1
|
Collin SM, Lima A, Heringer S, Sanders V, Pessotti HA, Deps P. Systematic Review of Hansen Disease Attributed to Mycobacterium lepromatosis. Emerg Infect Dis 2023; 29:1376-1385. [PMID: 37347507 PMCID: PMC10310392 DOI: 10.3201/eid2907.230024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
In 2008, bacilli from 2 Hansen disease (leprosy) cases were identified as a new species, Mycobacterium lepromatosis. We conducted a systematic review of studies investigating M. lepromatosis as a cause of HD. Twenty-one case reports described 27 patients with PCR-confirmed M. lepromatosis infection (6 dual M. leprae/M. lepromatosis): 10 case-patients in the United States (7 originally from Mexico), 6 in Mexico, 3 in the Dominican Republic, 2 each in Singapore and Myanmar, and 1 each in Indonesia, Paraguay, Cuba, and Canada. Twelve specimen surveys reported 1,098 PCR-positive findings from 1,428 specimens, including M. lepromatosis in 44.9% (133/296) from Mexico, 3.8% (5/133) in Colombia, 12.5% (10/80) in Brazil, and 0.9% (2/224) from the Asia-Pacific region. Biases toward investigating M. lepromatosis as an agent in cases of diffuse lepromatous leprosy or from Mesoamerica precluded conclusions about clinicopathologic manifestations and geographic distribution. Current multidrug treatments seem effective for this infection.
Collapse
|
2
|
Badania kopalnego DNA – możliwości i ograniczenia. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstrakt
Ostatnie cztery dekady przyniosły znaczący rozwój archeologii molekularnej i badania nad kopalnym DNA (aDNA). Nowatorskie metody uwzględniają szeroki zakres badań, począwszy od sekwencjonowania niewielkich fragmentów mitochondrialnego DNA po wielkoskalowe badania całych populacji, łączące sekwencjonowanie genomów mitochondrialnych, genów podlegających doborowi naturalnemu, jak i całych genomów jądrowych. Postęp, zwłaszcza w dziedzinie technologii sekwencjonowania DNA, umożliwił pozyskanie informacji ze szczątków paleontologicznych i materiału archeologicznego, umożliwiając zbadanie związków filogenetycznych między wymarłymi i współczesnymi gatunkami. Dzięki zastosowaniu technologii sekwencjonowania nowej generacji możliwe stało się poznanie sekwencji DNA nie tylko bezpośrednio ze szczątków ludzkich lub zwierzęcych, ale także z osadów sedymentacyjnych z głębin jezior oraz jaskiń. W artykule przedstawiono możliwości i ograniczenia występujące w badaniach nad kopalnym DNA ludzi, zwierząt czy bakterii z podkreśleniem wkładu polskich badaczy w rozwój tej dziedziny nauki.
Collapse
|
3
|
Deps P, Collin SM. Mycobacterium lepromatosis as a Second Agent of Hansen's Disease. Front Microbiol 2021; 12:698588. [PMID: 34566911 PMCID: PMC8461103 DOI: 10.3389/fmicb.2021.698588] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium lepromatosis was identified as a new species and second causal agent of Hansen's disease (HD, or leprosy) in 2008, 150years after the disease was first attributed to Mycobacterium leprae. M. lepromatosis has been implicated in a small number of HD cases, and clinical aspects of HD caused by M. lepromatosis are poorly characterized. HD is a recognized zoonosis through transmission of M. leprae from armadillos, but the role of M. lepromatosis as a zoonotic agent of HD is unknown. M. lepromatosis was initially associated with diffuse lepromatous leprosy, but subsequent case reports and surveys have linked it to other forms of HD. HD caused by M. lepromatosis has been reported from three endemic countries: Brazil, Myanmar, and Philippines, and three non-endemic countries: Mexico, Malaysia, and United States. Contact with armadillos in Mexico was mentioned in 2/21 M. lepromatosis HD case reports since 2008. M. lepromatosis in animals has been investigated only in non-endemic countries, in squirrels and chipmunks in Europe, white-throated woodrats in Mexico, and armadillos in the United States. To date, there have only been a small number of positive findings in Eurasian red squirrels in Britain and Ireland. A single study of environmental samples found no M. lepromatosis in soil from a Scottish red squirrel habitat. Future studies must focus on endemic countries to determine the true proportion of HD cases caused by M. lepromatosis, and whether viable M. lepromatosis occurs in non-human sources.
Collapse
Affiliation(s)
- Patrícia Deps
- Department of Social Medicine, Universidade Federal do Espírito Santo, Vitória, Brazil
- Postgraduate Programme in Infectious Diseases, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Simon M. Collin
- National Infection Service, Public Health England, London, United Kingdom
| |
Collapse
|
4
|
Fotakis AK, Denham SD, Mackie M, Orbegozo MI, Mylopotamitaki D, Gopalakrishnan S, Sicheritz-Pontén T, Olsen JV, Cappellini E, Zhang G, Christophersen A, Gilbert MTP, Vågene ÅJ. Multi-omic detection of Mycobacterium leprae in archaeological human dental calculus. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190584. [PMID: 33012227 PMCID: PMC7702802 DOI: 10.1098/rstb.2019.0584] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mineralized dental plaque (calculus) has proven to be an excellent source of ancient biomolecules. Here we present a Mycobacterium leprae genome (6.6-fold), the causative agent of leprosy, recovered via shotgun sequencing of sixteenth-century human dental calculus from an individual from Trondheim, Norway. When phylogenetically placed, this genome falls in branch 3I among the diversity of other contemporary ancient strains from Northern Europe. Moreover, ancient mycobacterial peptides were retrieved via mass spectrometry-based proteomics, further validating the presence of the pathogen. Mycobacterium leprae can readily be detected in the oral cavity and associated mucosal membranes, which likely contributed to it being incorporated into this individual's dental calculus. This individual showed some possible, but not definitive, evidence of skeletal lesions associated with early-stage leprosy. This study is the first known example of successful multi-omics retrieval of M. leprae from archaeological dental calculus. Furthermore, we offer new insights into dental calculus as an alternative sample source to bones or teeth for detecting and molecularly characterizing M. leprae in individuals from the archaeological record. This article is part of the theme issue ‘Insights into health and disease from ancient biomolecules’.
Collapse
Affiliation(s)
- Anna K Fotakis
- Section for Evolutionary Genomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Stavanger, Stavanger, Norway
| | - Sean D Denham
- Museum of Archaeology, University of Stavanger, Stavanger, Norway
| | - Meaghan Mackie
- Section for Evolutionary Genomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Stavanger, Stavanger, Norway.,Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Miren Iraeta Orbegozo
- Section for Evolutionary Genomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Stavanger, Stavanger, Norway
| | - Dorothea Mylopotamitaki
- Section for Evolutionary Genomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Stavanger, Stavanger, Norway
| | - Shyam Gopalakrishnan
- Section for Evolutionary Genomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Stavanger, Stavanger, Norway
| | - Thomas Sicheritz-Pontén
- Section for Evolutionary Genomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Stavanger, Stavanger, Norway
| | - Jesper V Olsen
- Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Enrico Cappellini
- Section for Evolutionary Genomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Stavanger, Stavanger, Norway
| | - Guojie Zhang
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark.,BGI-Shenzhen, 518083 Shenzhen, People's Republic of China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223 Kunming, People's Republic of China.,Centre for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223 Kunming, People's Republic of China
| | | | - M Thomas P Gilbert
- Section for Evolutionary Genomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Stavanger, Stavanger, Norway.,NTNU University Museum, Trondheim, Norway
| | - Åshild J Vågene
- Section for Evolutionary Genomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Stavanger, Stavanger, Norway
| |
Collapse
|
5
|
Schuenemann VJ, Avanzi C, Krause-Kyora B, Seitz A, Herbig A, Inskip S, Bonazzi M, Reiter E, Urban C, Dangvard Pedersen D, Taylor GM, Singh P, Stewart GR, Velemínský P, Likovsky J, Marcsik A, Molnár E, Pálfi G, Mariotti V, Riga A, Belcastro MG, Boldsen JL, Nebel A, Mays S, Donoghue HD, Zakrzewski S, Benjak A, Nieselt K, Cole ST, Krause J. Ancient genomes reveal a high diversity of Mycobacterium leprae in medieval Europe. PLoS Pathog 2018; 14:e1006997. [PMID: 29746563 PMCID: PMC5944922 DOI: 10.1371/journal.ppat.1006997] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/28/2018] [Indexed: 11/19/2022] Open
Abstract
Studying ancient DNA allows us to retrace the evolutionary history of human pathogens, such as Mycobacterium leprae, the main causative agent of leprosy. Leprosy is one of the oldest recorded and most stigmatizing diseases in human history. The disease was prevalent in Europe until the 16th century and is still endemic in many countries with over 200,000 new cases reported annually. Previous worldwide studies on modern and European medieval M. leprae genomes revealed that they cluster into several distinct branches of which two were present in medieval Northwestern Europe. In this study, we analyzed 10 new medieval M. leprae genomes including the so far oldest M. leprae genome from one of the earliest known cases of leprosy in the United Kingdom-a skeleton from the Great Chesterford cemetery with a calibrated age of 415-545 C.E. This dataset provides a genetic time transect of M. leprae diversity in Europe over the past 1500 years. We find M. leprae strains from four distinct branches to be present in the Early Medieval Period, and strains from three different branches were detected within a single cemetery from the High Medieval Period. Altogether these findings suggest a higher genetic diversity of M. leprae strains in medieval Europe at various time points than previously assumed. The resulting more complex picture of the past phylogeography of leprosy in Europe impacts current phylogeographical models of M. leprae dissemination. It suggests alternative models for the past spread of leprosy such as a wide spread prevalence of strains from different branches in Eurasia already in Antiquity or maybe even an origin in Western Eurasia. Furthermore, these results highlight how studying ancient M. leprae strains improves understanding the history of leprosy worldwide.
Collapse
Affiliation(s)
- Verena J. Schuenemann
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Charlotte Avanzi
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Alexander Seitz
- Center for Bioinformatics, University of Tübingen, Tübingen, Germany
| | - Alexander Herbig
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Sarah Inskip
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, United Kingdom
| | - Marion Bonazzi
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Ella Reiter
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Christian Urban
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Dorthe Dangvard Pedersen
- Unit of Anthropology (ADBOU), Department of Forensic Medicine, University of Southern Denmark, Odense S, Denmark
| | - G. Michael Taylor
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Pushpendra Singh
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Graham R. Stewart
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Petr Velemínský
- Department of Anthropology, National Museum, Prague, Czech Republic
| | - Jakub Likovsky
- Department of Archaeology of Landscape and Archaeobiology, Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Antónia Marcsik
- Department of Biological Anthropology, University of Szeged, Szeged, Hungary
| | - Erika Molnár
- Department of Biological Anthropology, University of Szeged, Szeged, Hungary
| | - György Pálfi
- Department of Biological Anthropology, University of Szeged, Szeged, Hungary
| | - Valentina Mariotti
- Department of Biological, Geological and Environmental Sciences, Bologna, Italy
- ADES AMU-CNRS- EFS: Anthropology and Health, Aix-Marseille Université, Marseille, France
| | - Alessandro Riga
- Department of Biology, University of Florence, Firenze, Italy
| | - M. Giovanna Belcastro
- Department of Biological, Geological and Environmental Sciences, Bologna, Italy
- ADES AMU-CNRS- EFS: Anthropology and Health, Aix-Marseille Université, Marseille, France
| | - Jesper L. Boldsen
- Unit of Anthropology (ADBOU), Department of Forensic Medicine, University of Southern Denmark, Odense S, Denmark
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Simon Mays
- Historic England, Portsmouth, United Kingdom
| | - Helen D. Donoghue
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Sonia Zakrzewski
- Department of Archaeology, University of Southampton, Southampton, United Kingdom
| | - Andrej Benjak
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kay Nieselt
- Center for Bioinformatics, University of Tübingen, Tübingen, Germany
- * E-mail: (KN); (STC); (JK)
| | - Stewart T. Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institut Pasteur, Paris, France
- * E-mail: (KN); (STC); (JK)
| | - Johannes Krause
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- * E-mail: (KN); (STC); (JK)
| |
Collapse
|
6
|
Phylogenomics and antimicrobial resistance of the leprosy bacillus Mycobacterium leprae. Nat Commun 2018; 9:352. [PMID: 29367657 PMCID: PMC5783932 DOI: 10.1038/s41467-017-02576-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/12/2017] [Indexed: 11/29/2022] Open
Abstract
Leprosy is a chronic human disease caused by the yet-uncultured pathogen Mycobacterium leprae. Although readily curable with multidrug therapy (MDT), over 200,000 new cases are still reported annually. Here, we obtain M. leprae genome sequences from DNA extracted directly from patients’ skin biopsies using a customized protocol. Comparative and phylogenetic analysis of 154 genomes from 25 countries provides insight into evolution and antimicrobial resistance, uncovering lineages and phylogeographic trends, with the most ancestral strains linked to the Far East. In addition to known MDT-resistance mutations, we detect other mutations associated with antibiotic resistance, and retrace a potential stepwise emergence of extensive drug resistance in the pre-MDT era. Some of the previously undescribed mutations occur in genes that are apparently subject to positive selection, and two of these (ribD, fadD9) are restricted to drug-resistant strains. Finally, nonsense mutations in the nth excision repair gene are associated with greater sequence diversity and drug resistance. Leprosy is caused by the yet-uncultured pathogen Mycobacterium leprae. Here, Benjak et al. obtain M. leprae genome sequences from DNA extracted from patients' skin biopsies and, by analysing 154 genomes from 25 countries, provide insight into the pathogen’s evolution and antimicrobial resistance.
Collapse
|