibility of EV-based diagnostics is standardization of methodologies for EV handling and analysis of EV miRNA.
Collapse
Affiliation(s)
- Gleb O Skryabin
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia.
| | - Anastasiya A Beliaeva
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Adel D Enikeev
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Elena M Tchevkina
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| |
Collapse
|
4
|
Valencia-Cervantes J, Sierra-Vargas MP. Regulation of Cancer-Associated miRNAs Expression under Hypoxic Conditions. Anal Cell Pathol (Amst) 2024; 2024:5523283. [PMID: 38766303 PMCID: PMC11101257 DOI: 10.1155/2024/5523283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 05/22/2024] Open
Abstract
Solid tumors frequently experience hypoxia or low O2 levels. In these conditions, hypoxia-inducible factor 1 alpha (HIF-1α) is activated and acts as a transcription factor that regulates cancer cell adaptation to O2 and nutrient deprivation. HIF-1α controls gene expression associated with various signaling pathways that promote cancer cell proliferation and survival. MicroRNAs (miRNAs) are 22-nucleotide noncoding RNAs that play a role in various biological processes essential for cancer progression. This review presents an overview of how hypoxia regulates the expression of multiple miRNAs in the progression of cancer cells.
Collapse
Affiliation(s)
- Jesús Valencia-Cervantes
- Departamento de Investigación en Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
- Estancias Posdoctorales por México 2022 (1), Consejo Nacional de Humanidades, Ciencias y Tecnologías CONAHCYT, Mexico City 03940, Mexico
| | - Martha Patricia Sierra-Vargas
- Departamento de Investigación en Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
- Subdirección de Investigación Clínica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| |
Collapse
|
5
|
Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:70. [PMID: 36797231 PMCID: PMC9935926 DOI: 10.1038/s41392-023-01332-8] [Citation(s) in RCA: 452] [Impact Index Per Article: 226.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Having a hypoxic microenvironment is a common and salient feature of most solid tumors. Hypoxia has a profound effect on the biological behavior and malignant phenotype of cancer cells, mediates the effects of cancer chemotherapy, radiotherapy, and immunotherapy through complex mechanisms, and is closely associated with poor prognosis in various cancer patients. Accumulating studies have demonstrated that through normalization of the tumor vasculature, nanoparticle carriers and biocarriers can effectively increase the oxygen concentration in the tumor microenvironment, improve drug delivery and the efficacy of radiotherapy. They also increase infiltration of innate and adaptive anti-tumor immune cells to enhance the efficacy of immunotherapy. Furthermore, drugs targeting key genes associated with hypoxia, including hypoxia tracers, hypoxia-activated prodrugs, and drugs targeting hypoxia-inducible factors and downstream targets, can be used for visualization and quantitative analysis of tumor hypoxia and antitumor activity. However, the relationship between hypoxia and cancer is an area of research that requires further exploration. Here, we investigated the potential factors in the development of hypoxia in cancer, changes in signaling pathways that occur in cancer cells to adapt to hypoxic environments, the mechanisms of hypoxia-induced cancer immune tolerance, chemotherapeutic tolerance, and enhanced radiation tolerance, as well as the insights and applications of hypoxia in cancer therapy.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fangfang Han
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yan Du
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Huaqing Shi
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China. .,Lanzhou University Sencond Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
6
|
Zhang M, Zhou Y, Wu B, Lu C, Quan G, Huang Z, Wu C, Pan X. An oxygen-generating metal organic framework nanoplatform as a “synergy motor” for extricating dilemma over photodynamic therapy. MATERIALS ADVANCES 2023; 4:5420-5430. [DOI: 10.1039/d3ma00382e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Photodynamic therapy (PDT) combined with metal organic frameworks (MOFs) addresses current obstacles.
Collapse
Affiliation(s)
- Meihong Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Yixian Zhou
- College of Pharmacy, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Biyuan Wu
- College of Pharmacy, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Xin Pan
- College of Pharmacy, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
7
|
Wang Y, Ma X, Zhou W, Liu C, Zhang H. Reregulated mitochondrial dysfunction reverses cisplatin resistance microenvironment in colorectal cancer. SMART MEDICINE 2022; 1:e20220013. [PMID: 39188744 PMCID: PMC11235731 DOI: 10.1002/smmd.20220013] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/03/2022] [Indexed: 08/28/2024]
Abstract
Chemotherapy is one of the most basic and important treatments for malignant tumors. However, most chemotherapeutic drugs suffer from the resistance of tumor cells and lead to chemotherapy failure. Multidrug resistance (MDR) of tumor cells is the main obstacle to chemotherapy failure. The generation of MDR is not only the result of the performance of tumor cells, but the tumor microenvironment (TEM) also plays an important role in this process. The simultaneous dual intervention of cancer cells and the TEM has the potential to provide surprising results in overcoming MDR tumor therapy. Therefore, in this study, we designed a folate acid ligand-modified nanoparticle (FA-NPs) with a size of about 145 nm targeting multidrug-resistant colorectal cancer and successfully co-loaded cisplatin and Tris(2-chloroisopropyl) phosphate (TCPP). FA-NPs can enrich tumor sites through receptor-mediated endocytosis. In vitro mechanism studies have shown that nanoparticles can reverse cisplatin resistance mainly by further increasing the level of reactive oxygen species in tumor cells, breaking the homeostasis of the internal environment, then trigging mitochondrial stress, regulating drug resistance-related pathways, and improving the tumor drug resistance microenvironment; finally, the cisplatin recovers the antitumor effect with assistance from TCPP.
Collapse
Affiliation(s)
- Yonghui Wang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Xiaodong Ma
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Wenhui Zhou
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Chang Liu
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| |
Collapse
|
8
|
Lei ZN, Teng QX, Tian Q, Chen W, Xie Y, Wu K, Zeng Q, Zeng L, Pan Y, Chen ZS, He Y. Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct Target Ther 2022; 7:358. [PMID: 36209270 PMCID: PMC9547882 DOI: 10.1038/s41392-022-01190-w] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer (GC) ranks fifth in global cancer diagnosis and fourth in cancer-related death. Despite tremendous progress in diagnosis and therapeutic strategies and significant improvements in patient survival, the low malignancy stage is relatively asymptomatic and many GC cases are diagnosed at advanced stages, which leads to unsatisfactory prognosis and high recurrence rates. With the recent advances in genome analysis, biomarkers have been identified that have clinical importance for GC diagnosis, treatment, and prognosis. Modern molecular classifications have uncovered the vital roles that signaling pathways, including EGFR/HER2, p53, PI3K, immune checkpoint pathways, and cell adhesion signaling molecules, play in GC tumorigenesis, progression, metastasis, and therapeutic responsiveness. These biomarkers and molecular classifications open the way for more precise diagnoses and treatments for GC patients. Nevertheless, the relative significance, temporal activation, interaction with GC risk factors, and crosstalk between these signaling pathways in GC are not well understood. Here, we review the regulatory roles of signaling pathways in GC potential biomarkers, and therapeutic targets with an emphasis on recent discoveries. Current therapies, including signaling-based and immunotherapies exploited in the past decade, and the development of treatment for GC, particularly the challenges in developing precision medications, are discussed. These advances provide a direction for the integration of clinical, molecular, and genomic profiles to improve GC diagnosis and treatments.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qin Tian
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA
| | - Kaiming Wu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Qianlin Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| |
Collapse
|
9
|
HIF in Gastric Cancer: Regulation and Therapeutic Target. Molecules 2022; 27:molecules27154893. [PMID: 35956843 PMCID: PMC9370240 DOI: 10.3390/molecules27154893] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
HIF means hypoxia-inducible factor gene family, and it could regulate various biological processes, including tumor development. In 2021, the FDA approved the new drug Welireg for targeting HIF-2a, and it is mainly used to treat von Hippel-Lindau syndrome, which demonstrated its good prospects in tumor therapy. As the fourth deadliest cancer worldwide, gastric cancer endangers the health of people all across the world. Currently, there are various treatment methods for patients with gastric cancer, but the five-year survival rate of patients with advanced gastric cancer is still not high. Therefore, here we reviewed the regulatory role and target role of HIF in gastric cancer, and provided some references for the treatment of gastric cancer.
Collapse
|
10
|
Hypoxia signaling in human health and diseases: implications and prospects for therapeutics. Signal Transduct Target Ther 2022; 7:218. [PMID: 35798726 PMCID: PMC9261907 DOI: 10.1038/s41392-022-01080-1] [Citation(s) in RCA: 197] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Molecular oxygen (O2) is essential for most biological reactions in mammalian cells. When the intracellular oxygen content decreases, it is called hypoxia. The process of hypoxia is linked to several biological processes, including pathogenic microbe infection, metabolic adaptation, cancer, acute and chronic diseases, and other stress responses. The mechanism underlying cells respond to oxygen changes to mediate subsequent signal response is the central question during hypoxia. Hypoxia-inducible factors (HIFs) sense hypoxia to regulate the expressions of a series of downstream genes expression, which participate in multiple processes including cell metabolism, cell growth/death, cell proliferation, glycolysis, immune response, microbe infection, tumorigenesis, and metastasis. Importantly, hypoxia signaling also interacts with other cellular pathways, such as phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-B (NF-κB) pathway, extracellular signal-regulated kinases (ERK) signaling, and endoplasmic reticulum (ER) stress. This paper systematically reviews the mechanisms of hypoxia signaling activation, the control of HIF signaling, and the function of HIF signaling in human health and diseases. In addition, the therapeutic targets involved in HIF signaling to balance health and diseases are summarized and highlighted, which would provide novel strategies for the design and development of therapeutic drugs.
Collapse
|
11
|
Wu Q, You L, Nepovimova E, Heger Z, Wu W, Kuca K, Adam V. Hypoxia-inducible factors: master regulators of hypoxic tumor immune escape. J Hematol Oncol 2022; 15:77. [PMID: 35659268 PMCID: PMC9166526 DOI: 10.1186/s13045-022-01292-6] [Citation(s) in RCA: 221] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia, a common feature of the tumor microenvironment in various types of cancers, weakens cytotoxic T cell function and causes recruitment of regulatory T cells, thereby reducing tumoral immunogenicity. Studies have demonstrated that hypoxia and hypoxia-inducible factors (HIFs) 1 and 2 alpha (HIF1A and HIF2A) are involved in tumor immune escape. Under hypoxia, activation of HIF1A induces a series of signaling events, including through programmed death receptor-1/programmed death ligand-1. Moreover, hypoxia triggers shedding of complex class I chain-associated molecules through nitric oxide signaling impairment to disrupt immune surveillance by natural killer cells. The HIF-1-galactose-3-O-sulfotransferase 1-sulfatide axis enhances tumor immune escape via increased tumor cell-platelet binding. HIF2A upregulates stem cell factor expression to recruit tumor-infiltrating mast cells and increase levels of cytokines interleukin-10 and transforming growth factor-β, resulting in an immunosuppressive tumor microenvironment. Additionally, HIF1A upregulates expression of tumor-associated long noncoding RNAs and suppresses immune cell function, enabling tumor immune escape. Overall, elucidating the underlying mechanisms by which HIFs promote evasion of tumor immune surveillance will allow for targeting HIF in tumor treatment. This review discusses the current knowledge of how hypoxia and HIFs facilitate tumor immune escape, with evidence to date implicating HIF1A as a molecular target in such immune escape. This review provides further insight into the mechanism of tumor immune escape, and strategies for tumor immunotherapy are suggested.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Li You
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, 613 00, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, 602 00, Czech Republic
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China. .,Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, 613 00, Czech Republic. .,Central European Institute of Technology, Brno University of Technology, Brno, 602 00, Czech Republic.
| |
Collapse
|
12
|
Yue Y, Lin X, Qiu X, Yang L, Wang R. The Molecular Roles and Clinical Implications of Non-Coding RNAs in Gastric Cancer. Front Cell Dev Biol 2021; 9:802745. [PMID: 34966746 PMCID: PMC8711095 DOI: 10.3389/fcell.2021.802745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/19/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies in the world. It is also the fifth most common cancer in China. In recent years, a large number of studies have proved that non-coding RNAs (ncRNAs) can regulate cell proliferation, invasion, metastasis, apoptosis, and angiogenesis. NcRNAs also influence the therapeutic resistance of gastric cancer. NcRNAs mainly consist of miRNAs, lncRNAs and circRNAs. In this paper, we summarized ncRNAs as biomarkers and therapeutic targets for gastric cancer, and also reviewed their role in clinical trials and diagnosis. We sum up different ncRNAs and related moleculars and signaling pathway in gastric cancer, like Bcl-2, PTEN, Wnt signaling. In addition, the potential clinical application of ncRNAs in overcoming chemotherapy and radiotherapy resistance in GC in the future were also focused on.
Collapse
Affiliation(s)
- Yanping Yue
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Xinrong Lin
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinyue Qiu
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Lei Yang
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Rui Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
13
|
Mondal P, Meeran SM. microRNAs in cancer chemoresistance: The sword and the shield. Noncoding RNA Res 2021; 6:200-210. [PMID: 34977437 PMCID: PMC8669341 DOI: 10.1016/j.ncrna.2021.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is a multifactorial disease and one of the leading causes of mortality worldwide. Cancer cells develop multiple strategies to reduce drug sensitivity and eventually lead to chemoresistance. Chemoresistance is initiated either by intrinsic factors or due to the prolonged use of chemotherapeutics as acquired resistance. Further, chemoresistance is also one of the major reasons behind tumor recurrence and metastasis. Therefore, overcoming chemoresistance is one of the primary challenges in cancer therapy. Several mechanisms are involved in chemoresistance. Among them, the key role of ABC transporters and tumor microenvironment have been well studied. Recently, microRNAs (miRNAs) regulation in tumor development, metastasis, and chemotherapy has got wider interest due to its role in regulating genes involved in cancer progression and therapy. Noncoding RNAs, including miRNAs, have been associated with the regulation of tumor-suppressor and tumor-promoter genes. Further, miRNA can also be used as a reliable diagnostic and prognostic marker to predict the stage and types of cancer. Recent evidences have revealed that miRNAs regulation also influences the function of drug transporters and the tumor microenvironment, which affects chemosensitivity to cancer cells. Therefore, miRNAs can be a promising target to reverse back chemosensitivity in cancer cells. This review comprehensively discusses the mechanisms involved in cancer chemoresistance and its regulation by miRNAs.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
14
|
Restraint of Fumarate Accrual by HIF-1α Preserves miR-27a-Mediated Limitation of Interleukin 10 during Infection of Macrophages by Histoplasma capsulatum. mBio 2021; 12:e0271021. [PMID: 34749531 PMCID: PMC8576535 DOI: 10.1128/mbio.02710-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α) regulates the immunometabolic phenotype of macrophages, including the orchestration of inflammatory and antimicrobial processes. Macrophages deficient in HIF-1α produce excessive quantities of the anti-inflammatory cytokine interleukin 10 (IL-10) during infection with the intracellular fungal pathogen Histoplasma capsulatum (R. A. Fecher, M. C. Horwath, D. Friedrich, J. Rupp, G. S. Deepe, J Immunol 197:565–579, 2016, https://doi.org/10.4049/jimmunol.1600342). Thus, the macrophage fails to become activated in response to proinflammatory cytokines and remains the intracellular niche of the pathogen. Here, we identify the tricarboxylic acid (TCA) cycle metabolite fumarate as the driver of IL-10 during macrophage infection with H. capsulatum in the absence of HIF-1α. Accumulation of fumarate reduced expression of a HIF-1α-dependent microRNA (miRNA), miR-27a, known to mediate decay of Il10 mRNA. Inhibition of fumarate accrual in vivo limited IL-10 and fungal growth. Our data demonstrate the critical role of HIF-1α in shaping appropriate TCA cycle activity in response to infection and highlight the consequences of a dysregulated immunometabolic response.
Collapse
|
15
|
miRNA-27a Transcription Activated by c-Fos Regulates Myocardial Ischemia-Reperfusion Injury by Targeting ATAD3a. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2514947. [PMID: 34413925 PMCID: PMC8369174 DOI: 10.1155/2021/2514947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
MicroRNA-27a (miR-27a) has been implicated in myocardial ischemia-reperfusion injury (MIRI), but the underlying mechanism is not well understood. This study is aimed at determining the role of miR-27a in MIRI and at investigating upstream molecules that regulate miR-27a expression and its downstream target genes. miR-27a expression was significantly upregulated in myocardia exposed to ischemia/reperfusion (I/R) and cardiomyocytes exposed to hypoxia/reoxygenation (H/R). c-Fos could regulate miR-27a expression by binding to its promoter region. Moreover, overexpression of miR-27a led to a decrease in cell viability, an increase in LDH and CK-MB secretion, and an increase in apoptosis rates. In contrast, suppression of miR-27a expression resulted in the opposite effects. ATPase family AAA-domain-containing protein 3A (ATAD3a) was identified as a target of miR-27a. miR-27a regulated the translocation of apoptosis-inducing factor (AIF) from the mitochondria to the nucleus and H/R-induced apoptosis via the regulation of ATAD3a. It was found that inhibiting miR-27a in vivo by injecting a miR-27a sponge could ameliorate MIRI in an isolated rat heart model. In conclusion, our study demonstrated that c-Fos functions as an upstream regulator of miR-27a and that miR-27a regulates the translocation of AIF from the mitochondria to the nucleus by targeting ATAD3a, thereby contributing to MIRI. These findings provide new insight into the role of the c-Fos/miR-27a/ATAD3a axis in MIRI.
Collapse
|
16
|
Cha JE, Bae WY, Choi JS, Lee SH, Jeong JW. Angiogenic activities are increased via upregulation of HIF-1α expression in gefitinib-resistant non-small cell lung carcinoma cells. Oncol Lett 2021; 22:671. [PMID: 34345296 PMCID: PMC8323004 DOI: 10.3892/ol.2021.12932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) have been used to treat patients with non-small cell lung cancer (NSCLC) and activating EGFR mutations; however, the emergence of secondary mutations in EGFR or the acquisition of resistance to EGFR-TKIs can develop and is involved in clinical failure. Since angiogenesis is associated with tumor progression and the blockade of antitumor drugs, inhibition of angiogenesis could be a rational strategy for developing anticancer drugs combined with EGFR-TKIs to treat patients with NSCLC. The signaling pathway mediated by hypoxia-inducible factor-1 (HIF-1) is essential for tumor angiogenesis. The present study aimed to identify the dependence of gefitinib resistance on HIF-1α activity using angiogenesis assays, western blot analysis, colony formation assay, xenograft tumor mouse model and immunohistochemical analysis of tumor tissues. In the NSCLC cell lines, HIF-1α protein expression levels and hypoxia-induced angiogenic activities were found to be increased. In a xenograft mouse tumor model, tumor tissues derived from gefitinib-resistant PC9 cells showed increased protein expression of HIF-1α and angiogenesis within the tumors. Furthermore, inhibition of HIF-1α suppressed resistance to gefitinib, whereas overexpression of HIF-1α increased resistance to gefitinib. The results from the present study provides evidence that HIF-1α was associated with the acquisition of resistance to gefitinib and suggested that inhibiting HIF-1α alleviated gefitinib resistance in NSCLC cell lines.
Collapse
Affiliation(s)
- Jeong Eun Cha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woom-Yee Bae
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Sun Choi
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.,Medical Science Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Hyeun Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joo-Won Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
17
|
Sun J, Wang X, Zhang Z, Zeng Z, Ouyang S, Kang W. The Sensitivity Prediction of Neoadjuvant Chemotherapy for Gastric Cancer. Front Oncol 2021; 11:641304. [PMID: 33937042 PMCID: PMC8085495 DOI: 10.3389/fonc.2021.641304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
The overall efficacy of neoadjuvant chemoradiotherapy (NACT) for locally advanced gastric cancer (LAGC) has been recognized. However, the response rate of NACT is limited due to tumor heterogeneity. For patients who are resistant to NACT, not only the operation timing will be postponed, patients will also suffer from the side effects of it. Thus, it is important to develop a comprehensive strategy and screen out patients who may be sensitive to NACT. This article summarizes the related research progress on the sensitivity prediction of NACT for GC in the following aspects: microRNAs, metabolic enzymes, exosomes, other biomarkers; inflammatory indicators, and imageological assessments. The results showed that there were many studies on biomarkers, but no unified conclusion has been drawn. The inflammatory indicators are related to the survival and prognosis of patients under NACT. For imageological assessments such as CT, MRI, and PET, with careful integration and optimization, they will have unique advantages in early screening for patients who are sensitive to NACT.
Collapse
Affiliation(s)
- Juan Sun
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Xianze Wang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Zimu Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Ziyang Zeng
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Siwen Ouyang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Weiming Kang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| |
Collapse
|
18
|
Dynamic characterization of intestinal metaplasia in the gastric corpus mucosa of Atp4a-deficient mice. Biosci Rep 2021; 40:221778. [PMID: 31904088 PMCID: PMC7040465 DOI: 10.1042/bsr20181881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/27/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Parietal cells of the gastric mucosa contain a complex and extensive secretory membrane system that harbors gastric H+, K+-adenosine triphosphatase (ATPase), the enzyme primarily responsible for gastric lumen acidification. Here, we describe the characterization of mice deficient in the H+, K+-ATPase α subunit (Atp4a−/−) to determine the role of this protein in the biosynthesis of this membrane system and the biology of the gastric mucosa. Atp4a−/− mice were produced by gene targeting. Wild-type (WT) and Atp4a−/− mice, paired for age, were examined at 10, 12, 14 and 16 weeks for histopathology, and the expression of mucin 2 (MUC2), α-methylacyl-CoA racemase (AMACR), Ki-67 and p53 proteins was analyzed by immunohistochemistry. For further information, phosphoinositide 3-kinase (PI3K), phosphorylated-protein kinase B (p-AKT), mechanistic target of rapamycin (mTOR), hypoxia-inducible factor 1α (HIF-1α), lactate dehydrogenase A (LDHA) and sirtuin 6 (SIRT6) were detected by Western blotting. Compared with the WT mice, hypochlorhydric Atp4a−/− mice developed parietal cell atrophy and significant antral inflammation (lymphocyte infiltration) and intestinal metaplasia (IM) with elevated MUC2 expression. Areas of dysplasia in the Atp4a−/− mouse stomach showed increased AMACR and Ki-67 expression. Consistent with elevated antral proliferation, tissue isolated from Atp4a−/− mice showed elevated p53 expression. Next, we examined the mechanism by which the deficiency of the H+, K+-ATPase α subunit has an effect on the gastric mucosa. We found that the expression of phosphorylated-PI3K, p-AKT, phosphorylated-mTOR, HIF-1α, LDHA and SIRT6 was significantly higher in tissue from the Atp4a−/− mice compared with the WT mice (P<0.05). The H+, K+-ATPase α subunit is required for acid-secretory activity of parietal cells in vivo, the normal development and cellular homeostasis of the gastric mucosa, and attainment of the normal structure of the secretory membranes. Chronic achlorhydria and hypergastrinemia in aged Atp4a−/− mice produced progressive hyperplasia and mucolytic and IM, and activated the Warburg effect via PI3K/AKT/mTOR signaling.
Collapse
|
19
|
Barreca MM, Zichittella C, Alessandro R, Conigliaro A. Hypoxia-Induced Non-Coding RNAs Controlling Cell Viability in Cancer. Int J Mol Sci 2021; 22:ijms22041857. [PMID: 33673376 PMCID: PMC7918432 DOI: 10.3390/ijms22041857] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 01/22/2023] Open
Abstract
Hypoxia, a characteristic of the tumour microenvironment, plays a crucial role in cancer progression and therapeutic response. The hypoxia-inducible factors (HIF-1α, HIF-2α, and HIF-3α), are the master regulators in response to low oxygen partial pressure, modulating hypoxic gene expression and signalling transduction pathways. HIFs’ activation is sufficient to change the cell phenotype at multiple levels, by modulating several biological activities from metabolism to the cell cycle and providing the cell with new characteristics that make it more aggressive. In the past few decades, growing numbers of studies have revealed the importance of non-coding RNAs (ncRNAs) as molecular mediators in the establishment of hypoxic response, playing important roles in regulating hypoxic gene expression at the transcriptional, post-transcriptional, translational, and posttranslational levels. Here, we review recent findings on the different roles of hypoxia-induced ncRNAs in cancer focusing on the data that revealed their involvement in tumour growth.
Collapse
Affiliation(s)
- Maria Magdalena Barreca
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (C.Z.); (R.A.)
| | - Chiara Zichittella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (C.Z.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (C.Z.); (R.A.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Alice Conigliaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (C.Z.); (R.A.)
- Correspondence:
| |
Collapse
|
20
|
Zeng X, Wang HY, Bai SY, Pu K, Wang YP, Zhou YN. The Roles of microRNAs in Multidrug-Resistance Mechanisms in Gastric Cancer. Curr Mol Med 2021; 20:667-674. [PMID: 32209033 DOI: 10.2174/1566524020666200226124336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/24/2022]
Abstract
Multidrug resistance (MDR) is one of the most significant reasons for the
chemotherapeutics failure in gastric cancer. Although accumulating investigations and
researches have been made to elucidate the mechanisms of multidrug resistance, the
detail is far from completely understood. The importance of microRNAs in cancer
chemotherapeutic resistance has been demonstrated recently, which provides a new
strategy to overcome multidrug resistance. The different mechanisms are related to the
phenomena of MDR itself and the roles of miRNAs in these multi-mechanisms by which
MDR is acquired. In turn, the aim of this review was to summarize recent publications of
microRNAs in regulating MDR in gastric cancer, thereby potentially developing as
targeted therapies. Further unraveling the roles of microRNAs in MDR mechanisms
including the ATP-binding cassette (ABC) transporter family, autophagy induction,
cancer stem cell regulation, hypoxia induction, DNA damage and repair, epigenetic
regulation, and exosomes in gastric cancer will be helpful for us to win the battle against
it.
Collapse
Affiliation(s)
- Xi Zeng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hao-Ying Wang
- Department of Gastroenterology, The first Hospital of Lanzhou University, Lanzhou, China
| | - Su-Yang Bai
- Department of Gastroenterology, The first Hospital of Lanzhou University, Lanzhou, China
| | - Ke Pu
- Department of Gastroenterology, The first Hospital of Lanzhou University, Lanzhou, China
| | - Yu-Ping Wang
- Department of Gastroenterology, The first Hospital of Lanzhou University, Lanzhou, China
| | - Yong-Ning Zhou
- Department of Gastroenterology, The first Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
21
|
Patil N, Allgayer H, Leupold JH. MicroRNAs in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1277:1-31. [PMID: 33119862 DOI: 10.1007/978-3-030-50224-9_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The tumor microenvironment (TME) is decisive for the eradication or survival of any tumor mass. Moreover, it plays a pivotal role for metastasis and for providing the metastatic niche. The TME offers special physiological conditions and is composed of, for example, surrounding blood vessels, the extracellular matrix (ECM), diverse signaling molecules, exosomes and several cell types including, but not being limited to, infiltrated immune cells, cancer-associated endothelial cells (CAEs), and cancer-associated fibroblasts (CAFs). These cells can additionally and significantly contribute to tumor and metastasis progression, especially also by acting via their own deregulated micro (mi) RNA expression or activity. Thus, miRNAs are essential players in the crosstalk between cancer cells and the TME. MiRNAs are small non-coding (nc) RNAs that typically inhibit translation and stability of messenger (m) RNAs, thus being able to regulate several cell functions including proliferation, migration, differentiation, survival, invasion, and several steps of the metastatic cascade. The dynamic interplay between miRNAs in different cell types or organelles such as exosomes, ECM macromolecules, and the TME plays critical roles in many aspects of cancer development. This chapter aims to give an overview on the multiple contributions of miRNAs as players within the TME, to summarize the role of miRNAs in the crosstalk between different cell populations found within the TME, and to illustrate how they act on tumorigenesis and the behavior of cells in the TME context. Lastly, the potential clinical utility of miRNAs for cancer therapy is discussed.
Collapse
Affiliation(s)
- Nitin Patil
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany
| | - Heike Allgayer
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany
| | - Jörg H Leupold
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany.
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
22
|
Hassan S, Peluso J, Chalhoub S, Idoux Gillet Y, Benkirane-Jessel N, Rochel N, Fuhrmann G, Ubeaud-Sequier G. Quercetin potentializes the respective cytotoxic activity of gemcitabine or doxorubicin on 3D culture of AsPC-1 or HepG2 cells, through the inhibition of HIF-1α and MDR1. PLoS One 2020; 15:e0240676. [PMID: 33052979 PMCID: PMC7556446 DOI: 10.1371/journal.pone.0240676] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 09/30/2020] [Indexed: 12/18/2022] Open
Abstract
The impact of cancer on lifespan is significantly increasing worldwide. Enhanced activity of drug efflux pumps and the incidences of the tumor microenvironment such as the apparition of a hypoxic gradient inside of the bulk tumor, are the major causes of chemotherapy failure. For instance, expression of Hypoxia-inducible factor (HIF-1α) has been associated with metastasis, resistance to chemotherapy and reduced survival rate. One of the current challenges to fight against cancer is therefore to find new molecules with therapeutic potential that could overcome this chemoresistance. In the present study, we focused on the bioactive plant flavonoid quercetin, which has strong antioxidant and anti-proliferative properties. We examined the efficacy of combined treatments of quercetin and the anti-cancer drugs gemcitabine and doxorubicin, known to specifically act on human pancreatic and hepatic cancer cells, respectively. Moreover, our study aimed to investigate more in-depth the implication of the multidrug transporter MDR1 and HIF-1α n chemoresistance and if quercetin could act on the activity of the drug efflux pumps and the hypoxia-associated effects. We observed that the anti-cancer drugs, were more effective when administered in combination with quercetin, as shown by an increased percentage of dead cells up to 60% in both 2D and 3D cultures. In addition, our results indicated that the combination of anti-cancer drugs and quercetin down-regulated the expression of HIF-1α and increased the expression levels of the regulator of apoptosis p53. Moreover, we observed that quercetin could inhibit the efflux activity of MDR1. Finally, our in vitro study suggests that the efficiency of the chemotherapeutic activity of known anti-cancer drugs might be significantly increased upon combination with quercetin. This flavonoid may therefore be a promising pharmacological agent for novel combination therapy since it potentializes the cytotoxic activity of gemcitabine and doxorubicin on by targeting the chemoresistance developed by the pancreatic and liver cancer cells respectively.
Collapse
Affiliation(s)
- Sarah Hassan
- Regenerative Nanomedicine, INSERM UMR 1260, FMTS, University of Strasbourg, Strasbourg, France
- Platform eBiocyt-UPS1401, Faculty of Pharmacy, University of Strasbourg, Strasbourg, France
- * E-mail:
| | - Jean Peluso
- Platform eBiocyt-UPS1401, Faculty of Pharmacy, University of Strasbourg, Strasbourg, France
| | - Sandra Chalhoub
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U964 CNRS UMR 7104, Université de Strasbourg, Strasbourg, France
| | - Ysia Idoux Gillet
- Regenerative Nanomedicine, INSERM UMR 1260, FMTS, University of Strasbourg, Strasbourg, France
| | - Nadia Benkirane-Jessel
- Regenerative Nanomedicine, INSERM UMR 1260, FMTS, University of Strasbourg, Strasbourg, France
| | - Natacha Rochel
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U964 CNRS UMR 7104, Université de Strasbourg, Strasbourg, France
| | - Guy Fuhrmann
- Regenerative Nanomedicine, INSERM UMR 1260, FMTS, University of Strasbourg, Strasbourg, France
| | - Genevieve Ubeaud-Sequier
- Regenerative Nanomedicine, INSERM UMR 1260, FMTS, University of Strasbourg, Strasbourg, France
- Platform eBiocyt-UPS1401, Faculty of Pharmacy, University of Strasbourg, Strasbourg, France
- Department of Pharmacy, Strasbourg University Hospital, Strasbourg, France
| |
Collapse
|
23
|
Ahadi A. Dysregulation of miRNAs as a signature for diagnosis and prognosis of gastric cancer and their involvement in the mechanism underlying gastric carcinogenesis and progression. IUBMB Life 2020; 72:884-898. [DOI: 10.1002/iub.2259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/08/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Alireza Ahadi
- Department of Medical Genetics, School of MedicineShahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
24
|
Wei L, Sun J, Zhang N, Zheng Y, Wang X, Lv L, Liu J, Xu Y, Shen Y, Yang M. Noncoding RNAs in gastric cancer: implications for drug resistance. Mol Cancer 2020; 19:62. [PMID: 32192494 PMCID: PMC7081551 DOI: 10.1186/s12943-020-01185-7] [Citation(s) in RCA: 332] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer is the fourth most common malignancy and the third leading cause of cancer-related deaths worldwide. Advanced gastric cancer patients can notably benefit from chemotherapy including adriamycin, platinum drugs, 5-fluorouracil, vincristine, and paclitaxel as well as targeted therapy drugs. Nevertheless, primary drug resistance or acquisition drug resistance eventually lead to treatment failure and poor outcomes of the gastric cancer patients. The detailed mechanisms involved in gastric cancer drug resistance have been revealed. Interestingly, different noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), are critically involved in gastric cancer development. Multiple lines of evidences demonstrated that ncRNAs play a vital role in gastric cancer resistance to chemotherapy reagents and targeted therapy drugs. In this review, we systematically summarized the emerging role and detailed molecular mechanisms of ncRNAs impact drug resistance of gastric cancer. Additionally, we propose the potential clinical implications of ncRNAs as novel therapeutic targets and prognostic biomarkers for gastric cancer.
Collapse
Affiliation(s)
- Ling Wei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Jujie Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yan Zheng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Xingwu Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Liyan Lv
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Jiandong Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yeyang Xu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yue Shen
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
| |
Collapse
|
25
|
Peng X, Gao H, Xu R, Wang H, Mei J, Liu C. The interplay between HIF-1α and noncoding RNAs in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:27. [PMID: 32014012 PMCID: PMC6998277 DOI: 10.1186/s13046-020-1535-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
Hypoxia is a classic characteristic of the tumor microenvironment with a significant impact on cancer progression and therapeutic response. Hypoxia-inducible factor-1 alpha (HIF-1α), the most important transcriptional regulator in the response to hypoxia, has been demonstrated to significantly modulate hypoxic gene expression and signaling transduction networks. In past few decades, growing numbers of studies have revealed the importance of noncoding RNAs (ncRNAs) in hypoxic tumor regions. These hypoxia-responsive ncRNAs (HRNs) play pivotal roles in regulating hypoxic gene expression at the transcriptional, posttranscriptional, translational and posttranslational levels. In addition, as a significant gene expression regulator, ncRNAs exhibit promising roles in regulating HIF-1α expression at multiple levels. In this review, we briefly elucidate the reciprocal regulation between HIF-1α and ncRNAs, as well as their effect on cancer cell behaviors. We also try to summarize the complex feedback loop existing between these two components. Moreover, we evaluated the biomarker potential of HRNs for the diagnosis and prognosis of cancer, as well as the potential clinical utility of shared regulatory mechanisms between HIF-1α and ncRNAs in cancer treatment, providing novel insights into tumorigenicity, which may lead to innovative clinical applications.
Collapse
Affiliation(s)
- Xiafeng Peng
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China.,The First Clinical Medicine School, Nanjing Medical University, Nanjing, 211166, China
| | - Han Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Rui Xu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Huiyu Wang
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China
| | - Jie Mei
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China.
| | - Chaoying Liu
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China.
| |
Collapse
|
26
|
Li K, Zhu X, Chen X, Wang X. MicroRNA‑27a‑3p promotes epithelial‑mesenchymal transition by targeting NOVA alternative splicing regulator 1 in gastric cancer. Mol Med Rep 2020; 21:1615-1622. [PMID: 32016460 DOI: 10.3892/mmr.2020.10949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/22/2019] [Indexed: 11/05/2022] Open
Abstract
NOVA alternative splicing regulator 1 (NOVA1) dysregulation has been detected in the gastric cancer microenvironment. Decreased NOVA1 expression has been linked to the progression and poor prognosis of gastric cancer; however, the role of NOVA1 in regulating epithelial‑mesenchymal transition (EMT) remains unclear in this disease. Experimental evidence has shown that miR‑27a‑3p is a potential oncogene in gastric cancer. In the present study, we observed that miR‑27a‑3p expression was increased in gastric cancer and was inversely associated with overall survival. Overexpression of miR‑27a‑3p promoted EMT in AGS gastric cancer cells. Additionally, overexpression of miR‑27a‑3p inhibited NOVA1 expression, while silencing of NOVA1 promoted EMT in AGS cells. A total of 108 gastric cancer samples were examined for NOVA1 expression by immunohistochemistry. Decreased NOVA1 expression was linked to lymph node metastasis, tumor‑node‑metastasis stage and shorter overall survival. Therefore, these results indicated that NOVA1 could be a potential tumor suppressive gene and that miR‑27a‑3p promotes EMT by targeting NOVA1 in gastric cancer.
Collapse
Affiliation(s)
- Kai Li
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiangrong Zhu
- Department of General Surgery, Cixi People's Hospital, Cixi, Zhejiang 315300, P.R. China
| | - Xihua Chen
- Department of General Surgery, Cixi People's Hospital, Cixi, Zhejiang 315300, P.R. China
| | - Xiongtie Wang
- Department of General Surgery, Cixi People's Hospital, Cixi, Zhejiang 315300, P.R. China
| |
Collapse
|
27
|
Lan F, Yue X, Xia T. Exosomal microRNA-210 is a potentially non-invasive biomarker for the diagnosis and prognosis of glioma. Oncol Lett 2020; 19:1967-1974. [PMID: 32194691 DOI: 10.3892/ol.2020.11249] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRs) transferred by exosomes can function as non-invasive potential biomarkers for the diagnosis and prognosis in various types of cancer. The present study examined the diagnostic and prognostic value of serum exosomal-(exo-)miR-210 levels in association with hypoxic conditions in patients with glioma. Serum levels of exo-miR-210 were determined by quantitative PCR in samples obtained from patients with glioma. Patients were divided into low-and high-expression exo-miR-210 groups according to the median expression value. Statistical analyses were conducted to examine the potential value of exo-miR-210 in predicting the diagnosis and prognosis of patients with glioma. A significant increase in serum exo-miR-210 levels was observed in patients with glioma compared with healthy controls. Additionally, the expression levels of exo-miR-210 were increased with ascending pathological grades. Furthermore, expression levels of miR-210 in serum exosomes from patients with glioblastoma were markedly decreased following surgery and upregulated once more at the recurrences of primary tumors, indicating that exo-miR-210 could reflect alterations in malignant glioma loads. In addition, Kaplan-Meier analysis was performed to analyze overall survival (OS) time. Patients with malignant glioma with high exo-miR-210 expression exhibited a poorer OS compared with patients with low expression. Importantly, univariate and multivariate Cox regression analysis revealed that the expression levels of exo-miR-210 in glioma serum samples were independently associated with OS. Finally, increased serum exo-miR-210 expression was positively associated with high levels of hypoxia-inducible factor 1a and reflected hypoxia in patients with glioma. In conclusion, serum levels of exo-miR-210 may serve as a diagnostic, prognostic and hypoxic biomarker to reflect glioma status and hypoxic signatures.
Collapse
Affiliation(s)
- Fengming Lan
- Department of Radiotherapy, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, P.R. China
| | - Xiao Yue
- Department of Neurosurgery, The Affiliated Hospital of Xiangnan University, Chenzhou, Hunan 423000, P.R. China
| | - Tingyi Xia
- Department of Radiotherapy, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, P.R. China
| |
Collapse
|
28
|
Zhao X, Hu GF, Shi YF, Xu W. Research Progress in microRNA-Based Therapy for Gastric Cancer. Onco Targets Ther 2019; 12:11393-11411. [PMID: 31920330 PMCID: PMC6935305 DOI: 10.2147/ott.s221354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is one of the leading causes of tumor-related mortality. In addition to surgery and endoscopic resection, systemic therapy remains the main treatment option for GC, especially for advanced-stage disease and for cases not suitable for surgical therapy. Hence, improving the efficacy of systemic therapy is still an urgent problem to overcome. In the past decade, the essential roles of microRNAs (miRNAs) in tumor treatment have been increasingly recognized. In particular, miRNAs were recently shown to reverse the resistance to chemotherapy drugs such as 5-fluorouracil, cisplatin, and doxorubicin. Synthesized nanoparticles loaded with mimics or inhibitors of miRNAs can directly target tumor cells to suppress their growth. Moreover, exosomes may serve as promising safe carriers for mimics or inhibitors of miRNAs to treat GC. Some miRNAs have also been shown to play roles in the mechanism of action of other anti-tumor drugs. Therefore, in this review, we highlight the research progress on microRNA-based therapy in GC and discuss the challenges and prospects associated with this strategy. We believe that microRNA-based therapy has the potential to offer a clinical benefit to GC patients, and this review would contribute to and motivate further research to promote this field toward this ultimate goal.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Gao-Feng Hu
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Yan-Fen Shi
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Wei Xu
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
29
|
The Roles of Hypoxia-Inducible Factors and Non-Coding RNAs in Gastrointestinal Cancer. Genes (Basel) 2019; 10:genes10121008. [PMID: 31817259 PMCID: PMC6947354 DOI: 10.3390/genes10121008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors that play central roles in cellular responses against hypoxia. In most cancers, HIFs are closely associated with tumorigenesis by regulating cell survival, angiogenesis, metastasis, and adaptation to the hypoxic tumor microenvironment. Recently, non-coding RNAs (ncRNAs) have been reported to play critical roles in the hypoxic response in various cancers. Here, we review the roles of hypoxia-response ncRNAs in gastrointestinal cancer, with a particular focus on microRNAs and long ncRNAs, and discuss the functional relationships and regulatory mechanisms between HIFs and ncRNAs.
Collapse
|
30
|
Luo YJ, Huang QM, Ren Y, Liu ZL, Xu CF, Wang H, Xiao JW. Non-coding RNA in drug resistance of gastric cancer. World J Gastrointest Oncol 2019; 11:957-970. [PMID: 31798777 PMCID: PMC6883183 DOI: 10.4251/wjgo.v11.i11.957] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/21/2019] [Accepted: 10/03/2019] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related mortality worldwide. The poorly prognosis and survival of GC are due to diagnose in an advanced, non-curable stage and with a limited response to chemotherapy. The acquisition of drug resistance accounts for the majority of therapy failure of chemotherapy in GC patients. Although the mechanisms of anticancer drug resistance have been broadly studied, the regulation of these mechanisms has not been completely understood. Accumulating evidence has recently highlighted the role of non-coding RNAs (ncRNAs), including long non-coding RNAs and microRNAs, in the development and maintenance of drug resistance due to their regulatory features in specific genes involved in the chemoresistant phenotype of GC. We review the literature on ncRNAs in drug resistance of GC. This review summarizes the current knowledge about the ncRNAs’ characteristics, their regulation of the genes involved in chemoresistance and their potential as targeted therapies for personalized treatment in resistant GC.
Collapse
Affiliation(s)
- Ya-Jun Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Qing-Mei Huang
- Department of Oncology, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Yan Ren
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Zi-Lin Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Cheng-Fei Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Hao Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Jiang-Wei Xiao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| |
Collapse
|
31
|
Hsieh HL, Tsai MM. Tumor progression-dependent angiogenesis in gastric cancer and its potential application. World J Gastrointest Oncol 2019; 11:686-704. [PMID: 31558974 PMCID: PMC6755109 DOI: 10.4251/wjgo.v11.i9.686] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/05/2019] [Accepted: 08/19/2019] [Indexed: 02/05/2023] Open
Abstract
Despite improvements in the early diagnosis, prognosis and therapeutic strategies for gastric cancer (GC), human GC remains one of the most frequently diagnosed malignant tumors in the world, and the survival rate of GC patients remains very poor. Thus, a suitable therapeutic strategy for GC is important for prolonging survival. Both tumor cells themselves and the tumor microenvironment play an important role in tumorigenesis, including angiogenesis, inflammation, immunosuppression and metastasis. Importantly, these cells contribute to gastric carcinogenesis by altering the angiogenic phenotype switch. The development, relapse and spreading of tumors depend on new vessels that provide the nutrition, growth factors and oxygen required for continuous tumor growth. Therefore, a state of tumor dormancy could be induced by blocking tumor-associated angiogenesis. Recently, several antiangiogenic agents have been identified, and their potential for the clinical management of GC has been tested. Here, we provide an up-to-date summary of angiogenesis and the angiogenic factors associated with tumor progression in GC. We also review antiangiogenic agents with a focus on the anti-vascular endothelial growth factor receptor (VEGFR)-mediated pathway for endothelial cell growth and their angiogenesis ability in GC. However, most antiangiogenic agents have reported no benefit to overall survival (OS) compared to chemotherapy alone in local or advanced GC. In phase III clinical trials, only ramucirumab (anti-VEGFR blocker) and apatinib (VEGFR-TKI blocker) have reported an improved median overall response rate and prolonged OS and progression-free survival outcomes as a 2nd-line agent combined with chemotherapy treatment in advanced GC. By providing insights into the molecular mechanisms of angiogenesis associated with tumor progression in GC, this review will hopefully aid the optimization of antiangiogenesis strategies for GC therapy in combination with chemotherapy and adjuvant treatment.
Collapse
Affiliation(s)
- Hsi-Lung Hsieh
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Ming Tsai
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| |
Collapse
|
32
|
Bitorina AV, Oligschlaeger Y, Shiri-Sverdlov R, Theys J. Low profile high value target: The role of OxLDL in cancer. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158518. [PMID: 31479734 DOI: 10.1016/j.bbalip.2019.158518] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022]
Abstract
Unhealthy Western-type diet and physical inactivity are highly associated with the current obesity epidemic and its related metabolic diseases such as atherosclerosis and non-alcoholic steatohepatitis. In addition, increasing evidence indicates that obesity is also a major risk factor for several types of common cancers. Recent studies have provided correlative support that disturbed lipid metabolism plays a role in cancer risk and development, pointing towards parallels in metabolic derangements between metabolic diseases and cancer. An important feature of disturbed lipid metabolism is the increase in circulating low-density lipoproteins, which can be oxidized (oxLDL). Elevated oxLDL and the level of its receptors have been positively associated with increased risk of various types of cancer. This review discusses the pro-oncogenic role of oxLDL in tumor development, progression and potential therapies, and provides insights into the underlying mechanisms.
Collapse
Affiliation(s)
- Albert V Bitorina
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Yvonne Oligschlaeger
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands.
| | - Jan Theys
- Department of Precision Medicine, School for Oncology & Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, the Netherlands.
| |
Collapse
|
33
|
Wang G, Xiao L, Wang F, Yang J, Yang L, Zhao Y, Jin W. Hypoxia inducible factor-1α/B-cell lymphoma 2 signaling impacts radiosensitivity of H1299 non-small cell lung cancer cells in a normoxic environment. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:439-448. [PMID: 31203382 DOI: 10.1007/s00411-019-00802-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Hypoxia inducible factor-1α (HIF-1α) is a critical transcriptional factor for the response of cells to hypoxic microenvironment and its expression induces resistance of hypoxic non-small-cell lung cancer (NSCLC) cells to radiotherapy. This study investigated how the activation of HIF-1α/B-cell lymphoma 2 (BCL-2) signaling under normoxic conditions impacted radiosensitivity of NSCLC cells. The recombinant pcDNA3.0-EGFP plasmids with wild-type or mutant HIF-1α complementary DNA (cDNA) were transfected into H1299 cells, an NSCLC cell line, establishing two H1299 sublines with high expression of HIF-1α. Compared with the levels of HIF-1α and BCL-2 proteins in non-transfected cells, increased levels of both proteins were found in transfected cells. Moreover, the expression of HIF-1α in non-transfected cells induced by chloride cobalt (CoCl2), a commonly used mimetic hypoxia reagent, was concomitant with the enhancement of BCL-2 expression. Conversely, reduction of HIF-1α expression by an inhibitor decreased the levels of BCL-2 proteins. The results revealed that the stabilization and expression of HIF-1α promoted the accumulation of BCL-2 proteins in H1299 cells. Subsequent experiments showed that intracellular HIF-1α/BCL-2 signaling was triggered in a normoxic environment after H1299 cells were exposed to irradiation, causing an elevated radioresistance. In contrast, blockage of HIF-1α/BCL-2 signaling leads to an elevated radiosensitivity. Proliferation of cells assay showed that, under normoxic conditions, population doubling times (PDTs) of irradiated cells were prolonged by suppression of HIF-1α/BCL-2 signaling. It is, therefore, indicated that HIF-1α/BCL-2 signaling activated by ionizing radiation reduces the radiosensitivity of H1299 cells independent of the hypoxic environment.
Collapse
Affiliation(s)
- Gang Wang
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Liang Xiao
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Department of Radiation Oncology, First Affiliated Hospital, Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
| | - Fen Wang
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Jing Yang
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital, 107 Huanhu East Road, Hefei, 230031, Anhui, People's Republic of China
| | - Li Yang
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Ye Zhao
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.
| | - Wensen Jin
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
34
|
Pan Y, Zhang Y, Chen Q, Tao X, Liu J, Xiao GG. CTAB Enhances Chemo-Sensitivity Through Activation of AMPK Signaling Cascades in Breast Cancer. Front Pharmacol 2019; 10:843. [PMID: 31402869 PMCID: PMC6676472 DOI: 10.3389/fphar.2019.00843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/01/2019] [Indexed: 01/09/2023] Open
Abstract
Metabolic reprogramming is thought to be one of the initiators in cancer drug resistance. It has been shown that CTAB is capable of interfering the efficiency of cancer therapy by regulation of cell metabolic reprogramming. In this study, we hypothesized that AMPK as a key metabolic regulator plays a crucial role in regulation of breast cancer drug resistance, which could be alleviated by treatment of CTAB. We observed that CTAB can improve the DOX sensitivity of the breast cancer cells by inhibition of the ATP-dependent drug-efflux pump P-gp complex through activation of the AMPK-HIF-1α-P-gp cascades. The CTAB effect was also confirmed in vivo showing low systemic toxicity. Taken together, our results showed that CTAB sensitized drug resistance of breast cancer to DOX chemotherapy by activating AMPK signaling cascades both in vitro and in vivo, suggested that CTAB may be developed as a promising and novel chemosensitizer and chemotherapeutic candidate for breast cancer treatment.
Collapse
Affiliation(s)
- Yue Pan
- School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yunqiu Zhang
- School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Qing Chen
- School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Xufeng Tao
- School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Jianzhou Liu
- School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Gary Guishan Xiao
- School of Chemical Engineering, Dalian University of Technology, Dalian, China.,Functional Genomics and Proteomics Laboratory, Osteoporosis Research Center, Creighton University Medical Center, Omaha, NE, United States
| |
Collapse
|
35
|
Hong L, Wang J, Wang H, Wei S, Zhang F, Han J, Liu Y, Ma M, Liu C, Xu Y, Liu W. Linc‑pint overexpression inhibits the growth of gastric tumors by downregulating HIF‑1α. Mol Med Rep 2019; 20:2875-2881. [PMID: 31524232 DOI: 10.3892/mmr.2019.10531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/19/2019] [Indexed: 11/05/2022] Open
Abstract
Long intergenic non‑protein coding RNA, p53 induced transcript (Linc‑pint) has been reported to be downregulated in various cancer cell lines; however, its expression profile and role in gastric cancer remains unknown. The present study aimed to investigate the involvement of Linc‑pint in gastric cancer. Through quantitative polymerase chain reaction, western blotting and viability assays, it was observed that Linc‑pint expression was significantly downregulated in gastric biopsies from patients with gastric cancer, compared with healthy controls. Conversely, the expression of hypoxia‑inducible factor‑1α (HIF‑1α) mRNA was significantly upregulated in patients with gastric cancer compared with in healthy controls. Using a variety of statistical inference tests, including receiver operating characteristic curve and correlation analyses, it was determined that the expression levels of Linc‑pint and HIF‑1α exhibited a significantly negative correlation in patients with gastric cancer but not in healthy controls. Linc‑pint expression was significantly and inversely associated with tumor size but not tumor metastasis. Linc‑pint overexpression inhibited the proliferation of gastric cancer cells, whereas treatment with exogenous HIF‑1α promoted proliferation. Linc‑pint overexpression downregulated the expression of HIF‑1α, whereas exogenous HIF‑1α did not significantly alter Linc‑pint expression. Furthermore, treatment with exogenous HIF‑1α suppressed the inhibitory effects of Linc‑pint overexpression on the proliferation of gastric cancer cells. In conclusion, overexpression of Linc‑pint may inhibit the growth of gastric tumors via downregulation of HIF‑1α.
Collapse
Affiliation(s)
- Lei Hong
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050019, P.R. China
| | - Junyan Wang
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050019, P.R. China
| | - Haijuan Wang
- Examination and Training Center, Health and Family Planning Commission of Hebei, Shijiazhuang, Hebei 050051, P.R. China
| | - Suju Wei
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050019, P.R. China
| | - Fan Zhang
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050019, P.R. China
| | - Jing Han
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050019, P.R. China
| | - Yan Liu
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050019, P.R. China
| | - Minting Ma
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050019, P.R. China
| | - Chengyuan Liu
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050019, P.R. China
| | - Yu Xu
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050019, P.R. China
| | - Wei Liu
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050019, P.R. China
| |
Collapse
|
36
|
Li X, Xu M, Ding L, Tang J. MiR-27a: A Novel Biomarker and Potential Therapeutic Target in Tumors. J Cancer 2019; 10:2836-2848. [PMID: 31258791 PMCID: PMC6584939 DOI: 10.7150/jca.31361] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, time sequencing, conserved and small non-coding RNA molecules (19-25 bp long) that regulate gene expression at the post-transcriptional level by binding to the partial sequence homology of the 3'-untranslated region of target messenger (m)RNA. The miRNA-27 family consists of miR-27a and miR-27b, which are transcribed from different chromosomes and different in nucleotide at the 3' end. It has been reported that miR-27a was located on chromosome 19 and played a vital role in tumor development. Increasing evidences support a vital role for miR-27a in modulating polymorphisms, tumorigenesis, proliferation, apoptosis, invasion, migration and angiogenesis. Apart from it, miR-27a could affect drug sensitivity, treatment of cancer and patients prognosis. The miR-27a could be an oncogene or a tumor suppressor in several types of cancer, including colon cancer, pancreatic cancer, breast cancer, bladder cancer and hepatocellular carcinoma. In this review, we discuss the role of miR-27a in tumor biology and clinical significance in detail and offer novel insights into molecular targeting therapy for human cancers.
Collapse
Affiliation(s)
- Xingwang Li
- School of Clinical Medicine, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, PR China
| | - Min Xu
- School of Clinical Medicine, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, PR China
| | - Li Ding
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Jinhai Tang
- School of Clinical Medicine, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, PR China.,Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| |
Collapse
|
37
|
Chen C, Tang X, Liu Y, Zhu J, Liu J. Induction/reversal of drug resistance in gastric cancer by non-coding RNAs (Review). Int J Oncol 2019; 54:1511-1524. [PMID: 30896792 PMCID: PMC6438417 DOI: 10.3892/ijo.2019.4751] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) is one of the most prevalent and malignant types of cancer worldwide. In China, it is the second most common type of cancer and the malignancy with the highest incidence and mortality rate. Chemotherapy for GC is not always effective due to the development of drug resistance. Drug resistance, which is frequently observed in GC, undermines the success rate of chemotherapy and the survival of patients with GC. The dysregulation of non‑coding RNAs (ncRNAs), primarily microRNAs (miRNAs or miRs) and long non‑coding RNAs (lncRNAs), is involved in the development of GC drug resistance via numerous mechanisms. These mechanisms contribute to the involvement of a large and complex network of ncRNAs in drug resistance. In this review, we focus on and summarize the latest research on the specific mechanisms of action of miRNAs and lncRNAs that modulate drug resistance in GC. In addition, we discuss future prospects and clinical applications of ncRNAs as potential targeted therapies against the chemoresistance of GC.
Collapse
Affiliation(s)
- Chao Chen
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xiaohuan Tang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yuanda Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jiaming Zhu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jingjing Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
38
|
Yang W, Ma J, Zhou W, Cao B, Zhou X, Zhang H, Zhao Q, Hong L, Fan D. Reciprocal regulations between miRNAs and HIF-1α in human cancers. Cell Mol Life Sci 2019; 76:453-471. [PMID: 30317527 PMCID: PMC11105242 DOI: 10.1007/s00018-018-2941-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023]
Abstract
Hypoxia inducible factor-1α (HIF-1α) is a central molecule involved in mediating cellular processes. Alterations of HIF-1α and hypoxically regulated microRNAs (miRNAs) are correlated with patients' outcome in various cancers, indicating their crucial roles on cancer development. Recently, an increasing number of studies have revealed the intricate regulations between miRNAs and HIF-1α in modulating a wide variety of processes, including proliferation, metastasis, apoptosis, and drug resistance, etc. miRNAs are a class of small noncoding RNAs which function as negative regulators by directly targeting mRNAs. Evidence shows that miRNAs can be regulated by HIF-1α at transcriptional level. In turn, HIF-1α itself can be modulated by many miRNAs whose alterations have been implicated in tumorigenesis, thus forming a reciprocal regulation network. These findings add a new layer of complexity to our understanding of HIF-1α regulatory networks. Here, we will provide a comprehensive overview of the current advances about the bidirectional interactions between HIF-1α and miRNAs in human cancers. Besides, the review will summarize the roles of miRNAs/HIF-1α crosstalk according to various cellular processes. Finally, the potential values of miRNAs/HIF-1α loops in clinical applications are discussed.
Collapse
Affiliation(s)
- Wanli Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Jiaojiao Ma
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Bo Cao
- Air Force Military Medical University, Xi'an, China
| | - Xin Zhou
- Air Force Military Medical University, Xi'an, China
| | - Hongwei Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China.
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
39
|
Down-regulation of HIF-1α inhibits the proliferation, migration, and invasion of gastric cancer by inhibiting PI3K/AKT pathway and VEGF expression. Biosci Rep 2018; 38:BSR20180741. [PMID: 29899167 PMCID: PMC6435555 DOI: 10.1042/bsr20180741] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
In view of the high incidence of gastric cancer and the functions of hypoxia-inducible factor 1α (HIF-1α), our study aimed to investigate the functionality of HIF-1α in gastric cancer, and to explore the diagnostic and prognostic values of HIF-1α for this disease. Expression of HIF-1α in tumor tissues and adjacent healthy tissues as well as serum collected from both gastric cancer patients and normal healthy controls was detected by qRT-PCR. Survival analysis was performed using Kaplan–Meier method. HIF-1α siRNA silencing cell lines were established. Effects of HIF-1α siRNA silencing as well as PI3K activator sc3036 on proliferation, migration, and invasion of gastric cancer cells were detected by Cell counting kit (CCK-8) assay, and Transwell migration and invasion assay. Effects of HIF-1α siRNA silencing on AKT and VEGF were detected by Western blot. Expression of HIF-1α was significantly down-regulated in tumor tissues than in adjacent healthy tissues in most gastric cancer patients. Serum levels of HIF-1α were also higher in gastric cancer patients than in normal healthy people. Serum HIF-1α showed promising diagnostic and prognostic values for gastric cancer. HIF-1α siRNA silencing inhibited the proliferation, migration, and invasion of gastric cancer cells, while PI3K activator sc3036 treatment reduced those inhibitory effects. Down-regulation of HIF-1α can inhibit the proliferation, migration, and invasion of gastric cancer possibly by inhibiting PI3K/AKT pathway and VEGF expression.
Collapse
|
40
|
Low HIF-1α and low EGFR mRNA Expression Significantly Associate with Poor Survival in Soft Tissue Sarcoma Patients; the Proteins React Differently. Int J Mol Sci 2018; 19:ijms19123842. [PMID: 30513863 PMCID: PMC6321736 DOI: 10.3390/ijms19123842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022] Open
Abstract
In various tumors, the hypoxia inducible factor-1α (HIF-1α) and the epidermal growth factor-receptor (EGFR) have an impact on survival. Nevertheless, the prognostic impact of both markers for soft tissue sarcoma (STS) is not well studied. We examined 114 frozen tumor samples from adult soft tissue sarcoma patients and 19 frozen normal tissue samples. The mRNA levels of HIF-1α, EGFR, and the reference gene hypoxanthine phosphoribosyltransferase (HPRT) were quantified using a multiplex qPCR technique. In addition, levels of EGFR or HIF-1α protein were determined from 74 corresponding protein samples using ELISA techniques. Our analysis showed that a low level of HIF-1α or EGFR mRNA (respectively, relative risk (RR) = 2.8; p = 0.001 and RR = 1.9; p = 0.04; multivariate Cox´s regression analysis) is significantly associated with a poor prognosis in STS patients. The combination of both mRNAs in a multivariate Cox’s regression analysis resulted in an increased risk of early tumor-specific death of patients (RR = 3.1, p = 0.003) when both mRNA levels in the tumors were low. The EGFR protein level had no association with the survival of the patient’s cohort studied, and a higher level of HIF-1α protein associated only with a trend to significance (multivariate Cox’s regression analysis) to a poor prognosis in STS patients (RR = 1.9, p = 0.09). However, patients with low levels of HIF-1α protein and a high content of EGFR protein in the tumor had a three-fold better survival compared to patients without such constellation regarding the protein level of HIF-1α and EGFR. In a bivariate two-sided Spearman’s rank correlation, a significant correlation between the expression of HIF-1α mRNA and expression of EGFR mRNA (p < 0.001) or EGFR protein (p = 0.001) was found, additionally, EGFR mRNA correlated with EGFR protein level (p < 0.001). Our results show that low levels of HIF-1α mRNA or EGFR mRNA are negative independent prognostic markers for STS patients, especially after combination of both parameters. The protein levels showed a different effect on the prognosis. In addition, our analysis suggests a possible association between HIF-1α and EGFR expression in STS.
Collapse
|
41
|
Xia Y, Jiang L, Zhong T. The role of HIF-1α in chemo-/radioresistant tumors. Onco Targets Ther 2018; 11:3003-3011. [PMID: 29872312 PMCID: PMC5973460 DOI: 10.2147/ott.s158206] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chemo-/radioresistance is a major obstacle in clinical oncology. The precise failure mechanisms of chemo-/radioresistance are multifactorial failures. It is now widely accepted that a tumor hypoxia microenvironment contributes significantly to chemo-/radioresistance. Hypoxia is the most common and obvious neoplastic microenvironment and is due to the rapid proliferation of tumor cells. HIF-1α is a principal molecular mediator of adaptability to hypoxia in tumor cells. HIF-1α activation leads to the transcription of a plethora of target genes that promote physiological changes associated with chemo-/radioresistance, including increasing the ability of DNA repair, the inhibition of apoptosis, and alterations of the cellular metabolism. Moreover, recent findings suggest that HIF-1α-activated autophagy is a crucial factor in the promotion of cell survival under the distressed microenvironment, thereby leading to the chemo-/radioresistance. This chapter presents an overview of the role of HIF-1α in chemo-/radioresistance of tumor cells.
Collapse
Affiliation(s)
- Yu Xia
- The Graduate School, Gannan Medical University, Ganzhou, People's Republic of China
| | - Lixia Jiang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, People's Republic of China
| | - Tianyu Zhong
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, People's Republic of China
| |
Collapse
|
42
|
Yang S, Sheng N, Pan L, Cao J, Liu J, Ma R. microRNA-3129 promotes cell proliferation in gastric cancer cell line SGC7901 via positive regulation of pRb. Braz J Med Biol Res 2018; 51:e6452. [PMID: 29791595 PMCID: PMC6002138 DOI: 10.1590/1414-431x20186452] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/16/2018] [Indexed: 12/11/2022] Open
Abstract
Several microRNAs (miRNAs) have been reported as oncogenes or tumor suppressors in many cancers, including gastric cancer (GC). However, the role and molecular mechanism of miR-3129 in GC is largely unknown. We aimed to explore the function and the underlying molecular mechanism of miR-3129 in GC. Cancer tissues and corresponding adjacent tissues were collected from 50 patients with GC, and the expression of miR-3129 was detected by RT-qPCR. The expression of miR-3129 and pRb in human GC cell line SCG7091 was altered by transient transfection. Thereafter, MTT and flow cytometry assays were used to analyze cell viability and cell cycle. The expression of cyclin E, CDK2, CDK2 inhibitors (p16 and 21), and pRb were detected by RT-qPCR and western blot. A significant up-regulation of miR-3129 was observed in GC tissues compared to adjacent tissues. Overexpression of miR-3129 significantly improved cell viability after 4 days of post-transfection. Flow cytometry assay results showed that the miR-3129 overexpression arrested more SGC7901 cells at S phase. Moreover, overexpression of miR-3129 down-regulated the expression of CDK2 inhibitors while it up-regulated the expression levels of cyclin E, CDK2, and pRb. Interestingly, we found that pRb inhibition reversed the effect of miR-3129 inhibitor on cell proliferation in SGC7901 cells, increased cell viability, reduced cells at G0/1 phase, and modulated the expression of proliferation-related factors. Our results revealed that miR-3129 functioned as an oncogene through positive regulation of pRb and may prove to be a promising option for molecular therapy of GC.
Collapse
Affiliation(s)
- Shaofeng Yang
- Department of Gastroenterology, Jining No. 1 People's Hospital, Jining, China
| | - Nan Sheng
- Department of Gastroenterology, Jining No. 1 People's Hospital, Jining, China
| | - Lili Pan
- Department of Gastroenterology, Jining No. 1 People's Hospital, Jining, China
| | - Jing Cao
- Department of Gastroenterology, Jining No. 1 People's Hospital, Jining, China
| | - Jiao Liu
- Department of Gastroenterology, Jining No. 1 People's Hospital, Jining, China
| | - Ran Ma
- Department of Gastroenterology, Jining No. 1 People's Hospital, Jining, China
| |
Collapse
|
43
|
Kokate SB, Dixit P, Das L, Rath S, Roy AD, Poirah I, Chakraborty D, Rout N, Singh SP, Bhattacharyya A. Acetylation-mediated Siah2 stabilization enhances PHD3 degradation in Helicobacter pylori-infected gastric epithelial cancer cells. FASEB J 2018; 32:5378-5389. [PMID: 29688807 DOI: 10.1096/fj.201701344rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gastric epithelial cells infected with Helicobacter pylori acquire highly invasive and metastatic characteristics. The seven in absentia homolog (Siah)2, an E3 ubiquitin ligase, is one of the major proteins that induces invasiveness of infected gastric epithelial cells. We find that p300-driven acetylation of Siah2 at lysine 139 residue stabilizes the molecule in infected cells, thereby substantially increasing its efficiency to degrade prolyl hydroxylase (PHD)3 in the gastric epithelium. This enhances the accumulation of an oncogenic transcription factor hypoxia-inducible factor 1α (Hif1α) in H. pylori-infected gastric cancer cells in normoxic condition and promotes invasiveness of infected cells. Increased acetylation of Siah2, Hif1α accumulation, and the absence of PHD3 in the infected human gastric metastatic cancer biopsy samples and in invasive murine gastric cancer tissues further confirm that the acetylated Siah2 (ac-Siah2)-Hif1α axis is crucial in promoting gastric cancer invasiveness. This study establishes the importance of a previously unrecognized function of ac-Siah2 in regulating invasiveness of H. pylori-infected gastric epithelial cells.-Kokate, S. B., Dixit, P., Das, L., Rath, S., Roy, A. D., Poirah, I., Chakraborty, D., Rout, N., Singh, S. P., Bhattacharyya, A. Acetylation-mediated Siah2 stabilization enhances PHD3 degradation in Helicobacter pylori-infected gastric epithelial cancer cells.
Collapse
Affiliation(s)
- Shrikant Babanrao Kokate
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Pragyesh Dixit
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Lopamudra Das
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Suvasmita Rath
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Arjama Dhar Roy
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Indrajit Poirah
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Debashish Chakraborty
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Niranjan Rout
- Department of Oncopathology, Acharya Harihar Regional Cancer Centre, Odisha, India
| | - Shivaram Prasad Singh
- Department of Gastroenterology, Srirama Chandra Bhanja (SCB) Medical College, Odisha, India
| | - Asima Bhattacharyya
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| |
Collapse
|
44
|
Nienhüser H, Schmidt T. Angiogenesis and Anti-Angiogenic Therapy in Gastric Cancer. Int J Mol Sci 2017; 19:ijms19010043. [PMID: 29295534 PMCID: PMC5795993 DOI: 10.3390/ijms19010043] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the most frequent malignancies worldwide. Despite improvements in diagnosis and therapy, the overall prognosis remains poor. In the last decade, several anti-angiogenic drugs for cancer treatment have been approved and lately also introduced to gastric cancer treatment. While the initial trials focused only on unresectable or metastatic cancer, anti-angiogenic treatment is now also investigated in the perioperative and neoadjuvant setting. In this review, an overview of the role of angiogenesis and angiogenic factors in gastric cancer as well as anti-angiogenic treatment of gastric cancer is provided. Findings from in vitro and animal studies are summarized and put in a context with translational data on angiogenesis in gastric cancer. The most important angiogenic factors and their effect in gastric cancer are highlighted and clinical trials including anti-angiogenic drugs are discussed. Finally, an outlook of biomarkers for predicting response to anti-angiogenic treatment is presented, the ongoing trials on this topic are discussed and current challenges of anti-angiogenic therapy are outlined.
Collapse
Affiliation(s)
- Henrik Nienhüser
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| |
Collapse
|
45
|
Chen Y, Sun L, Guo D, Wu Z, Chen W. Co-delivery of hypoxia inducible factor-1α small interfering RNA and 5-fluorouracil to overcome drug resistance in gastric cancer SGC-7901 cells. J Gene Med 2017; 19. [PMID: 29106062 DOI: 10.1002/jgm.2998] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/21/2017] [Accepted: 10/22/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Drug resistance cancer cells have become a major problem in chemotherapy. To solve this problem, the co-delivery of small interefering RNA (siRNA) and 5-fluorouracil chitosan nanoparticles was employed, aiming to reverse the multidrug resistance of gastric cancer SGC-7901 cells in vitro. METHODS Chitosan nanoparticles were prepared using an ionic gel method. siRNA nanoparticles were characterized by gel retardation assays. Particle size and zeta potential were measured to confirm nanoparticle formation. The transfection efficiency of siRNA was determined by flow cytometry and high-content screening. Western blotting and a quantitative real-time-polymerase chain reaction were used to assess the silencing efficiency of siRNA. Accumulation and efflux experiments for rhodamine-123, cell migration experiments, cell sensitivity analyses and cell apoptosis assays were used to determine whether siRNA could reverse multidrug resistance. A systemic toxicity assay was used to evaluate the safety of nanoparticles. RESULTS Compared to naked siRNA, the co-delivery system demonstrated a higher transfection efficiency and gene silencing efficiency by inhibiting the efflux of P-glycoprotein and cell migration. Moreover, the combination treatment with siRNA and 5-fluorouracil co-delivered by chitosan nanoparticles can increase the sensitivity of drug resistance cells and cell apoptosis. Finally, the safety of nanoparticles was evaluated in vivo and the results obtained suggested that nanoparticles did not have any obvious toxicity. CONCLUSIONS Co-delivery of siRNA and 5-fluorouracil chitosan nanoparticles is an attractive strategy for overcoming multidrug resistance.
Collapse
Affiliation(s)
- Yunna Chen
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Anhui Hefei, China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, China
| | - Li Sun
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Dongdong Guo
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Anhui Hefei, China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, China
| | - Ziteng Wu
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Anhui Hefei, China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, China
| | - Weidong Chen
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Anhui Hefei, China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
46
|
Fu ZY. Role of ATP-binding cassette transporters, apoptosis, and long non-coding RNAs in gastric cancer multidrug resistance. Shijie Huaren Xiaohua Zazhi 2017; 25:2838-2850. [DOI: 10.11569/wcjd.v25.i32.2838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer multidrug resistance refers to the cross resistance of cancer cells to a variety of anticancer drugs, which can be primary or secondary. Several mechanisms attribute to cancer multidrug resistance. In this paper, the recent progress in the understanding of the mechanisms of multi-drug resistance of gastric cancer cells with regard to the role of adenosine triphosphate binding cassette transporters, apoptosis, and long non-coding RNAs is reviewed.
Collapse
Affiliation(s)
- Zhao-Ying Fu
- Institute of Molecular Biology and Immunology, Medical School of Yan'an University, Yan'an 716000, Shaanxi Province, China
| |
Collapse
|
47
|
Guan XW, Zhao F, Wang JY, Wang HY, Ge SH, Wang X, Zhang L, Liu R, Ba Y, Li HL, Deng T, Zhou LK, Bai M, Ning T, Zhang HY, Huang DZ. Tumor microenvironment interruption: a novel anti-cancer mechanism of Proton-pump inhibitor in gastric cancer by suppressing the release of microRNA-carrying exosomes. Am J Cancer Res 2017; 7:1913-1925. [PMID: 28979813 PMCID: PMC5622225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023] Open
Abstract
Poor prognosis of gastric cancer is related to not only malignancy of gastric cancer cells, but also the tumor microenvironment. Thus drugs, which can inhibit both of them, are urgently needed to be explored. Studies on effect of Proton-pump inhibitors (PPIs) in anti-neoplasms are increasing, but is rare in gastric in gastric cancer. Here we investigated how the gastric cancer microenvironment is regulated by PPIs. The objective response rate of gastric cancer patients in our hospital treated by PPIs is investigated. PPIs' effects were further explored by observing the change of microRNAs, cytokines, cellular apoptosis. Bioinformatic pathway analysis of microarray was used to discover the pathway involved in PPIs' regulation of gastric cancer microenvironments. Immunoblotting assays and qRT-PCR were used to define molecular events with PPIs treatment. We report here that PPIs can improve the prognosis of advanced gastric cancer patients; and inhibit the progress of gastric cancer both in vivo and in vitro. Moreover, high dose of PPIs can regulate the pathway associated with tumor malignancy and microenvironment via inhibiting the release of exosomes, which packed microRNAs. PPIs can inhibit the transformation of CAFs (cancer associated fibroblasts) and cytokines released from CAFs. In addition, PPIs inhibit the malignancy of gastric cancer through regulating HIF-1α-FOXO1 axis. High dose of PPIs can inhibit malignancy of gastric cancer and regulate its surrounding tumor microenvironment. This finding suggests that PPIs maybe of potential value as a therapeutic tool for treatment of gastric cancer.
Collapse
Affiliation(s)
- Xu-Wen Guan
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Fang Zhao
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Jing-Ya Wang
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Hai-Yan Wang
- Department of Radiotherapy, Cangzhou Central HospitalHebei, China
| | - Shao-Hua Ge
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Xia Wang
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Le Zhang
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Rui Liu
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Yi Ba
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Hong-Li Li
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Ting Deng
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Li-Kun Zhou
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Ming Bai
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Tao Ning
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Hai-Yang Zhang
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Ding-Zhi Huang
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| |
Collapse
|
48
|
Challapalli A, Carroll L, Aboagye EO. Molecular mechanisms of hypoxia in cancer. Clin Transl Imaging 2017; 5:225-253. [PMID: 28596947 PMCID: PMC5437135 DOI: 10.1007/s40336-017-0231-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/21/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE Hypoxia is a condition of insufficient oxygen to support metabolism which occurs when the vascular supply is interrupted, or when a tumour outgrows its vascular supply. It is a negative prognostic factor due to its association with an aggressive tumour phenotype and therapeutic resistance. This review provides an overview of hypoxia imaging with Positron emission tomography (PET), with an emphasis on the biological relevance, mechanism of action, highlighting advantages, and limitations of the currently available hypoxia radiotracers. METHODS A comprehensive PubMed literature search was performed, identifying articles relating to biological significance and measurement of hypoxia, MRI methods, and PET imaging of hypoxia in preclinical and clinical settings, up to December 2016. RESULTS A variety of approaches have been explored over the years for detecting and monitoring changes in tumour hypoxia, including regional measurements with oxygen electrodes placed under CT guidance, MRI methods that measure either oxygenation or lactate production consequent to hypoxia, different nuclear medicine approaches that utilise imaging agents the accumulation of which is inversely related to oxygen tension, and optical methods. The advantages and disadvantages of these approaches are reviewed, along with individual strategies for validating different imaging methods. PET is the preferred method for imaging tumour hypoxia due to its high specificity and sensitivity to probe physiological processes in vivo, as well as the ability to provide information about intracellular oxygenation levels. CONCLUSION Even though hypoxia could have significant prognostic and predictive value in the clinic, the best method for hypoxia assessment has in our opinion not been realised.
Collapse
Affiliation(s)
- Amarnath Challapalli
- Department of Clinical Oncology, Bristol Cancer Institute, Horfield Road, Bristol, United Kingdom
| | - Laurence Carroll
- Department of Surgery and Cancer, Imperial College, GN1, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W120NN United Kingdom
| | - Eric O. Aboagye
- Department of Surgery and Cancer, Imperial College, GN1, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W120NN United Kingdom
| |
Collapse
|
49
|
Yuan P, Cao W, Zang Q, Li G, Guo X, Fan J. The HIF-2α-MALAT1-miR-216b axis regulates multi-drug resistance of hepatocellular carcinoma cells via modulating autophagy. Biochem Biophys Res Commun 2016; 478:1067-73. [PMID: 27524242 DOI: 10.1016/j.bbrc.2016.08.065] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 08/10/2016] [Indexed: 12/25/2022]
Abstract
In this study, we firstly investigated the association among lncRNA MALAT1, HIF-1α and HIF-2α in hepatocellular carcinoma (HCC) cells. Then, we investigated the regulative effect of MALAT1 on multi-drug resistance (MDR) in HCC cells and the underlying mechanism. The results showed that MALAT1 was over two times higher in BEL-7402/5-FU cells than in BEL-7402 cells. It was HIF-2α, but not HIF-1α induced MALAT1 upregulation in HCC cells. Dual luciferase assay demonstrated that there were at least two binding sites of miR-26b in MALAT1. Therefore, we infer that there is a HIF-2α-MALAT1-miR-216b axis in HCC cells. Cell viability assay showed that both MALAT1 siRNA and miR-216b mimics reduced IC50 of 5-FU, ADR and MMC in BEL-7402/5-FU cells. MALAT1 siRNA and miR-216b mimics showed similar effect as 3-MA on reducing LC3-II levels, inhibiting p62 degradation and suppressing GFP-LC3 puncta formation in BEL-7402/5-FU cells. Flow cytometric analysis showed that 3-MA treatment, MALAT1 siRNA and miR-216b mimics all promoted 5-FU induced apoptosis in BEL-7402/5-FU cells. Therefore, this study firstly revealed that there is a HIF-2α-MALAT1-miR-216b axis regulating MDR of HCC cells via modulating autophagy.
Collapse
Affiliation(s)
- Peng Yuan
- Department of Interventional Therapy, The People's Hospital of Jianhu, Jianhu, 224700, Jiangsu, China
| | - Weibin Cao
- Department of Hematology & Oncology, Yeda Hospital, Yantai, 264006, Shandong, China
| | - Quanling Zang
- Department of Emergency Medicine, The Affiliated Hospital of WeiFang Medical University, WeiFang, 261031, Shandong, China
| | - Guixin Li
- Department of Oncology, The Affiliated Hospital of WeiFang Medical University, WeiFang, 261031, Shandong, China
| | - Xiangfei Guo
- Department of Infectious Liver Diseases, Zaozhuang Municipal Hospital, Zaozhuang, 277100, Shandong, China
| | - Jianghe Fan
- Oncology Department, The Affiliated Hospital of Hebei University of Engineering, Handan, 056029, Hebei, China.
| |
Collapse
|
50
|
Fecher RA, Horwath MC, Friedrich D, Rupp J, Deepe GS. Inverse Correlation between IL-10 and HIF-1α in Macrophages Infected with Histoplasma capsulatum. THE JOURNAL OF IMMUNOLOGY 2016; 197:565-79. [PMID: 27271565 DOI: 10.4049/jimmunol.1600342] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/13/2016] [Indexed: 01/28/2023]
Abstract
Hypoxia-inducible factor (HIF)-1α is a transcription factor that regulates metabolic and immune response genes in the setting of low oxygen tension and inflammation. We investigated the function of HIF-1α in the host response to Histoplasma capsulatum because granulomas induced by this pathogenic fungus develop hypoxic microenvironments during the early adaptive immune response. In this study, we demonstrated that myeloid HIF-1α-deficient mice exhibited elevated fungal burden during the innate immune response (prior to 7 d postinfection) as well as decreased survival in response to a sublethal inoculum of H. capsulatum The absence of myeloid HIF-1α did not alter immune cell recruitment to the lungs of infected animals but was associated with an elevation of the anti-inflammatory cytokine IL-10. Treatment with mAb to IL-10 restored protective immunity to the mutant mice. Macrophages (Mϕs) constituted most IL-10-producing cells. Deletion of HIF-1α in neutrophils or dendritic cells did not alter fungal burden, thus implicating Mϕs as the pivotal cell in host resistance. HIF-1α was stabilized in Mϕs following infection. Increased activity of the transcription factor CREB in HIF-1α-deficient Mϕs drove IL-10 production in response to H. capsulatum IL-10 inhibited Mϕ control of fungal growth in response to the activating cytokine IFN-γ. Thus, we identified a critical function for Mϕ HIF-1α in tempering IL-10 production following infection. We established that transcriptional regulation of IL-10 by HIF-1α and CREB is critical for activation of Mϕs by IFN-γ and effective handling of H. capsulatum.
Collapse
Affiliation(s)
- Roger A Fecher
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45267; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45220
| | - Michael C Horwath
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45267; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45220
| | - Dirk Friedrich
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany; and
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany; and
| | - George S Deepe
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45267; Medical Service, Veterans Affairs Hospital, Cincinnati, OH 45220
| |
Collapse
|