1
|
Rahmani NR, Jahanmard F, Hassani Najafabadi A, Flapper J, Dogan O, Khodaei A, Storm G, Croes M, Kruyt MC, Gawlitta D, Weinans H, Mastrobattista E, Amin Yavari S. Local delivery of lipid-based nanoparticles containing microbial nucleic acid for osteoimmunomodulation. Eur J Pharm Sci 2025; 208:107050. [PMID: 39988262 DOI: 10.1016/j.ejps.2025.107050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/27/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025]
Abstract
Osteoimmunomodulation is a strategy to promote bone regeneration in implants by modifying the immune environment. CpG-containing oligonucleotides type C (CpG ODN C) and Polyinosinic:polycytidylic acid (Poly[I:C]) are analogs of microbial nucleic acids that have been studied for various immunotherapeutic applications. This research investigates the potential of CpG ODN C and Poly(I:C) as an osteoimmunomodulatory agent for bone regenerative purposes. We encapsulated each nucleic acid in a lipid-based nanoparticle to facilitate the delivery into intracellular pathogen recognition receptors in immune cells. The lipid-based nanoparticles were ±250 nm in size with a negative charge (-36 to -40 mV) and an encapsulation efficiency of ±60 %. Lipid-based nanoparticles containing nucleic acids, Lip/CpG ODN C and Lip/Poly(I:C), increased the production of TNF, IL-6, and IL-10 by primary human macrophages compared to free-form nucleic acids. Conditioned medium from macrophages treated with CpG ODN C (10 µg/ml) and Lip/CpG ODN C (0.1, 1, and 10 µg/ml) promoted osteoblast differentiation of human mesenchymal stromal cells by 2.6-fold and 3-fold, respectively; no effect was seen for Lip/Poly(I:C). Bone implants were prepared, consisting of a biphasic calcium phosphate scaffold, bone morphogenetic protein (BMP) 2, and lipid-based nanoparticles suspended in gelatin methacryloyl (GelMA) hydrogel. Implants were evaluated for de novo bone formation in an extra-skeletal implantation model in rabbits for 5 weeks. Based on the particles suspended in GelMA, six groups of implants were prepared: Lip/CpG ODN C, Lip/Poly(I:C), Lip (empty), CpG ODN C, Poly(I:C), and a control group consisting of empty GelMA. After 5 weeks, healthy bone tissue formed in all of the implants with active osteoblast and osteoclast activity, however, the amount of new bone volume and scaffold degradation were similar for all implants. We suggest that the working concentrations of the nucleic acids employed were inadequate to induce a relevant inflammatory response. Additionally, the dosage of BMP-2 used may potentially mask the immune-stimulatory effect. Lip/CpG ODN C holds potential as a bioactive agent for osteoimmunomodulation, although further in vivo demonstration should corroborate the current in vitro findings.
Collapse
Affiliation(s)
- N R Rahmani
- Department of Orthopedics, University Medical Center Utrecht, Heidelberglaan 100, GA 3508, Utrecht, the Netherlands; Regenerative Medicine Center Utrecht, University Utrecht, Heidelberglaan 8, CS 3584, Utrecht, the Netherlands.
| | - F Jahanmard
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, CG 3584, Utrecht, the Netherlands.
| | - A Hassani Najafabadi
- Terasaki Institute for Biomedical Innovation, 21100 Erwin St., Woodland Hills, 91367, Los Angeles, United States.
| | - J Flapper
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, CG 3584, Utrecht, the Netherlands.
| | - O Dogan
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, CG 3584, Utrecht, the Netherlands.
| | - A Khodaei
- Department of Orthopedics, University Medical Center Utrecht, Heidelberglaan 100, GA 3508, Utrecht, the Netherlands; Regenerative Medicine Center Utrecht, University Utrecht, Heidelberglaan 8, CS 3584, Utrecht, the Netherlands.
| | - G Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, CG 3584, Utrecht, the Netherlands.
| | - M Croes
- Department of Orthopedics, University Medical Center Utrecht, Heidelberglaan 100, GA 3508, Utrecht, the Netherlands.
| | - M C Kruyt
- Department of Orthopedics, University Medical Center Utrecht, Heidelberglaan 100, GA 3508, Utrecht, the Netherlands; Department of Developmental Biomedical Engineering, Twente University, Drienerlolaan 5, NB 7522, Enschede, the Netherlands.
| | - D Gawlitta
- Regenerative Medicine Center Utrecht, University Utrecht, Heidelberglaan 8, CS 3584, Utrecht, the Netherlands; Department of Oral and Maxillofacial Surgery, Prosthodontics and Special Dental Care, University Medical Center Utrecht, Heidelberglaan 100, GA 3508, Utrecht, the Netherlands.
| | - H Weinans
- Department of Orthopedics, University Medical Center Utrecht, Heidelberglaan 100, GA 3508, Utrecht, the Netherlands; Department of Biomechanical Engineering, Technical University Delft, Mekelweg 2, CD 2628, Delft, the Netherlands.
| | - E Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, CG 3584, Utrecht, the Netherlands.
| | - S Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, Heidelberglaan 100, GA 3508, Utrecht, the Netherlands; Regenerative Medicine Center Utrecht, University Utrecht, Heidelberglaan 8, CS 3584, Utrecht, the Netherlands; Terasaki Institute for Biomedical Innovation, 21100 Erwin St., Woodland Hills, 91367, Los Angeles, United States.
| |
Collapse
|
2
|
Burgan J, Rahmati M, Lee M, Saiz AM. Innate immune response to bone fracture healing. Bone 2025; 190:117327. [PMID: 39522707 DOI: 10.1016/j.bone.2024.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The field of osteoimmunology has primarily focused on fracture healing in isolated musculoskeletal injuries. The innate immune system is the initial response to fracture, with inflammatory macrophages, cytokines, and neutrophils arriving first at the fracture hematoma, followed by an anti-inflammatory phase to begin the process of new bone formation. This review aims to first discuss the current literature and knowledge gaps on the immune responses governing single fracture healing by encompassing the individual role of macrophages, neutrophils, cytokines, mesenchymal stem cells, bone cells, and other immune cells. This paper discusses the interactive effects of these cellular responses underscoring the field of osteoimmunology. The critical role of the metabolic environment in guiding the immune system properties will be highlighted along with some effective therapeutics for fracture healing in the context of osteoimmunology. However, compared to isolated fractures, which frequently heal well, long bone fractures in over 30 % of polytrauma patients exhibit impaired healing. Clinical evidence suggests there may be distinct physiologic and inflammatory pathways altered in polytrauma resulting in nonunion. Nonunion is associated with worse patient outcomes and increased societal healthcare costs. The dysregulated immunomodulatory/inflammatory response seen in polytrauma may lead to this increased nonunion rate. This paper will investigate the differences in immune response between isolated and polytrauma fractures. Finally, future directions for fracture studies are explored with consideration of the emerging roles of newly discovered immune cell functions in fracture healing, the existing challenges and conflicting results in the field, the translational potential of these studies in clinic, and the more complex nature of polytrauma fractures that can alter cell functions in different tissues.
Collapse
Affiliation(s)
- Jane Burgan
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maryam Rahmati
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109, Blindern, NO-0317 Oslo, Norway
| | - Mark Lee
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA
| | - Augustine Mark Saiz
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA.
| |
Collapse
|
3
|
Nourisa J, Passemiers A, Shakeri F, Omidi M, Helmholz H, Raimondi D, Moreau Y, Tomforde S, Schlüter H, Luthringer-Feyerabend B, Cyron CJ, Aydin RC, Willumeit-Römer R, Zeller-Plumhoff B. Gene regulatory network analysis identifies MYL1, MDH2, GLS, and TRIM28 as the principal proteins in the response of mesenchymal stem cells to Mg 2+ ions. Comput Struct Biotechnol J 2024; 23:1773-1785. [PMID: 38689715 PMCID: PMC11058716 DOI: 10.1016/j.csbj.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
Magnesium (Mg)-based implants have emerged as a promising alternative for orthopedic applications, owing to their bioactive properties and biodegradability. As the implants degrade, Mg2+ ions are released, influencing all surrounding cell types, especially mesenchymal stem cells (MSCs). MSCs are vital for bone tissue regeneration, therefore, it is essential to understand their molecular response to Mg2+ ions in order to maximize the potential of Mg-based biomaterials. In this study, we conducted a gene regulatory network (GRN) analysis to examine the molecular responses of MSCs to Mg2+ ions. We used time-series proteomics data collected at 11 time points across a 21-day period for the GRN construction. We studied the impact of Mg2+ ions on the resulting networks and identified the key proteins and protein interactions affected by the application of Mg2+ ions. Our analysis highlights MYL1, MDH2, GLS, and TRIM28 as the primary targets of Mg2+ ions in the response of MSCs during 1-21 days phase. Our results also identify MDH2-MYL1, MDH2-RPS26, TRIM28-AK1, TRIM28-SOD2, and GLS-AK1 as the critical protein relationships affected by Mg2+ ions. By offering a comprehensive understanding of the regulatory role of Mg2+ ions on MSCs, our study contributes valuable insights into the molecular response of MSCs to Mg-based materials, thereby facilitating the development of innovative therapeutic strategies for orthopedic applications.
Collapse
Affiliation(s)
- Jalil Nourisa
- Institute of Material Systems Modeling, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | | | - Farhad Shakeri
- Institute of Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Maryam Omidi
- Institute of Clinical Chemistry/Central Laboratories, University Medical Center Hamburg, Hamburg, Germany
| | - Heike Helmholz
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | | | | | - Sven Tomforde
- Department of Computer Science, Intelligent Systems, University of Kiel, Kiel, Germany
| | - Hartmuth Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine Diagnostic Center, University of Hamburg, Hamburg, Germany
| | | | - Christian J. Cyron
- Institute of Material Systems Modeling, Helmholtz Zentrum Hereon, Geesthacht, Germany
- Institute for Continuum and Material Mechanics, Hamburg University of Technology, Hamburg, Germany
| | - Roland C. Aydin
- Institute of Material Systems Modeling, Helmholtz Zentrum Hereon, Geesthacht, Germany
- Institute for Continuum and Material Mechanics, Hamburg University of Technology, Hamburg, Germany
| | | | | |
Collapse
|
4
|
Abstract
PURPOSE Dental implant osseointegration comprises two types of bone formation-contact and distance osteogenesis-which result in bone formation originating from the implant surface or bone edges, respectively. The physicochemical properties of the implant surface regulate initial contact osteogenesis by directly tuning the osteoprogenitor cells in the peri-implant environment. However, whether these implant surface properties can regulate osteoprogenitor cells distant from the implant remains unclear. Innate immune cells, including neutrophils and macrophages, govern bone metabolism, suggesting their involvement in osseointegration and distance osteogenesis. This narrative review discusses the role of innate immunity in osseointegration and the effects of implant surface properties on distant osteogenesis, focusing on innate immune regulation. STUDY SELECTION The role of innate immunity in bone formation and the effects of implant surface properties on innate immune function were reviewed based on clinical, animal, and in vitro studies. RESULTS Neutrophils and macrophages are responsible for bone formation during osseointegration, via inflammatory mediators. The microroughness and hydrophilic status of titanium implants have the potential to alleviate this inflammatory response of neutrophils, and induce an anti-inflammatory response in macrophages, to tune both contact and distance osteogenesis through the activation of osteoblasts. Thus, the surface micro-roughness and hydrophilicity of implants can regulate the function of distant osteoprogenitor cells through innate immune cells. CONCLUSIONS Surface modification of implants aimed at regulating innate immunity may be useful in promoting further osteogenesis and overcoming the limitations encountered in severe situations, such as early loading protocol application.
Collapse
Affiliation(s)
- Takeru Kondo
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Masahiro Yamada
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
5
|
Küppers O, Ahmad M, Haffner-Luntzer M, Scharffetter-Kochanek K, Ignatius A, Fischer V. Inflammatory priming of human mesenchymal stem cells induces osteogenic differentiation via the early response gene IER3. FASEB J 2024; 38:e70076. [PMID: 39373973 DOI: 10.1096/fj.202401344r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024]
Abstract
Mesenchymal stem cells (MSCs) have gained tremendous interest due to their overall potent pro-regenerative and immunomodulatory properties. In recent years, various in vitro and preclinical studies have investigated different priming ("licensing") approaches to enhance MSC functions for specific therapeutic purposes. In this study, we primed bone marrow-derived human MSCs (hMSCs) with an inflammation cocktail designed to mimic the elevated levels of inflammatory mediators found in serum of patients with severe injuries, such as bone fractures. We observed a significantly enhanced osteogenic differentiation potential of primed hMSCs compared to untreated controls. By RNA-sequencing analysis, we identified the immediate early response 3 (IER3) gene as one of the top-regulated genes upon inflammatory priming. Small interfering RNA knockdown experiments established IER3 as a novel positive regulator of osteogenic differentiation. Mechanistic analysis further revealed that IER3 deletion significantly downregulated bone marrow stromal cell antigen 2 (BST2) expression and extracellular signal-related kinase 1/2 (ERK1/2) phosphorylation in hMSCs, suggesting that IER3 regulates osteogenic differentiation through BST2 and ERK1/2 signaling pathway activation. On the basis of these findings, we propose IER3 as a novel therapeutic target to promote hMSC osteoblastogenesis, which might be of high clinical relevance, for example, in patients with osteoporosis or compromised fracture healing.
Collapse
Affiliation(s)
- Oliver Küppers
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Mubashir Ahmad
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | | | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Verena Fischer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
6
|
Mangiavacchi A, Morelli G, Reppe S, Saera-Vila A, Liu P, Eggerschwiler B, Zhang H, Bensaddek D, Casanova EA, Medina Gomez C, Prijatelj V, Della Valle F, Atinbayeva N, Izpisua Belmonte JC, Rivadeneira F, Cinelli P, Gautvik KM, Orlando V. LINE-1 RNA triggers matrix formation in bone cells via a PKR-mediated inflammatory response. EMBO J 2024; 43:3587-3603. [PMID: 38951609 PMCID: PMC11377738 DOI: 10.1038/s44318-024-00143-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 07/03/2024] Open
Abstract
Transposable elements (TEs) are mobile genetic modules of viral derivation that have been co-opted to become modulators of mammalian gene expression. TEs are a major source of endogenous dsRNAs, signaling molecules able to coordinate inflammatory responses in various physiological processes. Here, we provide evidence for a positive involvement of TEs in inflammation-driven bone repair and mineralization. In newly fractured mice bone, we observed an early transient upregulation of repeats occurring concurrently with the initiation of the inflammatory stage. In human bone biopsies, analysis revealed a significant correlation between repeats expression, mechanical stress and bone mineral density. We investigated a potential link between LINE-1 (L1) expression and bone mineralization by delivering a synthetic L1 RNA to osteoporotic patient-derived mesenchymal stem cells and observed a dsRNA-triggered protein kinase (PKR)-mediated stress response that led to strongly increased mineralization. This response was associated with a strong and transient inflammation, accompanied by a global translation attenuation induced by eIF2α phosphorylation. We demonstrated that L1 transfection reshaped the secretory profile of osteoblasts, triggering a paracrine activity that stimulated the mineralization of recipient cells.
Collapse
Affiliation(s)
- Arianna Mangiavacchi
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia.
| | - Gabriele Morelli
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Sjur Reppe
- Oslo University Hospital, Department of Medical Biochemistry, Oslo, Norway
- Lovisenberg Diaconal Hospital, Unger-Vetlesen Institute, Oslo, Norway
- Oslo University Hospital, Department of Plastic and Reconstructive Surgery, Oslo, Norway
| | | | - Peng Liu
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Benjamin Eggerschwiler
- Department of Trauma, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Huoming Zhang
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Dalila Bensaddek
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Elisa A Casanova
- Department of Trauma, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | | | - Vid Prijatelj
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Francesco Della Valle
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
- Altos Labs, San Diego, CA, USA
| | - Nazerke Atinbayeva
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | | | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Paolo Cinelli
- Department of Trauma, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | - Valerio Orlando
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
7
|
Zhang X, Liu T, Ran C, Wang W, Piao F, Yang J, Tian S, Li L, Zhao D. Immunoregulatory paracrine effect of mesenchymal stem cells and mechanism in the treatment of osteoarthritis. Front Cell Dev Biol 2024; 12:1411507. [PMID: 39129785 PMCID: PMC11310049 DOI: 10.3389/fcell.2024.1411507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease caused by chronic inflammation that damages articular cartilage. At present, the treatment of OA includes drug therapy to relieve symptoms and joint replacement therapy for advanced OA. However, these palliatives cannot truly block the progression of the disease from the immunological pathogenesis of OA. In recent years, bone marrow mesenchymal stem cell (BMSC) transplantation has shown great potential in tissue engineering repair. In addition, many studies have shown that BMSC paracrine signals play an important role in the treatment of OA through immune regulation and suppressing inflammation. At present, the mechanism of inflammation-induced OA and the use of BMSC transplantation in joint repair have been reviewed, but the mechanism and significance of BMSC paracrine signals in the treatment of OA have not been fully reviewed. Therefore, this article focused on the latest research progress on the paracrine effects of BMSCs in the treatment of OA and the related mechanisms by which BMSCs secrete cytokines to inhibit the inflammatory response, regulate immune balance, and promote cell proliferation and differentiation. In addition, the application potential of BMSC-Exos as a new type of cell-free therapy for OA is described. This review aimed to provide systematic theoretical support for the clinical application of BMSC transplantation in the treatment of OA.
Collapse
Affiliation(s)
- Xiuzhi Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Tianhao Liu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Chunxiao Ran
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Weidan Wang
- Orthopaedic Medical Research Center, Dalian University, Dalian, Liaoning, China
| | - Fengyuan Piao
- Orthopaedic Medical Research Center, Dalian University, Dalian, Liaoning, China
| | - Jiahui Yang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Simiao Tian
- Orthopaedic Medical Research Center, Dalian University, Dalian, Liaoning, China
| | - Lu Li
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Dewei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|
8
|
Hezam K, Fu E, Zhang J, Li Z. Therapeutic trends of priming mesenchymal stem cells: A bibliometric analysis. Biochem Biophys Rep 2024; 38:101708. [PMID: 38623536 PMCID: PMC11016583 DOI: 10.1016/j.bbrep.2024.101708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have gained substantial attention in regenerative medicine due to their multilineage differentiation potential and immunomodulatory capabilities. MSCs have demonstrated therapeutic promise in numerous preclinical and clinical studies across a variety of diseases, including neurodegenerative disorders, cardiovascular diseases, and autoimmune conditions. Recently, priming MSCs has emerged as a novel strategy to enhance their therapeutic efficacy by preconditioning them for optimal survival and function in challenging in vivo environments. This study presented a comprehensive bibliometric analysis of research activity in the field of priming mesenchymal stem cells (MSCs) from 2003 to 2023. Utilizing a dataset of 585 documents, we explored research trends, leading authors and countries, productive journals, and frequently used keywords. We also explored priming strategies to augment the therapeutic efficacy of MSCs. Our findings show increasing research productivity with a peak in 2019, identified the United States as the leading contributor, and highlighted WANG JA as the most prolific author. The most published journal was Stem Cell Research & Therapy. Keyword analysis revealed core research areas emerging hotspots, while coword and cited sources visualizations elucidated the conceptual framework and key information sources. Further studies are crucial to advance the translation of primed MSCs from bench to bedside, potentially revolutionizing the landscape of regenerative medicine.
Collapse
Affiliation(s)
- Kamal Hezam
- Nankai University School of Medicine, Tianjin, 300071, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China
| | - Enze Fu
- Nankai University School of Medicine, Tianjin, 300071, China
| | - Jun Zhang
- Department of Anesthesiology and Pain Medical Center, Tianjin Union Medical Center, Nankai University, Tianjin, 300121, China
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin, 300071, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China
- National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
9
|
Li Z, Li Y, Liu C, Gu Y, Han G. Research progress of the mechanisms and applications of ginsenosides in promoting bone formation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155604. [PMID: 38614042 DOI: 10.1016/j.phymed.2024.155604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Bone deficiency-related diseases caused by various factors have disrupted the normal function of the skeleton and imposed a heavy burden globally, urgently requiring potential new treatments. The multi-faceted role of compounds like ginsenosides and their interaction with the bone microenvironment, particularly osteoblasts can promote bone formation and exhibit anti-inflammatory, vascular remodeling, and antibacterial properties, holding potential value in the treatment of bone deficiency-related diseases and bone tissue engineering. PURPOSE This review summarizes the interaction between ginsenosides and osteoblasts and the bone microenvironment in bone formation, including vascular remodeling and immune regulation, as well as their therapeutic potential and toxicity in the broad treatment applications of bone deficiency-related diseases and bone tissue engineering, to provide novel insights and treatment strategies. METHODS The literature focusing on the mechanisms and applications of ginsenosides in promoting bone formation before March 2024 was searched in PubMed, Web of Science, Google Scholar, Scopus, and Science Direct databases. Keywords such as "phytochemicals", "ginsenosides", "biomaterials", "bone", "diseases", "bone formation", "microenvironment", "bone tissue engineering", "rheumatoid arthritis", "periodontitis", "osteoarthritis", "osteoporosis", "fracture", "toxicology", "pharmacology", and combinations of these keywords were used. RESULTS Ginsenoside monomers regulate signaling pathways such as WNT/β-catenin, FGF, and BMP/TGF-β, stimulating osteoblast generation and differentiation. It exerts angiogenic and anti-inflammatory effects by regulating the bone surrounding microenvironment through signaling such as WNT/β-catenin, NF-κB, MAPK, PI3K/Akt, and Notch. It shows therapeutic effects and biological safety in the treatment of bone deficiency-related diseases, including rheumatoid arthritis, osteoarthritis, periodontitis, osteoporosis, and fractures, and bone tissue engineering by promoting osteogenesis and improving the microenvironment of bone formation. CONCLUSION The functions of ginsenosides are diverse and promising in treating bone deficiency-related diseases and bone tissue engineering. Moreover, potential exists in regulating the bone microenvironment, modifying biomaterials, and treating inflammatory-related bone diseases and dental material applications. However, the mechanisms and effects of some ginsenoside monomers are still unclear, and the lack of clinical research limits their clinical application. Further exploration and evaluation of the potential of ginsenosides in these areas are expected to provide more effective methods for treating bone defects.
Collapse
Affiliation(s)
- Ze Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Yuqing Gu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
10
|
Rajput SN, Naeem BK, Ali A, Salim A, Khan I. Expansion of human umbilical cord derived mesenchymal stem cells in regenerative medicine. World J Stem Cells 2024; 16:410-433. [PMID: 38690517 PMCID: PMC11056638 DOI: 10.4252/wjsc.v16.i4.410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages. In humans, their limited numbers pose a challenge in fulfilling the necessary demands for the regeneration and repair of damaged tissues or organs. Studies suggested that mesenchymal stem cells (MSCs), necessary for repair and regeneration via transplantation, require doses ranging from 10 to 400 million cells. Furthermore, the limited expansion of MSCs restricts their therapeutic application. AIM To optimize a novel protocol to achieve qualitative and quantitative expansion of MSCs to reach the targeted number of cells for cellular transplantation and minimize the limitations in stem cell therapy protocols. METHODS Human umbilical cord (hUC) tissue derived MSCs were obtained and re-cultured. These cultured cells were subjected to the following evaluation procedures: Immunophenotyping, immunocytochemical staining, trilineage differentiation, population doubling time and number, gene expression markers for proliferation, cell cycle progression, senescence-associated β-galactosidase assay, human telomerase reverse transcriptase (hTERT) expression, mycoplasma, cytomegalovirus and endotoxin detection. RESULTS Analysis of pluripotent gene markers Oct4, Sox2, and Nanog in recultured hUC-MSC revealed no significant differences. The immunophenotypic markers CD90, CD73, CD105, CD44, vimentin, CD29, Stro-1, and Lin28 were positively expressed by these recultured expanded MSCs, and were found negative for CD34, CD11b, CD19, CD45, and HLA-DR. The recultured hUC-MSC population continued to expand through passage 15. Proliferative gene expression of Pax6, BMP2, and TGFb1 showed no significant variation between recultured hUC-MSC groups. Nevertheless, a significant increase (P < 0.001) in the mitotic phase of the cell cycle was observed in recultured hUC-MSCs. Cellular senescence markers (hTERT expression and β-galactosidase activity) did not show any negative effect on recultured hUC-MSCs. Additionally, quality control assessments consistently confirmed the absence of mycoplasma, cytomegalovirus, and endotoxin contamination. CONCLUSION This study proposes the development of a novel protocol for efficiently expanding stem cell population. This would address the growing demand for larger stem cell doses needed for cellular transplantation and will significantly improve the feasibility of stem cell based therapies.
Collapse
Affiliation(s)
- Shafiqa Naeem Rajput
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Bushra Kiran Naeem
- Surgical Unit 4, Dr. Ruth KM Pfau Civil Hospital, Karachi 74400, Pakistan
| | - Anwar Ali
- Department of Physiology, University of Karachi, Karachi 75270, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
- Center for Regenerative Medicine and Stem Cells Research, and Department of Ophthalmology and Visual Sciences, The Aga Khan University, Karachi 74800, Sindh, Pakistan.
| |
Collapse
|
11
|
Struckmann VF, Allouch-Fey S, Kneser U, Harhaus L, Schulte M. Indication-Specific Effect of a Phytotherapeutic Remedy on Human Fetal Osteoblastic Cells: An in vitro Analysis. Complement Med Res 2024; 31:222-233. [PMID: 38387452 DOI: 10.1159/000535845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/12/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND Impaired fracture healing is a recurring interdisciplinary medical challenge. Alternative treatment concepts, apart from conventional medicine, are popular, but scientific evidence on their effects is still lacking. Plant-derived substances are widely assumed to support bone homeostasis. To clarify the effects on bone healing mechanisms, a commercially available, homeopathic-spagyric remedy, containing inter alia two herbal substances with assumed osteogenic potential, equisetum arvense and bellis perennis, was analyzed. METHODS Human fetal osteoblastic (hFOB) 1.19 cells were incubated with the test substance in serial dilutions from 10 to 0.00001%. Cell viability has been evaluated through ATP level (CTG assay) and MTT tetrazolium reduction. Cell proliferation was analyzed by BrdU incorporation and cell migration by wound healing assay (WHA) via image analysis. Additionally, determination of the expression of key genes via real-time PCR and proteins via proteome array for inflammation, cell proliferation, and angiogenesis were performed. RESULTS An incubation of hFOB 1.19 cells with the test substance for 24/72 h showed no reduction in cell number, viability, or proliferation. Cell migration was unimpaired. The test substance induced inflammatory genes and growth factors along with genes of osseous regeneration (ALP, Col1, IL-1α, IL-6, IL-8, IL-10, Osteocalcin, Osteonectin, RUMX2, TGF, VEGFA). Increased protein expression was found in multiple cytokines, chemokines, and acute phase proteins. CONCLUSION The test substance did not impair cell vitality parameters (MTT, CTG, BrdU, and WHA). A tendency to activate growth factors, bone regeneration genes, and proteins was shown for osteoblasts, indicating a possible positive effect on osteogenic processes. Hintergrund Störungen des komplexen Prozesses der Knochenheilung stellen auch heutzutage noch eine interdisziplinäre Herausforderung dar. Es existieren zahlreiche alternative Therapiekonzepte, deren Evidenz jedoch häufig nicht belegt ist. Es wird davon ausgegangen, dass pflanzliche Substanzen die Knochenheilung unterstützen können. Wir analysierten die Wirkung eines kommerziellen, homeopathisch-spagyrischen Heilmittels, welches unter anderen zwei Pflanzenstoffe enthält, denen ein osteogenes Potential zugeschrieben wird ( Equisetum arvense und Bellis perennis). Methoden Es erfolgte eine Inkubation humaner fetaler Osteoblastenzellen (hFOB 1.19) mit der Testsubstanz in absteigender Verdünnung von 10 bis 0.00001%. Die Zellvitalität wurde anhand der Zellzahlbestimmung durch ATP-abhängige metabolische Aktivität mittels CellTiter-Glo® (CTG) Test sowie durch Tetrazolium Reduktion (MTT) evaluiert. Die Zellproliferation wurde durch Inkorporation von Bromdesoxyuridin (BrdU) in die DNA aktiver Zellen analysiert. Der Wound Healing Assay (WHA) diente der Quantifizierung der Zellmigration. Zusätzlich wurde die Expression bestimmter Schlüsselgene mittels real-time PCR und die Proteinexpression via proteom array für Inflammation, Zellproliferation und Angiogenese erhoben. Ergebnisse Die Inkubation von hFOB 1.19 mit der Testsubstanz für 24/72 Stunden führte zu keiner Reduktion von Zellzahl, -vitalität oder -proliferation. Auch die Zellmigration war unbeeinträchtigt. Es zeigte sich eine Induktion inflammatorischer Gene, Wachstumsfaktoren sowie Genen der knöchernen Regeneration (ALP, Col1, IL-1α, IL-6, IL-8, IL-10, Osteocalcin, Osteonectin, RUMX2, TGF, VEGFA). Verschiedene Zytokine, Chemokine und Akute Phase Proteine wurden vermehrt exprimiert. Schlussfolgerung Die Testsubstanz hatte keine negativen Auswirkungen auf die gemessenen Zellvitalitätsparameter (MTT, CTG, BrdU and WHA). Es zeigte sich eine Aktivierungstendenz für Wachstumsfaktoren, Gene und Proteine der Knochenregeneration, die auf einen möglichen positiven Effekt der Substanz auf den Prozess des Knochenheilung hinweisen.
Collapse
Affiliation(s)
- Victoria Franziska Struckmann
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, Department of Hand and Plastic Surgery of Heidelberg University, BG Clinic Ludwigshafen, Ludwigshafen, Germany
| | - Stephanie Allouch-Fey
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, Department of Hand and Plastic Surgery of Heidelberg University, BG Clinic Ludwigshafen, Ludwigshafen, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, Department of Hand and Plastic Surgery of Heidelberg University, BG Clinic Ludwigshafen, Ludwigshafen, Germany
| | - Leila Harhaus
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, Department of Hand and Plastic Surgery of Heidelberg University, BG Clinic Ludwigshafen, Ludwigshafen, Germany
| | - Matthias Schulte
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, Department of Hand and Plastic Surgery of Heidelberg University, BG Clinic Ludwigshafen, Ludwigshafen, Germany
- Andreas Wentzensen Research Institute, BG Clinic Ludwigshafen, Ludwigshafen, Germany
| |
Collapse
|
12
|
Hakki SS, Batoon L, Koh AJ, Kannan R, Mendoza‐Reinoso V, Rubin J, Mccauley LK, Roca H. The effects of preosteoblast-derived exosomes on macrophages and bone in mice. J Cell Mol Med 2024; 28:e18029. [PMID: 37929757 PMCID: PMC10805488 DOI: 10.1111/jcmm.18029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023] Open
Abstract
The effect of preosteoblast-derived exosomes on bone marrow macrophages (BMMΦ) and calvarial osteoblasts (cOB) was evaluated in vitro, and bone formation studies were performed in vivo in mice. Preosteoblastic MC3T3-E1 clone 4 (MC4) cell-derived exosomes (MC4exo) were characterized with particle tracking, transmission electron microscopy and western blot analysis to validate size, number, shape and phenotypic exosome markers. Exosomes pre-labelled with PKH67 were incubated with BMMΦ and phagocytosis of exosomes was confirmed. To examine the effect of MC4exo on macrophage polarization, BMMΦ were treated with MC4exo and the expression of pro- and anti-inflammatory cytokines was determined by qPCR. MC4exo treatment upregulated mRNA expression of Cd86, Il1β, Ccl2, Rankl and Nos, and downregulated Cd206, Il10 and Tnfα, suggesting a shift towards pro-inflammatory 'M1-like' macrophage polarization. Combination of RANKL and MC4exo increased osteoclast differentiation of BMMΦ in comparison to RANKL alone as analysed by TRAP staining. MC4exo treatment showed no significant effect on calvarial osteoblast mineralization. For in vivo studies, intratibial inoculation of MC4exo (2 × 109 particles in PBS, n = 12) and vehicle control (PBS only, n = 12) was performed in C57Bl/6 mice (8 weeks, male). Micro-CT analyses of the trabecular and cortical bone compartments were assessed at 4 weeks post-injection. Tibial sections were stained for TRAP activity to determine osteoclast presence and immunofluorescence staining was performed to detect osteocalcin (Ocn), osterix (Osx) and F4/80 expression. Intratibial inoculation of MC4exo increased the diaphyseal bone mineral density and trabecular bone volume fraction due to increased trabecular number. This increase in bone was accompanied by a reduction in bone marrow macrophages and osteoclasts at the experimental endpoint. Together, these findings suggest that preosteoblast-derived exosomes enhanced bone formation by influencing macrophage responses.
Collapse
Affiliation(s)
- Sema S. Hakki
- School of Dentistry, Periodontics and Oral MedicineUniversity of MichiganAnn ArborMichiganUSA
- Department of Periodontology, Faculty of DentistrySelcuk UniversityKonyaTurkey
| | - Lena Batoon
- School of Dentistry, Periodontics and Oral MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Amy J. Koh
- School of Dentistry, Periodontics and Oral MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Rahasudha Kannan
- School of Dentistry, Periodontics and Oral MedicineUniversity of MichiganAnn ArborMichiganUSA
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | | | - John Rubin
- School of Dentistry, Periodontics and Oral MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Laurie K. Mccauley
- School of Dentistry, Periodontics and Oral MedicineUniversity of MichiganAnn ArborMichiganUSA
- Department of Pathology, Medical SchoolUniversity of MichiganAnn ArborMichiganUSA
| | - Hernan Roca
- School of Dentistry, Periodontics and Oral MedicineUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
13
|
Xia L, Wu T, Chen L, Mei P, Liu L, Li R, Shu M, Huan Z, Wu C, Fang B. Silicon-Based Biomaterials Modulate the Adaptive Immune Response of T Lymphocytes to Promote Osteogenesis/Angiogenesis via Epigenetic Regulation. Adv Healthc Mater 2023; 12:e2302054. [PMID: 37842937 DOI: 10.1002/adhm.202302054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Silicon (Si)-based biomaterials are widely applied for bone regeneration. However, the underlying mechanisms of the materials function remain largely unknown. T lymphocyte-mediated adaptive immune response plays a vital role in the process of bone regeneration. In the current study, mesoporous silica (MS) is used as a model material of Si-based biomaterials. It shows that the supernatant of CD4+ T lymphocytes pretreated with MS extract significantly promotes the vascularized bone regeneration. The potential mechanism is closely related to the fact that MS extract can reduce the expression of regulatory factor X-1 (RFX-1) in CD4+ T lymphocytes. This may result in the overexpression of interleukin-17A (IL-17A) by boosting histone H3 acetylation and lowering DNA methylation and H3K9 trimethylation. Importantly, the in vivo experiments further reveal that MS particles significantly enhance bone regeneration with improved angiogenesis in the critical-sized calvarial defect mouse model accompanied by upregulation of IL-17A in peripheral blood and the proportion of Th17 cells. This study suggests that modulation of the adaptive immune response of T lymphocytes by silicate-based biomaterials plays an important role for bone regeneration.
Collapse
Affiliation(s)
- Lunguo Xia
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Tingting Wu
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Lei Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Mei
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Lu Liu
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Ruomei Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Mengmeng Shu
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Zhiguang Huan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
14
|
Jantaboon S, Sakunrangsit N, Toejing P, Leelahavanichkul A, Pisitkun P, Greenblatt MB, Lotinun S. Lipopolysaccharide Impedes Bone Repair in FcγRIIB-Deficient Mice. Int J Mol Sci 2023; 24:16944. [PMID: 38069267 PMCID: PMC10707393 DOI: 10.3390/ijms242316944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Chronic inflammation contributes to the development of skeletal disorders in patients with systemic lupus erythematosus (SLE). Activation of the host immune response stimulates osteoclast activity, which in turn leads to bone loss. Regenerating bone in the inflammatory microenvironments of SLE patients with critical bone defects remains a great challenge. In this study, we utilized lipopolysaccharide (LPS) to imitate locally and systemically pathogenic bacterial infection and examined the bone regeneration performance of LPS-associated mandibular and tibial bone regeneration impairment in FcγRIIB-/- mice. Our results indicated that a loss of FcγRIIB alleviates bone regeneration in both mandibles and tibiae. After LPS induction, FcγRIIB-/- mice were susceptible to impaired fracture healing in tibial and mandibular bones. LPS decreased the mineralization to collagen ratio in FcγRIIB-/- mice, indicating a mineralization defect during bone repair. An osteoblast-associated gene (Col1a1) was attenuated in FcγRIIB-deficient mice, whereas Bglap, Hhip, and Creb5 were further downregulated with LPS treatment in FcγRIIB-/- mice compared to FcγRIIB-/- mice. Alpl and Bglap expression was dcreased in osteoblasts derived from bone chips. An osteoclast-associated gene, Tnfsf11/Tnfrsf11 ratio, ewas increased in LPS-induced FcγRIIB-/- mice and in vitro. Furthermore, systemic LPS was relatively potent in stimulating production of pro-inflammatory cytokines including TNF-α, IL-6, and MCP-1 in FcγRIIB-/- mice compared to FcγRIIB-/- mice. The levels of TNF-α, IFN-β, IL-1α, and IL-17A were increased, whereas IL-10 and IL-23 were decreased in FcγRIIB-/- mice treated locally with LPS. These findings suggest that both local and systemic LPS burden can exacerbate bone regeneration impairment, delay mineralization and skeletal repair, and induce inflammation in SLE patients.
Collapse
Affiliation(s)
- Sirikanda Jantaboon
- Interdisciplinary Program of Physiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Nithidol Sakunrangsit
- Center of Excellence in Skeletal Disorders and Enzyme Reaction Mechanism, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand (P.T.)
| | - Parichart Toejing
- Center of Excellence in Skeletal Disorders and Enzyme Reaction Mechanism, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand (P.T.)
| | - Asada Leelahavanichkul
- Division of Immunology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Matthew B. Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine and Research Division, Hospital for Special Surgery, New York, NY 10065, USA;
| | - Sutada Lotinun
- Center of Excellence in Skeletal Disorders and Enzyme Reaction Mechanism, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand (P.T.)
| |
Collapse
|
15
|
Zymovets V, Rakhimova O, Wadelius P, Schmidt A, Brundin M, Kelk P, Landström M, Vestman NR. Exploring the impact of oral bacteria remnants on stem cells from the Apical papilla: mineralization potential and inflammatory response. Front Cell Infect Microbiol 2023; 13:1257433. [PMID: 38089810 PMCID: PMC10711090 DOI: 10.3389/fcimb.2023.1257433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Bacterial persistence is considered one of the main causal factors for regenerative endodontic treatment (RET) failure in immature permanent teeth. This interference is claimed to be caused by the interaction of bacteria that reside in the root canal with the stem cells that are one of the essentials for RET. The aim of the study was to investigate whether prolonged exposure of stem cells from the apical papilla (SCAP) to bacterial remnants of Fusobacterium nucleatum, Actinomyces gerensceriae, Slackia exigua, Enterococcus faecalis, Peptostreptococcaceae yurii, commonly found in infected traumatized root canals, and the probiotic bacteria Lactobacillus gasseri and Limosilactobacillus reuteri, can alter SCAP's inflammatory response and mineralization potential. Methods To assess the effect of bacterial remnants on SCAP, we used UV-C-inactivated bacteria (as cell wall-associated virulence factors) and bacterial DNA. Histochemical staining using Osteoimage Mineralization Assay and Alizarin Red analysis was performed to study SCAP mineralization, while inflammatory and osteo/odontogenic-related responses of SCAPs were assessed with Multiplex ELISA. Results We showed that mineralization promotion was greater with UV C-inactivated bacteria compared to bacterial DNA. Immunofluorescence analysis detected that the early mineralization marker alkaline phosphatase (ALP) was increased by the level of E. coli lipopolysaccharide (LPS) positive control in the case of UV-C-inactivated bacteria; meanwhile, DNA treatment decreased the level of ALP compared to the positive control. SCAP's secretome assessed with Multiplex ELISA showed the upregulation of pro-inflammatory factors IL-6, IL-8, GM-CSF, IL-1b, neurotrophic factor BDNF, and angiogenic factor VEGF, induced by UV-C-killed bacteria. Discussion The results suggest that long term stimulation (for 21 days) of SCAP with UV-C-inactivated bacteria stimulate their mineralization and inflammatory response, while DNA influence has no such effect, which opens up new ideas about the nature of RET failure.
Collapse
Affiliation(s)
| | | | - Philip Wadelius
- Department of Endodontics, Region of Västerbotten, Umeå, Sweden
| | - Alexej Schmidt
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Malin Brundin
- Department of Odontology, Umeå University, Umeå, Sweden
| | - Peyman Kelk
- Section for Anatomy, Department of Integrative Medical Biology (IMB), Umeå University, Umeå, Sweden
| | - Maréne Landström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Nelly Romani Vestman
- Department of Odontology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
16
|
Choppa VSR, Liu G, Tompkins YH, Kim WK. Altered Osteogenic Differentiation in Mesenchymal Stem Cells Isolated from Compact Bone of Chicken Treated with Varying Doses of Lipopolysaccharides. Biomolecules 2023; 13:1626. [PMID: 38002308 PMCID: PMC10669906 DOI: 10.3390/biom13111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Persistent inflammation biologically alters signaling molecules and ultimately affects osteogenic differentiation, including in modern-day broilers with unique physiology. Lipopolysaccharides (LPS) are Gram-negative bacterial components that activate cells via transmembrane receptor activation and other molecules. Previous studies have shown several pathways associated with osteogenic inductive ability, but the pathway has yet to be deciphered, and data related to its dose-dependent effect are limited. Primary mesenchymal stem cells (MSCs) were isolated from the bones of day-old broiler chickens, and the current study focused on the dose-dependent variation (3.125 micrograms/mL to 50 micrograms/mL) in osteogenic differentiation and the associated biomarkers in primary MSCs. The doses in this study were determined using a cell viability (MTT) assay. The study revealed that osteogenic differentiation varied with dose, and the cells exposed to higher doses of LPS were viable but lacked differentiating ability. However, this effect became transient with lower doses, and this phenotypic character was observed with differential staining methods like Alizarin Red, Von Kossa, and alkaline phosphatase. The data from this study revealed that LPS at varying doses had a varying effect on osteogenic differentiation via several pathways acting simultaneously during bone development.
Collapse
Affiliation(s)
| | | | | | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30605, USA; (V.S.R.C.); (G.L.); (Y.H.T.)
| |
Collapse
|
17
|
Liu X, Zhou Z, Zeng WN, Zeng Q, Zhang X. The role of toll-like receptors in orchestrating osteogenic differentiation of mesenchymal stromal cells and osteoimmunology. Front Cell Dev Biol 2023; 11:1277686. [PMID: 37941898 PMCID: PMC10629627 DOI: 10.3389/fcell.2023.1277686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Osteoimmunology is a concept involving molecular and cellular crosstalk between the skeletal and immune systems. Toll-like receptors (TLRs) are widely expressed both on mesenchymal stromal cells (MSCs), the hematopoietic cells, and immune cells in the osteogenic microenvironment for bone development or repair. TLRs can sense both exogenous pathogen-associated molecular patterns (PAMPs) derived from microorganisms, and damage-associated molecular patterns (DAMPs) derived from normal cells subjected to injury, inflammation, or cell apoptosis under physiological or pathological conditions. Emerging studies reported that TLR signaling plays an important role in bone remodeling by directly impacting MSC osteogenic differentiation or osteoimmunology. However, how to regulate TLR signaling is critical and remains to be elucidated to promote the osteogenic differentiation of MSCs and new bone formation for bone tissue repair. This review outlines distinct TLR variants on MSCs from various tissues, detailing the impact of TLR pathway activation or inhibition on MSC osteogenic differentiation. It also elucidates TLR pathways' interplay with osteoclasts, immune cells, and extracellular vesicles (EVs) derived from MSCs. Furthermore, we explore biomaterial-based activation to guide MSCs' osteogenic differentiation. Therefore, understanding TLRs' role in this context has significant implications for advancing bone regeneration and repair strategies.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Zongke Zhou
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Nan Zeng
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
von Kroge S, Büyükyilmaz Z, Alimy AR, Hubert J, Citak M, Amling M, Beil FT, Ohlmeier M, Rolvien T. Do Clinical Parameters Reflect Local Bone Metabolism in Heterotopic Ossification After Septic or Aseptic THA? Clin Orthop Relat Res 2023; 481:2029-2041. [PMID: 37462509 PMCID: PMC10499090 DOI: 10.1097/corr.0000000000002758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/06/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Heterotopic ossification (HO) is a common complication after THA. Although current research primarily focuses on treatment and prevention, little is known about the local bone metabolism of HO and clinical contributing factors. QUESTIONS/PURPOSES We aimed to assess bone remodeling processes in HO using histomorphometry, focusing on the effects of inflammation and prior NSAID treatment. Specifically, we asked: (1) Are HO specimens taken from patients with periprosthetic joint infection (PJI) more likely to exhibit active bone modeling and remodeling than specimens taken at the time of revision from patients without infection? (2) Do clinical or inflammatory serum and synovial parameters reflect the microstructure of and remodeling in both HO entities? (3) Is NSAID treatment before revision surgery associated with altered local bone mineralization or remodeling properties? METHODS Between June 2021 and May 2022, we screened 395 patients undergoing revision THA at two tertiary centers in Germany. Of those, we considered all patients with radiographic HO as potentially eligible. Based on that, 21% (83 of 395) were eligible; a further 43 were excluded because of an inability to remove the implant intraoperatively (16 patients), insufficient material (11), comorbidities with a major effect on bone metabolism (10), or bone-specific drugs (six), leaving 10% (40) for analysis in this retrospective, comparative study. HO specimens were collected during aseptic (25 patients: 18 male, seven female, mean age 70 ± 11 years, mean BMI 29 ± 4 kg/m 2 ) and septic (15 patients: 11 male, four female, mean age 69 ± 9 years, mean BMI 32 ± 9 kg/m 2 ) revision THA at a mean of 6 ± 7 years after primary implantation and a mean age of 70 ± 9 years at revision. Septic origin (PJI) was diagnosed based on the 2018 International Consensus Meeting criteria, through a preoperative assessment of serum and synovial parameters. To specify the local bone microstructure, ossification, and cellular bone turnover, we analyzed HO specimens using micro-CT and histomorphometry on undecalcified sections. Data were compared with those of controls, taken from femoral neck trabecular bone (10 patients: five female, five male, mean age 75 ± 6 years, mean BMI 28 ± 4 kg/m 2 ) and osteophytes (10 patients: five female, five male, mean age 70 ± 10 years, mean BMI 29 ± 7 kg/m 2 ). The time between primary implantation and revision (time in situ), HO severity based on the Brooker classification, and serum and synovial markers were correlated with HO microstructure and parameters of cellular bone turnover. In a subgroup of specimens of patients with NSAID treatment before revision, osteoid and bone turnover indices were evaluated and compared a matched cohort of specimens from patients without prior NSAID treatment. RESULTS Patients with aseptic and septic HO presented with a higher bone volume (BV/TV; aseptic: 0.41 ± 0.15, mean difference 0.20 [95% CI 0.07 to 0.32]; septic: 0.43 ± 0.15, mean difference 0.22 [95% CI 0.08 to 0.36]; femoral neck: 0.21 ± 0.04; both p < 0.001), lower bone mineral density (aseptic: 809 ± 66 mg HA/cm 3 , mean difference -91 mg HA/cm 3 [95% CI -144 to -38]; septic: 789 ± 44 mg HA/cm 3 , mean difference -111 mg HA/cm 3 [95% CI -169 to -53]; femoral neck: 899 ± 20 mg HA/cm 3 ; both p < 0.001), and ongoing bone modeling with endochondral ossification and a higher proportion of woven, immature bone (aseptic: 25% ± 17%, mean difference 25% [95% CI 9% to 41%]; septic: 37% ± 23%, mean difference 36% [95% CI 19% to 54%]; femoral neck: 0.4% ± 0.5%; both p < 0.001) compared with femoral neck specimens. Moreover, bone surfaces were characterized by increased osteoblast and osteoclast indices in both aseptic and septic HO, although a higher density of osteocytes was detected exclusively in septic HO (aseptic: 158 ± 56 1/mm 2 versus septic: 272 ± 48 1/mm 2 , mean difference 114 1/mm 2 [95% CI 65 to 162]; p < 0.001). Compared with osteophytes, microstructure and turnover indices were largely similar in HO. The Brooker class was not associated with any local bone metabolism parameters. The time in situ was negatively associated with bone turnover in aseptic HO specimens (osteoblast surface per bone surface: r = -0.46; p = 0.01; osteoclast surface per bone surface: r = -0.56; p = 0.003). Serum or synovial inflammatory markers were not correlated with local bone turnover in septic HO. Specimens of patients with NSAID treatment before revision surgery had a higher osteoid thickness (10.1 ± 2.1 µm versus 5.5 ± 2.6 µm, mean difference -4.7 µm [95% CI -7.4 to -2.0]; p = 0.001), but there was no difference in other osteoid, structural, or cellular parameters. CONCLUSION Aseptic and septic HO share phenotypic characteristics in terms of the sustained increase in bone metabolism, although differences in osteocyte and adipocyte numbers suggest distinct homeostatic mechanisms. These results suggest persistent bone modeling or remodeling, with osteoblast and osteoclast indices showing a moderate decline with the time in situ in aseptic HO. Future studies should use longitudinal study designs to correlate our findings with clinical outcomes (such as HO growth or recurrence). In addition, the molecular mechanisms of bone cell involvement during HO formation and growth should be further investigated, which may allow specific therapeutic and preventive interventions. CLINICAL RELEVANCE To our knowledge, our study is the first to systematically investigate histomorphometric bone metabolism parameters in patients with HO after THA, providing a clinical reference for evaluating modeling and remodeling activity. Routine clinical, serum, and synovial markers are not useful for inferring local bone metabolism.
Collapse
Affiliation(s)
- Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Assil-Ramin Alimy
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Hubert
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mustafa Citak
- Department of Joint Surgery, Helios ENDO-Klinik, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Timo Beil
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Ohlmeier
- Department of Joint Surgery, Helios ENDO-Klinik, Hamburg, Germany
- Department of Orthopaedic and Trauma Surgery, UKM Marienhospital, Steinfurt, Germany
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
Ding G, Mu-Guo S. Inhibition of Wnt11 impairs the osteogenesis and aggravates the inflammatory response of human mesenchymal stem cells under LPS-induced inflammatory condition. Biochem Biophys Res Commun 2023; 661:82-88. [PMID: 37087802 DOI: 10.1016/j.bbrc.2023.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
In infectious bone defect, osteogenesis is very particularly important for treating. Currently, mesenchymal stem cells (MSCs) become a promising treatment protocol in clinical practice. In infectious environment, lipopolysaccharide (LPS) not only affects the osteogenic differentiation of MSCs, but also incurs inflammatory reaction from the host or cells and prompts the secretion of inflammatory cytokines. Wnt11 plays an important role of enhancing osteogenic ability of MSCs in treating bone infectious animal model in vivo. However, whether Wnt11 enhances the osteogenic capacity or influences the inflammatory reaction under inflammatory condition mediated by LPS in vitro remains unknown. In this study, we investigated the role of Wnt11 on the osteogenic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) and the effect on the inflammatory reaction induced by LPS. Effects of Wnt11 on the osteogenic capacity of BM-MSCs and on the inhibition of inflammatory reaction induced by LPS were evaluated by Wnt11 RNAi assay, Alizarin staining, quantitative RT-PCR test, ALP activity test and ELISA assays. The results showed inhibiting Wnt11 expression exacerbated the expression of osteogenic differentiation related genes and decreased the mineral deposits formation. Moreover, inhibiting Wnt11 expression also exacerbated the inflammatory factors release, indicating Wnt11 might play an important role of enhancing the osteogenic differentiation of BM-MSCs and inhibiting the inflammatory reaction induced by LPS.
Collapse
Affiliation(s)
- Gao Ding
- Department of Orthopaedics, Meizhou People's Hospital, Meizhou, Guangdong Province, China
| | - Song Mu-Guo
- Kunming Medical University, Kunming, 650032, China; Department of Orthopaedics, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, China.
| |
Collapse
|
20
|
Hezam K, Wang C, Fu E, Zhou M, Liu Y, Wang H, Zhu L, Han Z, Han ZC, Chang Y, Li Z. Superior protective effects of PGE2 priming mesenchymal stem cells against LPS-induced acute lung injury (ALI) through macrophage immunomodulation. Stem Cell Res Ther 2023; 14:48. [PMID: 36949464 PMCID: PMC10032272 DOI: 10.1186/s13287-023-03277-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have demonstrated remarkable therapeutic promise for acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS). MSC secretomes contain various immunoregulatory mediators that modulate both innate and adaptive immune responses. Priming MSCs has been widely considered to boost their therapeutic efficacy for a variety of diseases. Prostaglandin E2 (PGE2) plays a vital role in physiological processes that mediate the regeneration of injured organs. METHODS This work utilized PGE2 to prime MSCs and investigated their therapeutic potential in ALI models. MSCs were obtained from human placental tissue. MSCs were transduced with firefly luciferase (Fluc)/eGFP fusion protein for real-time monitoring of MSC migration. Comprehensive genomic analyses explored the therapeutic effects and molecular mechanisms of PGE2-primed MSCs in LPS-induced ALI models. RESULTS Our results demonstrated that PGE2-MSCs effectively ameliorated lung injury and decreased total cell numbers, neutrophils, macrophages, and protein levels in bronchoalveolar lavage fluid (BALF). Meanwhile, treating ALI mice with PGE2-MSCs dramatically reduced histopathological changes and proinflammatory cytokines while increasing anti-inflammatory cytokines. Furthermore, our findings supported that PGE2 priming improved the therapeutic efficacy of MSCs through M2 macrophage polarization. CONCLUSION PGE2-MSC therapy significantly reduced the severity of LPS-induced ALI in mice by modulating macrophage polarization and cytokine production. This strategy boosts the therapeutic efficacy of MSCs in cell-based ALI therapy.
Collapse
Affiliation(s)
- Kamal Hezam
- Nankai University School of Medicine, Tianjin, 300071, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, College of Life Sciences, Tianjin, 300071, China
| | - Chen Wang
- Nankai University School of Medicine, Tianjin, 300071, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, College of Life Sciences, Tianjin, 300071, China
| | - Enze Fu
- Nankai University School of Medicine, Tianjin, 300071, China
| | - Manqian Zhou
- Department of Radiation Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, 300120, China
| | - Yue Liu
- Nankai University School of Medicine, Tianjin, 300071, China
| | - Hui Wang
- Department of Radiation Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, 300120, China
| | - Lihong Zhu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Zhibo Han
- Jiangxi Engineering Research Center for Stem Cells, Shangrao, 334109, Jiangxi, China
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceuticals, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd, Tianjin, 300457, China
- Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co., 100176, Beijing, China
| | - Zhong-Chao Han
- Jiangxi Engineering Research Center for Stem Cells, Shangrao, 334109, Jiangxi, China
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceuticals, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd, Tianjin, 300457, China
- Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co., 100176, Beijing, China
| | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China.
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin, 300071, China.
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China.
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, College of Life Sciences, Tianjin, 300071, China.
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
21
|
Lopes-Pacheco M, Rocco PRM. Functional enhancement strategies to potentiate the therapeutic properties of mesenchymal stromal cells for respiratory diseases. Front Pharmacol 2023; 14:1067422. [PMID: 37007034 PMCID: PMC10062457 DOI: 10.3389/fphar.2023.1067422] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Respiratory diseases remain a major health concern worldwide because they subject patients to considerable financial and psychosocial burdens and result in a high rate of morbidity and mortality. Although significant progress has been made in understanding the underlying pathologic mechanisms of severe respiratory diseases, most therapies are supportive, aiming to mitigate symptoms and slow down their progressive course but cannot improve lung function or reverse tissue remodeling. Mesenchymal stromal cells (MSCs) are at the forefront of the regenerative medicine field due to their unique biomedical potential in promoting immunomodulation, anti-inflammatory, anti-apoptotic and antimicrobial activities, and tissue repair in various experimental models. However, despite several years of preclinical research on MSCs, therapeutic outcomes have fallen far short in early-stage clinical trials for respiratory diseases. This limited efficacy has been associated with several factors, such as reduced MSC homing, survival, and infusion in the late course of lung disease. Accordingly, genetic engineering and preconditioning methods have emerged as functional enhancement strategies to potentiate the therapeutic actions of MSCs and thus achieve better clinical outcomes. This narrative review describes various strategies that have been investigated in the experimental setting to functionally potentiate the therapeutic properties of MSCs for respiratory diseases. These include changes in culture conditions, exposure of MSCs to inflammatory environments, pharmacological agents or other substances, and genetic manipulation for enhanced and sustained expression of genes of interest. Future directions and challenges in efficiently translating MSC research into clinical practice are discussed.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- *Correspondence: Miquéias Lopes-Pacheco, ; Patricia R. M. Rocco,
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Miquéias Lopes-Pacheco, ; Patricia R. M. Rocco,
| |
Collapse
|
22
|
Molecular Basis beyond Interrelated Bone Resorption/Regeneration in Periodontal Diseases: A Concise Review. Int J Mol Sci 2023; 24:ijms24054599. [PMID: 36902030 PMCID: PMC10003253 DOI: 10.3390/ijms24054599] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Periodontitis is the sixth most common chronic inflammatory disease, destroying the tissues supporting the teeth. There are three distinct stages in periodontitis: infection, inflammation, and tissue destruction, where each stage has its own characteristics and hence its line of treatment. Illuminating the underlying mechanisms of alveolar bone loss is vital in the treatment of periodontitis to allow for subsequent reconstruction of the periodontium. Bone cells, including osteoclasts, osteoblasts, and bone marrow stromal cells, classically were thought to control bone destruction in periodontitis. Lately, osteocytes were found to assist in inflammation-related bone remodeling besides being able to initiate physiological bone remodeling. Furthermore, mesenchymal stem cells (MSCs) either transplanted or homed exhibit highly immunosuppressive properties, such as preventing monocytes/hematopoietic precursor differentiation and downregulating excessive release of inflammatory cytokines. In the early stages of bone regeneration, an acute inflammatory response is critical for the recruitment of MSCs, controlling their migration, and their differentiation. Later during bone remodeling, the interaction and balance between proinflammatory and anti-inflammatory cytokines could regulate MSC properties, resulting in either bone formation or bone resorption. This narrative review elaborates on the important interactions between inflammatory stimuli during periodontal diseases, bone cells, MSCs, and subsequent bone regeneration or bone resorption. Understanding these concepts will open up new possibilities for promoting bone regeneration and hindering bone loss caused by periodontal diseases.
Collapse
|
23
|
Lv B, Lu L, Hu L, Cheng P, Hu Y, Xie X, Dai G, Mi B, Liu X, Liu G. Recent advances in GelMA hydrogel transplantation for musculoskeletal disorders and related disease treatment. Theranostics 2023; 13:2015-2039. [PMID: 37064871 PMCID: PMC10091878 DOI: 10.7150/thno.80615] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/06/2023] [Indexed: 04/18/2023] Open
Abstract
Increasing data reveals that gelatin that has been methacrylated is involved in a variety of physiologic processes that are important for therapeutic interventions. Gelatin methacryloyl (GelMA) hydrogel is a highly attractive hydrogels-based bioink because of its good biocompatibility, low cost, and photo-cross-linking structure that is useful for cell survivability and cell monitoring. Methacrylated gelatin (GelMA) has established itself as a typical hydrogel composition with extensive biomedical applications. Recent advances in GelMA have focused on integrating them with bioactive and functional nanomaterials, with the goal of improving GelMA's physical, chemical, and biological properties. GelMA's ability to modify characteristics due to the synthesis technique also makes it a good choice for soft and hard tissues. GelMA has been established to become an independent or supplementary technology for musculoskeletal problems. Here, we systematically review mechanism-of-action, therapeutic uses, and challenges and future direction of GelMA in musculoskeletal disorders. We give an overview of GelMA nanocomposite for different applications in musculoskeletal disorders, such as osteoarthritis, intervertebral disc degeneration, bone regeneration, tendon disorders and so on.
Collapse
Affiliation(s)
- Bin Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
| | - Li Lu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
| | - Liangcong Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
| | - Peng Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
| | - Yiqiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
| | - Xudong Xie
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
| | - Guandong Dai
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, 518118 P.R. China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
- ✉ Corresponding author: Bobin Mi, ; Xin Liu, ; Guohui Liu,
| | - Xin Liu
- Third School of Clinical Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028 P.R. China
- ✉ Corresponding author: Bobin Mi, ; Xin Liu, ; Guohui Liu,
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
- ✉ Corresponding author: Bobin Mi, ; Xin Liu, ; Guohui Liu,
| |
Collapse
|
24
|
García-García A, Pigeot S, Martin I. Engineering of immunoinstructive extracellular matrices for enhanced osteoinductivity. Bioact Mater 2022; 24:174-184. [PMID: 36606254 PMCID: PMC9800268 DOI: 10.1016/j.bioactmat.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
The increasing recognition of the contribution of the immune system to activate and prime regeneration implies that tissue engineering strategies and biomaterials design should target regulation of early immunological processes. We previously proposed the cell-based engineering and devitalization of extracellular matrices (ECMs) as a strategy to generate implant materials delivering custom-defined signals. Here, in the context of bone regeneration, we aimed at enhancing the osteoinductivity of such ECMs by enriching their immunomodulatory factors repertoire. Priming with IL1β a cell line overexpressing BMP-2 enabled engineering of ECMs preserving osteoinductive signals and containing larger amounts of angiogenic (VEGF) and pro-inflammatory molecules (IL6, IL8 and MCP1). Upon implantation, these IL1β-induced materials enhanced processes typical of the inflammatory phase (e.g., vascular invasion, osteoclast recruitment and differentiation), leading to 'regenerative' events (e.g., M2 macrophage polarization) and ultimately resulting in faster and more efficient bone formation. These results bear relevance towards the manufacturing of potent off-the-shelf osteoinductive materials and outline the broader paradigm of engineering immunoinstructive implants to enhance tissue regeneration.
Collapse
Affiliation(s)
- Andrés García-García
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031, Basel, Switzerland,Corresponding author. Department of Biomedicine, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Sébastien Pigeot
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031, Basel, Switzerland,Department of Biomedical Engineering, University of Basel, 4123, Allschwill, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031, Basel, Switzerland,Department of Biomedical Engineering, University of Basel, 4123, Allschwill, Switzerland,Corresponding author. Department of Biomedicine, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| |
Collapse
|
25
|
Lee SH, Kim CH, Yoon JY, Choi EJ, Kim MK, Yoon JU, Kim HY, Kim EJ. Lidocaine intensifies the anti-osteogenic effect on inflammation-induced human dental pulp stem cells via mitogen-activated protein kinase inhibition. J Dent Sci 2022. [DOI: 10.1016/j.jds.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
26
|
Go YY, Lee CM, Chae SW, Song JJ. Osteogenic Efficacy of Human Trophoblasts-Derived Conditioned Medium on Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms231710196. [PMID: 36077594 PMCID: PMC9456271 DOI: 10.3390/ijms231710196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022] Open
Abstract
Trophoblasts play an important role in the regulation of the development and function of the placenta. Our recent study demonstrated the skin regeneration capacity of trophoblast-derived extracellular vesicles (EV). Here, we aimed to determine the potential of trophoblast-derived conditioned medium (TB-CM) in enhancing the osteogenic differentiation of bone marrow mesenchymal stem cells (MSCs). We found that TB-CM promoted the osteogenic differentiation of MSCs in a dose-dependent manner. Furthermore, it inhibited adipogenesis of MSCs. We also found that the primary trophoblast-derived conditioned medium (PTB-CM) significantly enhanced the proliferation and osteogenic differentiation of human MSCs. Our study demonstrated the regulatory mechanisms underlying the TB-CM-induced osteogenesis in MSCs. An upregulation of genes associated with cytokines/chemokines was observed. The treatment of MSCs with TB-CM stimulated osteogenesis by activating several biological processes, such as mitogen-activated protein kinase (MAPK) and bone morphogenetic protein 2 (BMP2) signaling. This study demonstrated the proliferative and osteogenic efficacies of the trophoblast-derived secretomes, suggesting their potential for use in clinical interventions for bone regeneration and treatment.
Collapse
Affiliation(s)
- Yoon-Young Go
- Department of Otorhinolaryngology—Head and Neck Surgery, Korea University Guro Hospital, Seoul 08308, Korea
- Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul 08308, Korea
| | - Chan-Mi Lee
- Department of Otorhinolaryngology—Head and Neck Surgery, Korea University Guro Hospital, Seoul 08308, Korea
| | - Sung-Won Chae
- Department of Otorhinolaryngology—Head and Neck Surgery, Korea University Guro Hospital, Seoul 08308, Korea
- Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul 08308, Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology—Head and Neck Surgery, Korea University Guro Hospital, Seoul 08308, Korea
- Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul 08308, Korea
- Correspondence: ; Tel.: +82-2-2626-3191; Fax: +82-2-2626-0475
| |
Collapse
|
27
|
Khokhani P, Belluomo R, Croes M, Gawlitta D, Kruyt MC, Weinans H. An in-vitro model to test the influence of immune cell secretome on MSC osteogenic differentiation. Tissue Eng Part C Methods 2022; 28:420-430. [PMID: 35770885 DOI: 10.1089/ten.tec.2022.0086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Immune cells and their soluble factors have an important role in the bone healing process. Modulation of the immune response, therefore, offers a potential strategy to enhance bone formation. To investigate the influence of the immune system on osteogenesis, we developed and applied an in-vitro model that incorporates both innate and adaptive immune cells. Human peripheral blood mononuclear cells (PBMCs) were isolated and cultured for 24 hours and subsequently stimulated with immune-modulatory agents; C-class CpG oligodeoxynucleotide (CpG ODN C), Polyinosinic acid-polycytidylic acid Poly(I:C), and lipopolysaccharide (LPS); all pathogen recognition receptor agonists, and that target Toll-like receptors TLR9, -3, and -4, respectively. The conditioned medium obtained from PBMCs after 24 hours was used to investigate its effects on the metabolic activity and osteogenic differentiation capacity of human bone marrow-derived mesenchymal stromal cells (MSCs). Conditioned media from unstimulated PBMCs did not affect the metabolic activity and osteogenic differentiation capacity of MSCs. The conditioned medium from CpG ODN C and LPS stimulated PBMCs increased alkaline phosphatase activity of MSCs by approximately 3-fold as compared to the unstimulated control, whereas Poly(I:C) conditioned medium did not enhance ALP activity of MSCs. Moreover, direct stimulation of MSCs with the immune-modulatory stimuli did not result in increased alkaline phosphatase activity. These results demonstrate that soluble factors present in conditioned medium from PBMCs stimulated with immune-modulatory factors enhance osteogenesis of MSCs. This in-vitro model can serve as a tool in screening immune-modulatory stimulants from a broad variety of immune cells for (indirect) effects on osteogenesis and also to identify soluble factors from multiple immune cell types that may modulate bone healing.
Collapse
Affiliation(s)
- Paree Khokhani
- University Medical Centre Utrecht, 8124, Orthopedics , UMC Utrecht, dept. Orthopedics, G5.203, Heidelberglaan 100, Utrecht, Utrecht, Drenthe, Netherlands, 3584CX.,University Medical Centre, Utrecht (UMCU), UMC Utrecht, dept. Orthopedics, G5.203, Heidelberglaan 100, Netherlands;
| | - Ruggero Belluomo
- University Medical Centre Utrecht, 8124, Orthopedics , Utrecht, Utrecht, Netherlands;
| | - Michiel Croes
- University Medical Centre Utrecht, 8124, Orthopedics , Utrecht, Utrecht, Netherlands;
| | - Debby Gawlitta
- University Medical Center Utrecht, Oral and Maxillofacial Surgery, Prosthodontics & Special Dental Care, Heidelberglaan 100, G05.129, PO Box 85500, Utrecht, Netherlands, 3508 GA;
| | - Moyo C Kruyt
- University medical center Utrecht, Orthopedics, HP G 05.228, PO Box 85500, Utrecht, Netherlands, 3508 GA;
| | - Harrie Weinans
- University Medical Centre Utrecht, 8124, Orthopedics, Utrecht, Utrecht, Netherlands;
| |
Collapse
|
28
|
Mo Q, Zhang W, Zhu A, Backman LJ, Chen J. Regulation of osteogenic differentiation by the pro-inflammatory cytokines IL-1β and TNF-α: current conclusions and controversies. Hum Cell 2022; 35:957-971. [PMID: 35522425 DOI: 10.1007/s13577-022-00711-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/23/2022] [Indexed: 12/09/2022]
Abstract
Treatment of complex bone fracture diseases is still a complicated problem that is urged to be solved in orthopedics. In bone tissue engineering, the use of mesenchymal stromal/stem cells (MSCs) for tissue repair brings hope to the medical field of bone diseases. MSCs can differentiate into osteoblasts and promote bone regeneration. An increasing number of studies show that the inflammatory microenvironment affects the osteogenic differentiation of MSCs. It is shown that TNF-α and IL-1β play different roles in the osteogenic differentiation of MSCs via different signal pathways. The main factors that affect the role of TNF-α and IL-1β in osteogenic differentiation of MSCs include concentration and the source of stem cells (different species and different tissues). This review in-depth analyzes the roles of pro-inflammatory cytokines in the osteogenic differentiation of MSCs and reveals some current controversies to provide a reference of comprehensively understanding.
Collapse
Affiliation(s)
- Qingyun Mo
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Aijing Zhu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, SE-901 87, Umeå, Sweden
| | - Jialin Chen
- School of Medicine, Southeast University, Nanjing, 210009, China.
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
29
|
Nilawar S, Chatterjee K. Surface Decoration of Redox-Modulating Nanoceria on 3D-Printed Tissue Scaffolds Promotes Stem Cell Osteogenesis and Attenuates Bacterial Colonization. Biomacromolecules 2021; 23:226-239. [PMID: 34905351 DOI: 10.1021/acs.biomac.1c01235] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Oxidative stress at the bone defect site delays the bone regeneration process. Increased level of reactive oxygen species (ROS) is the primary cause of oxidative stress at the damaged site. Bone tissue scaffolds that scavenge ROS offer a potential and yet unexplored route for faster bone healing. Cerium oxide (ceria) is known for its redox-modulating behavior. Three-dimensional (3D)-printed porous scaffolds fabricated from degradable polymers provide a physical microenvironment but lack the bioactivity for tissue regeneration. In this work, porous poly(lactic acid) (PLA) scaffolds were prepared by 3D printing and modified with poly(ethylene imine) and citric acid to decorate with ceria nanoparticles. Scanning electron micrographs revealed a macroporous architecture decorated with ceria particles. The compressive modulus of 27 MPa makes them suitable for trabecular bone. The scaffolds supported human mesenchymal stem cell growth, confirming cytocompatibility. The ability to scavenge ROS confirmed that surface functionalization with ceria could reduce oxidative stress levels in the cells. Stem cell osteogenesis was enhanced after ceria decoration of the PLA scaffolds. Transcriptional profiling studied by sequencing revealed changes in the expression of genes associated with inflammation and cell-material interactions. The ceria-functionalized scaffolds show enhanced antibacterial activity against both Gram-negative and Gram-positive bacterial strains. These results demonstrate that surface decoration with nanoceria offers a viable route for enhancing the bioactivity of 3D-printed PLA scaffolds for bone tissue regeneration with ROS scavenging and antibacterial capability.
Collapse
Affiliation(s)
- Sagar Nilawar
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| |
Collapse
|
30
|
Go YY, Chae SW, Song JJ. Comprehensive analysis of human chorionic membrane extracts regulating mesenchymal stem cells during osteogenesis. Cell Prolif 2021; 55:e13160. [PMID: 34841608 PMCID: PMC8780910 DOI: 10.1111/cpr.13160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Human chorionic membrane extracts (CMEs) from placenta are known to be a natural biomaterial for bone regeneration, with their excellent osteogenic efficacy on osteoblasts. However, little is known about the regulatory mechanism involved. METHODS AND RESULTS We have shown the in vitro and in vivo bone-forming ability of CME using human osteoblasts and bone defect animal models, suggesting that CME greatly enhances osteogenesis by providing an osteoconductive environment for the osteogenesis of osteoblasts. Proteomic analysis revealed that CME contained several osteogenesis-related stimulators such as osteopontin, osteomodulin, Thy-1, netrin 4, retinol-binding protein and DJ-1. Additionally, 23 growth factors/growth factor-related proteins were found in CME, which may trigger mitogen-activated protein kinase (MAPK) signalling as a specific cellular signalling pathway for osteogenic differentiation. Microarray analysis showed four interaction networks (chemokine, Wnt signalling, angiogenesis and ossification), indicating the possibility that CME can promote osteogenic differentiation through a non-canonical Wnt-mediated CXCL signalling-dependent pathway. CONCLUSIONS The results of this study showed the function and mechanism of action of CME during the osteogenesis of osteoblasts and highlighted a novel strategy for the use of CME as a biocompatible therapeutic material for bone regeneration.
Collapse
Affiliation(s)
- Yoon Young Go
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, Seoul, Republic of Korea.,Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Sung-Won Chae
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, Seoul, Republic of Korea.,Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul, Republic of Korea
| |
Collapse
|
31
|
Na W, Kang MK, Park SH, Kim DY, Oh SY, Oh MS, Park S, Kang IIJ, Kang YH. Aesculetin Accelerates Osteoblast Differentiation and Matrix-Vesicle-Mediated Mineralization. Int J Mol Sci 2021; 22:ijms222212391. [PMID: 34830274 PMCID: PMC8621655 DOI: 10.3390/ijms222212391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
The imbalance between bone resorption and bone formation in favor of resorption results in bone loss and deterioration of bone architecture. Osteoblast differentiation is a sequential event accompanying biogenesis of matrix vesicles and mineralization of collagen matrix with hydroxyapatite crystals. Considerable efforts have been made in developing naturally-occurring plant compounds, preventing bone pathologies, or enhancing bone regeneration. Coumarin aesculetin inhibits osteoporosis through hampering the ruffled border formation of mature osteoclasts. However, little is known regarding the effects of aesculetin on the impairment of matrix vesicle biogenesis. MC3T3-E1 cells were cultured in differentiation media with 1–10 μM aesculetin for up to 21 days. Aesculetin boosted the bone morphogenetic protein-2 expression, and alkaline phosphatase activation of differentiating MC3T3-E1 cells. The presence of aesculetin strengthened the expression of collagen type 1 and osteoprotegerin and transcription of Runt-related transcription factor 2 in differentiating osteoblasts for 9 days. When ≥1–5 μM aesculetin was added to differentiating cells for 15–18 days, the induction of non-collagenous proteins of bone sialoprotein II, osteopontin, osteocalcin, and osteonectin was markedly enhanced, facilitating the formation of hydroxyapatite crystals and mineralized collagen matrix. The induction of annexin V and PHOSPHO 1 was further augmented in ≥5 μM aesculetin-treated differentiating osteoblasts for 21 days. In addition, the levels of tissue-nonspecific alkaline phosphatase and collagen type 1 were further enhanced within the extracellular space and on matrix vesicles of mature osteoblasts treated with aesculetin, indicating matrix vesicle-mediated bone mineralization. Finally, aesculetin markedly accelerated the production of thrombospondin-1 and tenascin C in mature osteoblasts, leading to their adhesion to preformed collagen matrix. Therefore, aesculetin enhanced osteoblast differentiation, and matrix vesicle biogenesis and mineralization. These findings suggest that aesculetin may be a potential osteo-inductive agent preventing bone pathologies or enhancing bone regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - II-Jun Kang
- Correspondence: (I.-J.K.); (Y.-H.K.); Tel.: +82-33-248-2135 (I.-J.K.); +82-33-248-2132 (Y.-H.K.)
| | - Young-Hee Kang
- Correspondence: (I.-J.K.); (Y.-H.K.); Tel.: +82-33-248-2135 (I.-J.K.); +82-33-248-2132 (Y.-H.K.)
| |
Collapse
|
32
|
Tsubosaka M, Maruyama M, Huang EE, Zhang N, Utsunomiya T, Gao Q, Shen H, Li X, Kushioka J, Hirata H, Yao Z, Yang YP, Goodman SB. Effect on Osteogenic Differentiation of Genetically Modified IL4 or PDGF-BB Over-Expressing and IL4-PDGF-BB Co-Over-Expressing Bone Marrow-Derived Mesenchymal Stromal Cells In Vitro. Bioengineering (Basel) 2021; 8:bioengineering8110165. [PMID: 34821731 PMCID: PMC8614682 DOI: 10.3390/bioengineering8110165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022] Open
Abstract
The use of genetically modified (GM) mesenchymal stromal cells (MSCs) and preconditioned MSCs (pMSCs) may provide further opportunities to improve the outcome of core decompression (CD) for the treatment of early-stage osteonecrosis of the femoral head (ONFH). GM interleukin-4 (IL4) over-expressing MSCs (IL4-MSCs), platelet-derived growth factor (PDGF)-BB over-expressing MSCs (PDGF-BB-MSCs), and IL4-PDGF-BB co-over-expressing MSCs (IL4-PDGF-BB-MSCs) and their respective pMSCs were used in this in vitro study and compared with respect to cell proliferation and osteogenic differentiation. IL4-MSCs, PDGF-BB-MSCs, IL4-PDGF-BB-MSCs, and each pMSC treatment significantly increased cell proliferation compared to the MSC group alone. The percentage of Alizarin red-stained area in the IL4-MSC and IL4-pMSC groups was significantly lower than in the MSC group. However, the percentage of Alizarin red-stained area in the PDGF-BB-MSC group was significantly higher than in the MSC and PDGF-BB-pMSC groups. The percentage of Alizarin red-stained area in the IL4-PDGF-BB-pMSC was significantly higher than in the IL4-PDGF-BB-MSC group. There were no significant differences in the percentage of Alizarin red-stained area between the MSC and IL4-PDGF-BB-pMSC groups. The use of PDGF-BB-MSCs or IL4-PDGF-BB-pMSCs increased cell proliferation. Furthermore, PDGF-BB-MSCs promoted osteogenic differentiation. The addition of GM MSCs may provide a useful supplementary cell-based therapy to CD for treatment of ONFH.
Collapse
Affiliation(s)
- Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Elijah Ejun Huang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Xueping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
- Department of Material Science and Engineering, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence: ; Tel.: +1-650-498-4343
| |
Collapse
|
33
|
da Silva Brum I, Frigo L, Goncalo Pinto Dos Santos P, Nelson Elias C, da Fonseca GAMD, Jose de Carvalho J. Performance of Nano-Hydroxyapatite/Beta-Tricalcium Phosphate and Xenogenic Hydroxyapatite on Bone Regeneration in Rat Calvarial Defects: Histomorphometric, Immunohistochemical and Ultrastructural Analysis. Int J Nanomedicine 2021; 16:3473-3485. [PMID: 34040373 PMCID: PMC8140889 DOI: 10.2147/ijn.s301470] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Background Synthetic biomaterials have played an increasingly prominent role in the substitution of naturally derived biomaterials in current surgery practice. In vitro and in vivo characterization studies of new synthetic biomaterials are essential to analyze their physicochemical properties and the underlying mechanisms associated with the modulation of the inflammatory process and bone healing. Purpose This study compares the in vivo tissue behavior of a synthetic biomaterial nano-hydroxyapatite/beta-tricalcium phosphate (nano-HA/ß-TCP mixture) and deproteinized bovine bone mineral (DBBM) in a rat calvarial defect model. The innovation of this work is in the comparative analysis of the effect of new synthetic and commercially xenogenic biomaterials on the inflammatory response, bone matrix gain, and stimulation of osteoclastogenesis and osteoblastogenesis. Methods Both biomaterials were inserted in rat defects. The animals were divided into three groups, in which calvarial defects were filled with xenogenic biomaterials (group 1) and synthetic biomaterials (group 2), or left unfilled (group 3, controls). Sixty days after calvarial bone defects filled with biomaterials, periodic acid Schiff (PAS) and Masson’s trichrome staining, immunohistochemistry tumor necrosis factor-alpha (TNF-α), matrix metalloproteinase-9 (MMP-9), and electron microscopy analyses were conducted. Results Histomorphometric analysis revealed powerful effects such as a higher amount of proteinaceous matrix and higher levels of TNF-α and MMP-9 in bone defects treated with alloplastic nano-HA/ß-TCP mixture than xenogenicxenogic biomaterial, as well as collagen-proteinaceous material in association with hydroxyapatite crystalloids. Conclusion These data indicate that the synthetic nano-HA/ß-TCP mixture enhanced bone formation/remodeling in rat calvarial bone defects. The nano-HA/ß-TCP did not present risks of cross-infection/disease transmission. The synthetic nano-hydroxyapatite/beta-tricalcium phosphate mixture presented adequate properties for guided bone regeneration and guided tissue regeneration for dental surgical procedures.
Collapse
Affiliation(s)
- Igor da Silva Brum
- Implantology Department, School of Dentistry, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucio Frigo
- Periodontology Department, School of Dentistry, Universidade Guarulhos, São Paulo, Brazil
| | | | | | | | - Jorge Jose de Carvalho
- Biology Department, School of Medicine, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Yin X, Yang C, Wang Z, Zhang Y, Li Y, Weng J, Feng B. Alginate/chitosan modified immunomodulatory titanium implants for promoting osteogenesis in vitro and in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112087. [PMID: 33947577 DOI: 10.1016/j.msec.2021.112087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 01/08/2023]
Abstract
The essentiality of macrophages for biomaterial-mediated osteogenesis has been increasingly recognized. However, it is still unclear what is the specific role and molecular mechanisms of macrophages and material properties in the regulation of osteogenesis. As an interdisciplinary field exploring the cross-talk between immune and skeletal systems, osteoimmunology has shifted the perspective of bone substitute materials from immunosuppressive materials to immunomodulatory materials. To fabricate an immunomodulatory Ti implant, alginate/chitosan multilayer films were fabricated on the surface of titania nanotubes (TNTs) to control the release of an anti-inflammatory cytokine interleukin (IL)-4 according to our previous work. The osteogenic effects and regulation mechanisms of the immunomodulatory Ti implants were investigated in vitro in different BMSCs culture modes. Alginate/chitosan multilayer-coated samples (with or without IL-4 loading) showed better direct osteogenic ability than TNTs by promoting biomineralization and up-regulating osteogenic gene expression (BMP1α, ALP, OPN, OCN) of BMSCs. Notably, material-induced macrophage polarization, M1 and M2, enhanced early and mid-stage osteogenesis of BMSCs via distinct pathways: M1 activated both BMP6/SMADs and Wnt10b/β-catenin pathways; while M2 activated TGF-β/SMADs pathway. Material surface properties dominated in regulating late osteogenesis probably due to the surface chemical composition (alginate, chitosan and Ca2+, etc.). Due to synergistic effects of material-induced inflammatory microenvironment and material surface properties, IL-4-loaded samples exhibited superior osteogenic capability through co-activation of three signaling pathways. The in vivo studies in rat bone defect model revealed that IL-4-loaded immunomodulatory implants successfully achieved macrophage phenotypic transition from pro-inflammatory M1 to anti-inflammatory M2 and subsequently improved new bone formation.
Collapse
Affiliation(s)
- Xianzhen Yin
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Congling Yang
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Ziquan Wang
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yiting Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jie Weng
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Bo Feng
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
35
|
Khokhani P, Rahmani NR, Kok A, Öner FC, Alblas J, Weinans H, Kruyt MC, Croes M. Use of Therapeutic Pathogen Recognition Receptor Ligands for Osteo-Immunomodulation. MATERIALS 2021; 14:ma14051119. [PMID: 33673651 PMCID: PMC7957819 DOI: 10.3390/ma14051119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 01/08/2023]
Abstract
Therapeutic pathogen recognition receptor (PRR) ligands are reaching clinical practice following their ability to skew the immune response in a specific direction. We investigated the effects of various therapeutic PRR ligands on bone cell differentiation and inflammation. Following stimulation, alkaline phosphatase (ALP) activity (Day 10), osteocalcin, osteonectin expression (Day 14), and calcium deposition (Day 21) were quantified in bone marrow-derived human mesenchymal stem cells (hMSCs). The osteoclastogenic response was determined by measuring tartrate-resistant acid phosphate (TRAP) activity in human monocytes. TNF-α, IL-6, IL-8, and IL-10 expressions were measured by enzyme-linked immunosorbent assay as an indicator of the ligands’ inflammatory properties. We found that nucleic acid-based ligands Poly(I:C) and CpG ODN C increased early ALP activity in hMSCs by 4-fold without affecting osteoclast formation. These ligands did not enhance expression of the other, late osteogenic markers. MPLA, Curdlan, and Pam3CSK4 did not affect osteogenic differentiation, but inhibited TRAP activity in monocytes, which was associated with increased expression of all measured cytokines. Nucleic acid-based ligands are identified as the most promising osteo-immunomodulators, as they favor early osteogenic differentiation without inducing an exaggerated immune-cell mediated response or interfering in osteoclastogenesis and thus can be potentially harnessed for multifunctional coatings for bone biomaterials.
Collapse
Affiliation(s)
- Paree Khokhani
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Nada R Rahmani
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Anne Kok
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - F Cumhur Öner
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jacqueline Alblas
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Harrie Weinans
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Biomechanical Engineering, Technical University Delft, 2628 CD Delft, The Netherlands
| | - Moyo C Kruyt
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Michiel Croes
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
36
|
Sunderic K, Li C, Ahmed AHR, Dawkins D, Azar T, Cardoso L, Wang S. Tuning Thermal Dosage to Facilitate Mesenchymal Stem Cell Osteogenesis in Pro-Inflammatory Environment. J Biomech Eng 2021; 143:011006. [PMID: 32601701 PMCID: PMC7580656 DOI: 10.1115/1.4047660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/16/2020] [Indexed: 01/21/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can replicate and differentiate to different lineages, potentiating their use as integral components in regenerated mesenchymal tissues. Our previous work and other studies have indicated that mild heat shock enhances osteogenesis. However, the influence of pro-inflammatory cytokines on osteogenic differentiation during mildly elevated temperature conditions remains to be fully explored. In this study, human MSCs (hMSCs) were cultured with tumor necrosis factor-alpha (TNF-α), an important mediator of the acute phase response, and interleukin-6 (IL-6) which plays a role in damaging chronic inflammation, then heat shocked at 39 °C in varying frequencies-1 h per week (low), 1 h every other day (mild), and 1 h intervals three times per day every other day (high). DNA data showed that periodic mild heating inhibited suppression of cell growth caused by cytokines and induced maximal proliferation of hMSCs while high heating had the opposite effect. Quantitative osteogenesis assays show significantly higher levels of alkaline phosphatase (ALP) activity and calcium precipitation in osteogenic cultures following mild heating compared to low heating or nonheated controls. These results demonstrate that periodic mild hyperthermia may be used to facilitate bone regeneration using hMSCs, and therefore may influence the design of heat-based therapies in vivo.
Collapse
Affiliation(s)
- Kristifor Sunderic
- Department of Biomedical Engineering, City University of New York—City College, 160 Convent Avenue, New York, NY 10031
| | - Chenghai Li
- Department of Biomedical Engineering, City University of New York—City College, 160 Convent Avenue, New York, NY 10031
| | - A. H. Rezwanuddin Ahmed
- Department of Biomedical Engineering, City University of New York—City College, 160 Convent Avenue, New York, NY 10031
| | - Dionne Dawkins
- Department of Biomedical Engineering, City University of New York—City College, 160 Convent Avenue, New York, NY 10031
| | - Tala Azar
- Department of Biomedical Engineering, City University of New York—City College, 160 Convent Avenue, New York, NY 10031
| | - Luis Cardoso
- Department of Biomedical Engineering, City University of New York—City College, 160 Convent Avenue, New York, NY 10031
| | - Sihong Wang
- Department of Biomedical Engineering, City University of New York—City College, 160 Convent Avenue, New York, NY 10031
| |
Collapse
|
37
|
Pahk K, Kwon HW, Joung C, Kim S. Stress-Related Amygdala Metabolic Activity Is Associated With Low Bone Mineral Density in Postmenopausal Women: A Pilot 18F-FDG PET/CT Study. Front Endocrinol (Lausanne) 2021; 12:719265. [PMID: 34475851 PMCID: PMC8406934 DOI: 10.3389/fendo.2021.719265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Psychological stress is associated with postmenopausal osteoporosis. However, the underlying mechanism of stress-related brain neural activity with osteoporosis is not fully elucidated. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) is an established method to evaluate the metabolic activity of brain amygdala, a region involved in stress. We aimed to evaluate the relationship between metabolic activity of amygdala (AmygA) and osteoporosis in postmenopausal women. MATERIALS AND METHODS A total of 115 postmenopausal women who underwent 18F-FDG PET/CT and dual-energy X-ray absorptiometry for routine health screening were enrolled in this study. AmygA was defined as the maximum standardized uptake value (SUVmax) of amygdala divided by the mean SUV of temporal lobe. The levels of psychological stress were measured using the Psychosocial Well-being Index-Short Form (PWI-SF). RESULTS The participants with osteoporosis exhibited significantly higher AmygA than without osteoporosis (0.81 ± 0.16 vs. 0.61 ± 0.13, p < 0.001). The AmygA value of 0.69 was suggested as an optimal cut-off value to identify participant with osteoporosis (sensitivity; 79.1%, specificity; 83.3%, area under the curve; 0.841, p < 0.001). Furthermore, AmygA showed significant association with osteoporosis in postmenopausal woman by multivariate analysis. Psychological stress scale (PWI-SF) was well correlated with AmygA and AmygA was highest in high stress risk-, intermediate in moderate stress risk-, and lowest in healthy group. CONCLUSIONS AmygA measured by 18F-FDG PET/CT is associated with osteoporosis in postmenopausal women. Our results provide the possibility that stress-related neurobiological activity involving amygdala is linked with postmenopausal osteoporosis.
Collapse
MESH Headings
- Aged
- Amygdala/diagnostic imaging
- Amygdala/metabolism
- Bone Diseases, Metabolic/diagnosis
- Bone Diseases, Metabolic/etiology
- Bone Diseases, Metabolic/metabolism
- Bone Diseases, Metabolic/psychology
- Female
- Fluorodeoxyglucose F18/pharmacokinetics
- Humans
- Middle Aged
- Osteoporosis, Postmenopausal/diagnostic imaging
- Osteoporosis, Postmenopausal/etiology
- Osteoporosis, Postmenopausal/metabolism
- Osteoporosis, Postmenopausal/psychology
- Pilot Projects
- Positron Emission Tomography Computed Tomography
- Postmenopause/metabolism
- Postmenopause/psychology
- Republic of Korea
- Stress, Psychological/complications
- Stress, Psychological/diagnostic imaging
- Stress, Psychological/metabolism
Collapse
Affiliation(s)
- Kisoo Pahk
- Department of Nuclear Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Hyun Woo Kwon
- Department of Nuclear Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Chanmin Joung
- Department of Neuroscience, Korea University College of Medicine, Seoul, South Korea
| | - Sungeun Kim
- Department of Nuclear Medicine, Korea University Anam Hospital, Seoul, South Korea
- *Correspondence: Sungeun Kim,
| |
Collapse
|
38
|
Wang M, Luo Y, Yu Y, Chen F. Bioengineering Approaches to Accelerate Clinical Translation of Stem Cell Therapies Treating Osteochondral Diseases. Stem Cells Int 2020; 2020:8874742. [PMID: 33424981 PMCID: PMC7775142 DOI: 10.1155/2020/8874742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/17/2020] [Accepted: 12/12/2020] [Indexed: 12/15/2022] Open
Abstract
The osteochondral tissue is an interface between articular cartilage and bone. The diverse composition, mechanical properties, and cell phenotype in these two tissues pose a big challenge for the reconstruction of the defected interface. Due to the availability and inherent regenerative therapeutic properties, stem cells provide tremendous promise to repair osteochondral defect. This review is aimed at highlighting recent progress in utilizing bioengineering approaches to improve stem cell therapies for osteochondral diseases, which include microgel encapsulation, adhesive bioinks, and bioprinting to control the administration and distribution. We will also explore utilizing synthetic biology tools to control the differentiation fate and deliver therapeutic biomolecules to modulate the immune response. Finally, future directions and opportunities in the development of more potent and predictable stem cell therapies for osteochondral repair are discussed.
Collapse
Affiliation(s)
- Meng Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yixuan Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yin Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fei Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
39
|
Groen WMGAC, Utomo L, Castilho M, Gawlitta D, Malda J, van Weeren PR, Levato R, Korthagen NM. Impact of Endotoxins in Gelatine Hydrogels on Chondrogenic Differentiation and Inflammatory Cytokine Secretion In Vitro. Int J Mol Sci 2020; 21:E8571. [PMID: 33202964 PMCID: PMC7696312 DOI: 10.3390/ijms21228571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 12/31/2022] Open
Abstract
Gelatine methacryloyl (GelMA) hydrogels are widely used in studies aimed at cartilage regeneration. However, the endotoxin content of commercially available GelMAs and gelatines used in these studies is often overlooked, even though endotoxins may influence several cellular functions. Moreover, regulations for clinical use of biomaterials dictate a stringent endotoxin limit. We determined the endotoxin level of five different GelMAs and evaluated the effect on the chondrogenic differentiation of equine mesenchymal stromal cells (MSCs). Cartilage-like matrix production was evaluated by biochemical assays and immunohistochemistry. Furthermore, equine peripheral blood mononuclear cells (PBMCs) were cultured on the hydrogels for 24 h, followed by the assessment of tumour necrosis factor (TNF)-α and C-C motif chemokine ligand (CCL)2 as inflammatory markers. The GelMAs were found to have widely varying endotoxin content (two with >1000 EU/mL and three with <10 EU/mL), however, this was not a critical factor determining in vitro cartilage-like matrix production of embedded MSCs. PBMCs did produce significantly higher TNF-α and CCL2 in response to the GelMA with the highest endotoxin level compared to the other GelMAs. Although limited effects on chondrogenic differentiation were found in this study, caution with the use of commercial hydrogels is warranted in the translation from in vitro to in vivo studies because of regulatory constraints and potential inflammatory effects of the content of these hydrogels.
Collapse
Affiliation(s)
- Wilhelmina M. G. A. C. Groen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (J.M.); (R.L.); (N.M.K.)
- Department of Orthopaedics, Regenerative Medicine Center, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands;
| | - Lizette Utomo
- Department of Oral and Maxillofacial Surgery and Special Dental Care, Regenerative Medicine Center, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands; (L.U.); (D.G.)
| | - Miguel Castilho
- Department of Orthopaedics, Regenerative Medicine Center, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands;
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery and Special Dental Care, Regenerative Medicine Center, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands; (L.U.); (D.G.)
| | - Jos Malda
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (J.M.); (R.L.); (N.M.K.)
- Department of Orthopaedics, Regenerative Medicine Center, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands;
| | - P. René van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (J.M.); (R.L.); (N.M.K.)
| | - Riccardo Levato
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (J.M.); (R.L.); (N.M.K.)
- Department of Orthopaedics, Regenerative Medicine Center, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands;
| | - Nicoline M. Korthagen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (J.M.); (R.L.); (N.M.K.)
- Department of Orthopaedics, Regenerative Medicine Center, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands;
| |
Collapse
|
40
|
Goodman SB, Maruyama M. Inflammation, Bone Healing and Osteonecrosis: From Bedside to Bench. J Inflamm Res 2020; 13:913-923. [PMID: 33223846 PMCID: PMC7671464 DOI: 10.2147/jir.s281941] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Osteonecrosis of the epiphyseal and metaphyseal regions of major weight-bearing bones of the extremities is a condition that is associated with local death of bone cells and marrow in the afflicted compartment. Chronic inflammation is a prominent feature of osteonecrosis. If the persistent inflammation is not resolved, this process will result in progressive collapse and subsequent degenerative arthritis. In the pre-collapse stage of osteonecrosis, attempt at joint preservation rather than joint replacement in this younger population with osteonecrosis is a major clinical objective. In this regard, core decompression, with/without local injection of bone marrow aspirate concentrate (BMAC), is an accepted and evidence-based method to help arrest the progression and improve the outcome of early-stage osteonecrosis. However, some patients do not respond favorably to this treatment. Thus, it is prudent to consider strategies to mitigate chronic inflammation concurrent with addressing the deficiencies in osteogenesis and vasculogenesis in order to save the affected joint. Interestingly, the processes of inflammation, osteonecrosis, and bone healing are highly inter-related. Therefore, modulating the biological processes and crosstalk among cells of the innate immune system, the mesenchymal stem cell-osteoblast lineage and others are important to providing the local microenvironment for resolution of inflammation and subsequent repair. This review summarizes the clinical and biologic principles associated with osteonecrosis and provides potential cutting-end strategies for modulating chronic inflammation and facilitating osteogenesis and vasculogenesis using local interventions. Although these studies are still in the preclinical stages, it is hoped that safe, efficacious, and cost-effective interventions will be developed to save the host’s natural joint.
Collapse
Affiliation(s)
- Stuart B Goodman
- Departments of Orthopaedic Surgery, Stanford University, Stanford, CA, USA.,Departments of Bioengineering, Stanford University, Stanford, CA, USA
| | - Masahiro Maruyama
- Departments of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
41
|
Jauković A, Kukolj T, Obradović H, Okić-Đorđević I, Mojsilović S, Bugarski D. Inflammatory niche: Mesenchymal stromal cell priming by soluble mediators. World J Stem Cells 2020; 12:922-937. [PMID: 33033555 PMCID: PMC7524701 DOI: 10.4252/wjsc.v12.i9.922] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are adult stem cells of stromal origin that possess self-renewal capacity and the ability to differentiate into multiple mesodermal cell lineages. They play a critical role in tissue homeostasis and wound healing, as well as in regulating the inflammatory microenvironment through interactions with immune cells. Hence, MSCs have garnered great attention as promising candidates for tissue regeneration and cell therapy. Because the inflammatory niche plays a key role in triggering the reparative and immunomodulatory functions of MSCs, priming of MSCs with bioactive molecules has been proposed as a way to foster the therapeutic potential of these cells. In this paper, we review how soluble mediators of the inflammatory niche (cytokines and alarmins) influence the regenerative and immunomodulatory capacity of MSCs, highlighting the major advantages and concerns regarding the therapeutic potential of these inflammatory primed MSCs. The data summarized in this review may provide a significant starting point for future research on priming MSCs and establishing standardized methods for the application of preconditioned MSCs in cell therapy.
Collapse
Affiliation(s)
- Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Hristina Obradović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Ivana Okić-Đorđević
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Slavko Mojsilović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| |
Collapse
|
42
|
Salhotra A, Shah HN, Levi B, Longaker MT. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol 2020; 21:696-711. [PMID: 32901139 DOI: 10.1038/s41580-020-00279-w] [Citation(s) in RCA: 588] [Impact Index Per Article: 117.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/19/2022]
Abstract
Bone development occurs through a series of synchronous events that result in the formation of the body scaffold. The repair potential of bone and its surrounding microenvironment - including inflammatory, endothelial and Schwann cells - persists throughout adulthood, enabling restoration of tissue to its homeostatic functional state. The isolation of a single skeletal stem cell population through cell surface markers and the development of single-cell technologies are enabling precise elucidation of cellular activity and fate during bone repair by providing key insights into the mechanisms that maintain and regenerate bone during homeostasis and repair. Increased understanding of bone development, as well as normal and aberrant bone repair, has important therapeutic implications for the treatment of bone disease and ageing-related degeneration.
Collapse
Affiliation(s)
- Ankit Salhotra
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Harsh N Shah
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin Levi
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| | - Michael T Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA. .,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
43
|
Yıldırım E, Sezer G. Clinical plasma concentration of vinpocetine does not affect osteogenic differentiation of mesenchymal stem cells. Pharmacol Rep 2020; 73:202-210. [PMID: 32865810 DOI: 10.1007/s43440-020-00153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/17/2020] [Accepted: 08/20/2020] [Indexed: 11/30/2022]
Abstract
AIM Vinpocetine (Vin) has long been used as a medicine to treat cerebrovascular disorders and as a dietary supplement to improve cognitive functions. Previous studies have revealed that the transcription factor nuclear factor kappa B (NF-κB) activity plays an important role in osteogenic differentiation of mesenchymal stem cells (MSC). Vin inhibits NF-κB-dependent inflammatory responses; however, the effect of Vin on the osteogenic differentiation of MSCs has not been reported. In this study, we aimed to the investigate effect of Vin on the osteogenic differentiation of rat bone marrow-derived MSCs (BMSCs). METHODS We treated BMSCs with clinical plasma (0.17 µM) or higher concentrations (5 and 20 µM) of Vin with no significant effect on the cell viability. Alizarin Red S and alkaline phosphatase (ALP) stainings were used to evaluate mineralizations on days 14 and 21. Moreover, expressions of target genes were detected using qRT-PCR analysis. RESULTS Osteogenic differentiation of BMSCs did not significantly change with Vin's clinical plasma concentration, but significantly decreased with higher concentrations. Calcium mineralization, ALP staining and mRNA gene expressions of Runx2 and ALP were decreased significantly with high concentrations of Vin, paticularly on day 21. CONCLUSION Our in vitro findings suggest that clinically relevant concentration of Vin seems safe to use in elderly patients with respect to osteoporosis. On the other hand, Vin at high concentrations appears to be harmful to bone homeostasis.
Collapse
Affiliation(s)
- Esma Yıldırım
- Pharmacy Division, Ministry of Health Kayseri City Hospital, 38080, Kayseri, Turkey
| | - Gulay Sezer
- School of Medicine, Pharmacology Department, Erciyes University, 38039, Kayseri, Turkey. .,Genkok Genome and Stem Cell Centre, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
44
|
Park JH, Kang YH, Hwang SC, Oh SH, Byun JH. Parthenolide Has Negative Effects on In Vitro Enhanced Osteogenic Phenotypes by Inflammatory Cytokine TNF-α via Inhibiting JNK Signaling. Int J Mol Sci 2020; 21:ijms21155433. [PMID: 32751648 DOI: 10.3390/ijms21155433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor kappa B (NF-κB) regulates inflammatory gene expression and represents a likely target for novel disease treatment approaches, including skeletal disorders. Several plant-derived sesquiterpene lactones can inhibit the activation of NF-κB. Parthenolide (PTL) is an abundant sesquiterpene lactone, found in Mexican Indian Asteraceae family plants, with reported anti-inflammatory activity, through the inhibition of a common step in the NF-κB activation pathway. This study examined the effects of PTL on the enhanced, in vitro, osteogenic phenotypes of human periosteum-derived cells (hPDCs), mediated by the inflammatory cytokine tumor necrosis factor (TNF)-α. PTL had no significant effects on hPDC viability or osteoblastic activities, whereas TNF-α had positive effects on the in vitro osteoblastic differentiation of hPDCs. c-Jun N-terminal kinase (JNK) signaling played an important role in the enhanced osteoblastic differentiation of TNF-α-treated hPDCs. Treatment with 1 µM PTL did not affect TNF-α-treated hPDCs; however, 5 and 10 µM PTL treatment decreased the histochemical detection and activity of alkaline phosphatase (ALP), alizarin red-positive mineralization, and the expression of ALP and osteocalcin mRNA. JNK phosphorylation decreased significantly in TNF-α-treated hPDCs pretreated with PTL. These results suggested that PTL exerts negative effects on the increased osteoblastic differentiation of TNF-α-treated hPDCs by inhibiting JNK signaling.
Collapse
Affiliation(s)
- Jin-Ho Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea
| | - Young-Hoon Kang
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Changwon Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea
| | - Sun-Chul Hwang
- Department of Orthopaedic Surgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Se Heang Oh
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
45
|
Goodman SB, Lin T. Modifying MSC Phenotype to Facilitate Bone Healing: Biological Approaches. Front Bioeng Biotechnol 2020; 8:641. [PMID: 32671040 PMCID: PMC7328340 DOI: 10.3389/fbioe.2020.00641] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Healing of fractures and bone defects normally follows an orderly series of events including formation of a hematoma and an initial stage of inflammation, development of soft callus, formation of hard callus, and finally the stage of bone remodeling. In cases of severe musculoskeletal injury due to trauma, infection, irradiation and other adverse stimuli, deficient healing may lead to delayed or non-union; this results in a residual bone defect with instability, pain and loss of function. Modern methods of mechanical stabilization and autologous bone grafting are often successful in achieving fracture union and healing of bone defects; however, in some cases, this treatment is unsuccessful because of inadequate biological factors. Specifically, the systemic and local microenvironment may not be conducive to bone healing because of a loss of the progenitor cell population for bone and vascular lineage cells. Autologous bone grafting can provide the necessary scaffold, progenitor and differentiated lineage cells, and biological cues for bone reconstruction, however, autologous bone graft may be limited in quantity or quality. These unfavorable circumstances are magnified in systemic conditions with chronic inflammation, including obesity, diabetes, chronic renal disease, aging and others. Recently, strategies have been devised to both mitigate the necessity for, and complications from, open procedures for harvesting of autologous bone by using minimally invasive aspiration techniques and concentration of iliac crest bone cells, followed by local injection into the defect site. More elaborate strategies (not yet approved by the U.S. Food and Drug Administration-FDA) include isolation and expansion of subpopulations of the harvested cells, preconditioning of these cells or inserting specific genes to modulate or facilitate bone healing. We review the literature pertinent to the subject of modifying autologous harvested cells including MSCs to facilitate bone healing. Although many of these techniques and technologies are still in the preclinical stage and not yet approved for use in humans by the FDA, novel approaches to accelerate bone healing by modifying cells has great potential to mitigate the physical, economic and social burden of non-healing fractures and bone defects.
Collapse
Affiliation(s)
- Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Redwood City, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Tzuhua Lin
- Orthopaedic Research Laboratories, Stanford University, Stanford, CA, United States
| |
Collapse
|
46
|
Al Hosni R, Shah M, Cheema U, Roberts HC, Luyten FP, Roberts SJ. Mapping human serum-induced gene networks as a basis for the creation of biomimetic periosteum for bone repair. Cytotherapy 2020; 22:424-435. [PMID: 32522398 DOI: 10.1016/j.jcyt.2020.03.434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/21/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The periosteum is a highly vascularized, collagen-rich tissue that plays a crucial role in directing bone repair. This is orchestrated primarily by its resident progenitor cell population. Indeed, preservation of periosteum integrity is critical for bone healing. Cells extracted from the periosteum retain their osteochondrogenic properties and as such are a promising basis for tissue engineering strategies for the repair of bone defects. However, the culture expansion conditions and the way in which the cells are reintroduced to the defect site are critical aspects of successful translation. Indeed, expansion in human serum and implantation on biomimetic materials has previously been shown to improve in vivo bone formation. AIM This study aimed to develop a protocol to allow for the expansion of human periosteum derived cells (hPDCs) in a biomimetic periosteal-like environment. METHODS The expansion conditions were defined through the investigation of the bioactive cues involved in augmenting hPDC proliferative and multipotency characteristics, based on transcriptomic analysis of cells cultured in human serum. RESULTS Master regulators of transcriptional networks were identified, and an optimized periosteum-derived growth factor cocktail (PD-GFC; containing β-estradiol, FGF2, TNFα, TGFβ, IGF-1 and PDGF-BB) was generated. Expansion of hPDCs in PD-GFC resulted in serum mimicry with regard to the cell morphology, proliferative capacity and chondrogenic differentiation. When incorporated into a three-dimensional collagen type 1 matrix and cultured in PD-GFC, the hPDCs migrated to the surface that represented the matrix topography of the periosteum cambium layer. Furthermore, gene expression analysis revealed a down-regulated WNT and TGFβ signature and an up-regulation of CREB, which may indicate the hPDCs are recreating their progenitor cell signature. CONCLUSION This study highlights the first stage in the development of a biomimetic periosteum, which may have applications in bone repair.
Collapse
Affiliation(s)
- Rawiya Al Hosni
- Department of Materials and Tissue, Institute of Orthopaedics and Musculoskeletal Science, University College London, Stanmore, UK
| | - Mittal Shah
- Department of Materials and Tissue, Institute of Orthopaedics and Musculoskeletal Science, University College London, Stanmore, UK
| | - Umber Cheema
- Department of Materials and Tissue, Institute of Orthopaedics and Musculoskeletal Science, University College London, Stanmore, UK
| | - Helen C Roberts
- Department of Natural Sciences, Faculty of Science & Technology, Middlesex University, London, UK
| | - Frank P Luyten
- Skeletal Biology and Tissue Engineering Centre, Department of Development and Regeneration, KU Leuven, Leuven, Belgium and
| | - Scott J Roberts
- Department of Materials and Tissue, Institute of Orthopaedics and Musculoskeletal Science, University College London, Stanmore, UK; Skeletal Biology and Tissue Engineering Centre, Department of Development and Regeneration, KU Leuven, Leuven, Belgium and; Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK.
| |
Collapse
|
47
|
Gardin C, Bosco G, Ferroni L, Quartesan S, Rizzato A, Tatullo M, Zavan B. Hyperbaric Oxygen Therapy Improves the Osteogenic and Vasculogenic Properties of Mesenchymal Stem Cells in the Presence of Inflammation In Vitro. Int J Mol Sci 2020; 21:ijms21041452. [PMID: 32093391 PMCID: PMC7073059 DOI: 10.3390/ijms21041452] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/08/2023] Open
Abstract
Hyperbaric oxygen (HBO) therapy has been reported to be beneficial for treating many conditions of inflammation-associated bone loss. The aim of this work was to in vitro investigate the effect of HBO in the course of osteogenesis of human Mesenchymal Stem Cells (MSCs) grown in a simulated pro-inflammatory environment. Cells were cultured with osteogenic differentiation factors in the presence or not of the pro-inflammatory cytokine Tumor Necrosis Factor-α (TNF-α), and simultaneously exposed daily for 60 min, and up to 21 days, at 2,4 atmosphere absolute (ATA) and 100% O2. To elucidate osteogenic differentiation-dependent effects, cells were additionally pre-committed prior to treatments. Cell metabolic activity was evaluated by means of the MTT assay and DNA content quantification, whereas osteogenic and vasculogenic differentiation was assessed by quantification of extracellular calcium deposition and gene expression analysis. Metabolic activity and osteogenic properties of cells did not differ between HBO, high pressure (HB) alone, or high oxygen (HO) alone and control if cells were pre-differentiated to the osteogenic lineage. In contrast, when treatments started contextually to the osteogenic differentiation of the cells, a significant reduction in cell metabolic activity first, and in mineral deposition at later time points, were observed in the HBO-treated group. Interestingly, TNF-α supplementation determined a significant improvement in the osteogenic capacity of cells subjected to HBO, which was not observed in TNF-α-treated cells exposed to HB or HO alone. This study suggests that exposure of osteogenic-differentiating MSCs to HBO under in vitro simulated inflammatory conditions enhances differentiation towards the osteogenic phenotype, providing evidence of the potential application of HBO in all those processes requiring bone regeneration.
Collapse
Affiliation(s)
- Chiara Gardin
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy; (C.G.); (L.F.)
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, 35128 Padova, Italy; (G.B.); (S.Q.); (A.R.)
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy; (C.G.); (L.F.)
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Quartesan
- Department of Biomedical Sciences, University of Padova, 35128 Padova, Italy; (G.B.); (S.Q.); (A.R.)
| | - Alex Rizzato
- Department of Biomedical Sciences, University of Padova, 35128 Padova, Italy; (G.B.); (S.Q.); (A.R.)
| | - Marco Tatullo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70121 Bari, Italy
- Correspondence: (B.Z.); (M.T.); Tel.: +39-0532-455-502 (B.Z.)
| | - Barbara Zavan
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy; (C.G.); (L.F.)
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (B.Z.); (M.T.); Tel.: +39-0532-455-502 (B.Z.)
| |
Collapse
|
48
|
Maruyama M, Rhee C, Utsunomiya T, Zhang N, Ueno M, Yao Z, Goodman SB. Modulation of the Inflammatory Response and Bone Healing. Front Endocrinol (Lausanne) 2020; 11:386. [PMID: 32655495 PMCID: PMC7325942 DOI: 10.3389/fendo.2020.00386] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023] Open
Abstract
The optimal treatment for complex fractures and large bone defects is an important unsolved issue in orthopedics and related specialties. Approximately 5-10% of fractures fail to heal and develop non-unions. Bone healing can be characterized by three partially overlapping phases: the inflammatory phase, the repair phase, and the remodeling phase. Eventual healing is highly dependent on the initial inflammatory phase, which is affected by both the local and systemic responses to the injurious stimulus. Furthermore, immune cells and mesenchymal stromal cells (MSCs) participate in critical inter-cellular communication or crosstalk to modulate bone healing. Deficiencies in this inter-cellular exchange, inhibition of the natural processes of acute inflammation, and its resolution, or chronic inflammation due to a persistent adverse stimulus can lead to impaired fracture healing. Thus, an initial and optimal transient stage of acute inflammation is one of the key factors for successful, robust bone healing. Recent studies demonstrated the therapeutic potential of immunomodulation for bone healing by the preconditioning of MSCs to empower their immunosuppressive properties. Preconditioned MSCs (also known as "primed/ licensed/ activated" MSCs) are cultured first with pro-inflammatory cytokines (e.g., TNFα and IL17A) or exposed to hypoxic conditions to mimic the inflammatory environment prior to their intended application. Another approach of immunomodulation for bone healing is the resolution of inflammation with anti-inflammatory cytokines such as IL4, IL10, and IL13. In this review, we summarize the principles of inflammation and bone healing and provide an update on cellular interactions and immunomodulation for optimal bone healing.
Collapse
Affiliation(s)
- Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Claire Rhee
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Masaya Ueno
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
- Department of Bioengineering, Stanford University, Stanford, CA, United States
- *Correspondence: Stuart B. Goodman
| |
Collapse
|
49
|
Borem R, Madeline A, Bowman M, Gill S, Tokish J, Mercuri J. Differential Effector Response of Amnion- and Adipose-Derived Mesenchymal Stem Cells to Inflammation; Implications for Intradiscal Therapy. J Orthop Res 2019; 37:2445-2456. [PMID: 31287173 DOI: 10.1002/jor.24412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/25/2019] [Indexed: 02/04/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a progressive condition marked by tissue destruction and inflammation. The therapeutic effector functions of mesenchymal stem cells (MSCs) makes them an attractive therapy for patients with IVDD. While several sources of MSCs exist, the optimal choice for use in the inflamed IVD remains a significant question. Adipose (AD)- and amnion (AM)-derived MSCs have several advantages compared with other sources, however, no study has directly compared the impact of IVDD inflammation on their effector functions. Human MSCs were cultured in media with or without supplementation of interleukin-1β (IL-1β) and tumor necrosis factor-α at concentrations reportedly produced by IVDD cells. MSC proliferation and production of pro- and anti-inflammatory cytokines were quantified following 24 and 48 h of culture. Additionally, the osteogenic and chondrogenic potential of AD- and AM-MSCs was characterized via histology and biochemical analysis following 28 days of culture. In inflammatory culture, AM-MSCs produced significantly more anti-inflammatory IL-10 (14.47 ± 2.39 pg/ml; p = 0.004) and larger chondrogenic pellets (5.67 ± 0.26 mm2 ; p = 0.04) with greater percent area staining positively for glycosaminoglycan (82.03 ± 3.26%; p < 0.001) compared with AD-MSCs (0.00 ± 0.00 pg/ml; 2.76 ± 0.18 mm2 ; 34.75 ± 2.49%; respectively). Conversely, AD-MSCs proliferated more resulting in higher cell numbers (221,000 ± 8,021 cells; p = 0.048) and produced higher concentrations of pro-inflammatory cytokines prostaglandin E2 (1,118.30 ± 115.56 pg/ml; p = 0.030) and IL-1β (185.40 ± 7.63 pg/ml; p = 0.010) compared with AM-MSCs (109,667 ± 5,696 cells; 1,291.40 ± 78.47 pg/ml; 144.10 ± 4.57 pg/ml; respectively). AD-MSCs produced more mineralized extracellular matrix (3.34 ± 0.05 relative absorbance units [RAU]; p < 0.001) compared with AM-MSCs (1.08 ± 0.06 RAU). Under identical inflammatory conditions, a different effector response was observed with AM-MSCs producing more anti-inflammatories and demonstrating enhanced chondrogenesis compared with AD-MSCs, which produced more pro-inflammatory cytokines and demonstrated enhanced osteogenesis. These findings may begin to help inform researchers which MSC source may be optimal for IVD regeneration. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2445-2456, 2019.
Collapse
Affiliation(s)
- Ryan Borem
- Department of Bioengineering, Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, 29634
| | - Allison Madeline
- Department of Bioengineering, Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, 29634
| | - Mackenzie Bowman
- Department of Bioengineering, Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, 29634
| | - Sanjitpal Gill
- Department of Bioengineering, Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, 29634.,Department of Orthopaedic Surgery, Medical Group of the Carolinas-Pelham, Spartanburg Regional Healthcare System, Greer, South Carolina, 29651
| | - John Tokish
- Department of Bioengineering, Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, 29634.,Department of Orthopaedic Surgery, Mayo Clinic, Phoenix, Arizona, 85054
| | - Jeremy Mercuri
- Department of Bioengineering, Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, 29634
| |
Collapse
|
50
|
Croes M, van der Wal BCH, Vogely HC. Impact of Bacterial Infections on Osteogenesis: Evidence From In Vivo Studies. J Orthop Res 2019; 37:2067-2076. [PMID: 31329305 PMCID: PMC6771910 DOI: 10.1002/jor.24422] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/15/2019] [Indexed: 02/04/2023]
Abstract
The clinical impact of bacterial infections on bone regeneration has been incompletely quantified and documented. As a result, controversy exists about the optimal treatment strategy to maximize healing of a contaminated defect. Animal models are extremely useful in this respect, as they can elucidate how a bacterial burden influences quantitative healing of various types of defects relative to non-infected controls. Moreover, they may demonstrate how antibacterial treatment and/or bone grafting techniques facilitate the osteogenic response in the harsh environment of a bacterial infection. Finally, it a well-known contradiction that osteomyelitis is characterized by uncontrolled bone remodeling and bone loss, but at the same time, it can be associated with excessive new bone apposition. Animal studies can provide a better understanding of how osteolytic and osteogenic responses are related to each other during infection. This review discusses the in vivo impact of bacterial infection on osteogenesis by addressing the following questions (i) How does osteomyelitis affect the radiographic bone appearance? (ii) What is the influence of bacterial infection on histological bone healing? (iii) How do bacterial infections affect quantitative bone healing? (iv) What is the effect of antibacterial treatment on the healing outcome during infection? (v) What is the efficacy of osteoinductive proteins in infected bones? (vi) What is the balance between the osteoclastic and osteoblastic response during bacterial infections? (vii) What is the mechanism of the observed pro-osteogenic response as observed in osteomyelitis? © 2019 The Authors. Journal of Orthopaedic Research© published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 37:2067-2076, 2019.
Collapse
Affiliation(s)
- Michiel Croes
- Department of OrthopaedicsUniversity Medical Center UtrechtHeidelberglaan 1003508 GAUtrechtThe Netherlands
| | - Bart C. H. van der Wal
- Department of OrthopaedicsUniversity Medical Center UtrechtHeidelberglaan 1003508 GAUtrechtThe Netherlands
| | - H. Charles Vogely
- Department of OrthopaedicsUniversity Medical Center UtrechtHeidelberglaan 1003508 GAUtrechtThe Netherlands
| |
Collapse
|