1
|
Yang J, Luo H, Wang H, Qin T, Yang M, Chen L, Wu X, He BJ. Removal effect of pollutants from stormwater runoff in shallow bioretention system with gramineous plants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:1946-1960. [PMID: 38678401 DOI: 10.2166/wst.2024.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/24/2024] [Indexed: 04/30/2024]
Abstract
The bioretention system is one of the most widely used low impact development (LID) facilities with efficient purification capacity for stormwater, and its planting design has been a hot spot for research at home and abroad. In this paper, ryegrass (Lolium perenne L.), bermuda (Cynodon dactylon Linn.), bahiagrass (Paspalum notatum Flugge), and green grass (Cynodon dactylon × C .transadlensis 'Tifdwarf') were chosen as plant species to construct a shallow bioretention system. The growth traits and nutrient absorption ability of four gramineous plants were analyzed. Their tolerance, enrichment, and transportation capacity were also evaluated to compare plant species and their absorptive capacity of heavy metals (Cu, Pb, and Zn). Results showed that the maximum absorption rate (Imax) ranged from 22.1 to 42.4 μg/(g·h) for P and ranged from 65.4 to 104.8 μg/(g·h) for NH4+-N; ryegrass had the strongest absorption capacity for heavy metals and the maximum removal rates of Cu, Pb, and Zn by four grasses were 78.4, 59.4, and 51.3%, respectively; the bioretention cell with ryegrass (3#) was significantly more effective in purifying than the unplanted bioretention cell (1#) during the simulated rainfall test. Overall, the system parameters were optimized to improve the technical application of gramineous plants in the bioretention system.
Collapse
Affiliation(s)
- Jing Yang
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hui Luo
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China; Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China E-mail:
| | - Huiteng Wang
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Teng Qin
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingyu Yang
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Limin Chen
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xi Wu
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Bao-Jie He
- Faculty of Built Environment, University of New South Wales, Sydney, NSW 2052, Australia; Centre for Climate-Resilient and Low-Carbon Cities, School of Architecture and Urban Planning, Chongqing University, Chongqing 400045, China; Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing 400045, China; Network for Education and Research on Peace and Sustainability (NERPS), Hiroshima University, Hiroshima 739-8530, Japan
| |
Collapse
|
2
|
Asare MO, Pellegrini E, Száková J, Najmanová J, Tlustoš P, de Nobili M, Contin M. Potential of herbaceous plant species for copper (Cu) accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5331-5343. [PMID: 38114695 DOI: 10.1007/s11356-023-31579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
The removal of copper (Cu) in soils by green technology is less treated with urgency, as it is a plant micronutrient. We examined the efficiency of Cu shoot accumulation by herbaceous plants in Cu-contaminated and non-contaminated soils in Trhové Dusniky and Podles, respectively, in the Czech Republic. The total soil Cu content of 81 mg kg-1 in Trhové Dusniky indicated a slight contamination level compared to 50 mg kg-1, the permissible value by WHO, and < 35 in Podlesí, representing a clean environment. The Cu content was above the permissible value in plants (10 mg kg-1 by WHO) in herbaceous speciesat the control site without trees: Stachys palustris L. (10.8 mg kg-1), Cirsium arvense L. (11.3 mg kg-1), Achillea millefolium L. (12.1 mg kg-1), Anthemis arvense L. (13.2 mg kg-1), and Calamagrostis epigejos L. (13.7 mg kg-1). In addition, Hypericum maculatum Crantz (10.6 mg kg-1), Campanula patula L. (11.3 mg kg-1), C. arvense (15 mg kg-1), and the highest accumulation in shoot of Equisetum arvense L. (37.1 mg kg-1), all under the canopy of trees at the uncontaminated site, were above the WHO value. Leucanthemum Vulgare (Lam.) and Plantago lanceolata L. recorded 11.2 mg kg-1 and 11.5 mg kg-1, respectively, in the soil of the Cu-contaminated site. These herbaceous species can support the phyto-management of Cu-contaminated soils, especially E. arvense. Critical attention is well-required in the medicinal application of herbaceous plants in treating human ailments due to their Cu accumulation potentials above the threshold. Spontaneous surveys and analysis of Cu speciation in herbaceous species can reveal suitable plants to decontaminate soils and provide caution on consumable products, especially bioactive compounds.
Collapse
Affiliation(s)
- Michael O Asare
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6, Czech Republic.
| | - Elisa Pellegrini
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine, Via Delle Scienze 206, 33100, Udine, Italy
| | - Jiřina Száková
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6, Czech Republic
| | - Jana Najmanová
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6, Czech Republic
| | - Pavel Tlustoš
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6, Czech Republic
| | - Maria de Nobili
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine, Via Delle Scienze 206, 33100, Udine, Italy
| | - Marco Contin
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine, Via Delle Scienze 206, 33100, Udine, Italy
| |
Collapse
|
3
|
Wang W, Xue J, You J, Han H, Qi H, Wang X. Effect of composite amendments on physicochemical properties of copper tailings repaired by herbaceous plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19790-19802. [PMID: 36241833 DOI: 10.1007/s11356-022-23606-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Phytoremediation is considered to be the most environmentally friendly green restoration technology for dealing with mine waste. Adding amendments can improve the substrate environment for plant growth and enhance remediation efficiency. Herbaceous plants have become the preferred species for vegetation restoration in abandoned mines because of their fast greening and simple management. After 8 weeks of pot experiments in the early stage, it was shown that the plant height and fresh weight of the plants treated with 5% conditioner and 0.5% straw (C2S2) were significantly higher than those of other treatments. Considering that, in this paper, to explore the effect of composite amendments on physicochemical properties of copper tailings repaired by herbaceous plants, the untreated copper tailings were employed as the control group, whereas copper tailings repaired by ryegrass (Lolium perenne L.), vetiver grass (Chrysopogon zizanioides L.), and tall fescue (Festuca arundinacea) with or without conditioners and straw combination into the compound amendments were taken separately as the test group. After 6 months of planting, the pH, electrical conductivity, water content, available potassium, organic matter, total nitrogen, and available phosphorus in the main physical and chemical properties of copper tailings in each experimental area were analyzed. The results showed that the electrical conductivity, organic matter, and total nitrogen content of copper tailings were improved to a certain extent by planting plants without treatment. Meanwhile, compared with the control group, all indexes of planting plants showed an upward trend after adding composite amendments. Among them, pH, water content, and available potassium content of copper tailings were enhanced more obviously. Furthermore, as discovered from the gray correlation analysis results, vetiver grass planted with composite amendments has the best comprehensive effect of improving the physicochemical properties of copper tailings, followed by tall fescue and ryegrass.
Collapse
Affiliation(s)
- Weiwei Wang
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China
| | - Jinchun Xue
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China.
| | - Jiajia You
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China
| | - Huaqin Han
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China
| | - Hui Qi
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China
| | - Xiaojuan Wang
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China
| |
Collapse
|
4
|
Lu J, Yuan M, Hu L, Yao H. Migration and Transformation of Multiple Heavy Metals in the Soil–Plant System of E-Waste Dismantling Site. Microorganisms 2022; 10:microorganisms10040725. [PMID: 35456776 PMCID: PMC9030041 DOI: 10.3390/microorganisms10040725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
E-waste generation has become a major environmental issue worldwide. Heavy metals (HMs) in e-waste can be released during inappropriate recycling processes. While their pollution characteristics have been studied, the migration and transformation of different multi-metal fractions in soil–plant system of e-waste dismantling sites is still unclear. In this study, pot experiments were conducted to investigate the migration and transformation of different multi-metal fractions (Cu, Pb, Zn and Al) in the soil–plant system using two Chinese cabbage cultivars (heavy metals low-accumulated variety of Z1 and non-low-accumulated Z2) treated with or without biochar. The result showed that the acid-soluble fraction of Cu, Pb, Zn and Al in soil decreased by 5.5%, 55.7%, 7.8% and 21.3%, but the residual fraction (ResF) of them increased by 48.5%, 1.8%, 30.9% and 43.1%, respectively, when treated with biochar and plants, compared to that of the blank soil (CK). In addition, Pb mainly existed as a reducible fraction, whereas Cu existed as an oxidisable fraction. Biochar combined with plants significantly increased the ResF of multi-metals, which reduced the migration ability of Pb among all other metals. The relative amount of labelled 13C in the soil of Z1 was higher than that of Z2 (25.4 fold); among them, the Gram-negative bacteria (18-1ω9c, 18-1ω7c) and fungi (18-2ω6c) were significantly labelled in the Z1-treated soil, and have high correlation with HM migration and transformation. In addition, Gemmatimonadete were significantly positive in the acid-soluble fraction of HMs, whereas Ascomycota mostly contributed to the immobilisation of HMs. Therefore, the distribution of fractions rather than the heavy metal type plays an important role in the HM migration in the soil–plant system of e-waste dismantling sites.
Collapse
Affiliation(s)
- Jianming Lu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
| | - Ming Yuan
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
- Correspondence: (M.Y.); (H.Y.)
| | - Lanfang Hu
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China;
| | - Huaiying Yao
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China;
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Correspondence: (M.Y.); (H.Y.)
| |
Collapse
|
5
|
Assessment of Copper and Heavy Metals in Family-Run Vineyard Soils and Wines of Campania Region, South Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168465. [PMID: 34444214 PMCID: PMC8393952 DOI: 10.3390/ijerph18168465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022]
Abstract
Copper-based phytosanitary treatments are widely employed in viticulture for combating the fungal diseases of European grape (Vitis vinifera L.). Herein we evaluated copper accumulation in the soil of a 50-year-old still productive vineyard in South Italy in comparison with samples taken from a ‘control’ area in which grapevines had never been cultivated, as well from an abandoned vineyard, now planted with cereals and forage crops, both close to the main area under investigation. Even though the heavy metal contents detected were not of concern for soils nor for wine, Cu accumulates in the soil in amounts significantly higher than the (grapevine free) control and remains at detectable concentrations also in abandoned vineyards where spraying activities had ceased about 20 years before this study. Despite the long Cu residence times in soil, the wine produced with grapes of the same vineyard showed Cu levels low enough to be safely used for human consumption, probably due to mechanisms of metal precipitation occurring during wine maturation, which are typically accompanied by sedimentation processes in artisanal production. However, this should not diminish the urgency of decreasing the copper usage as antifungal remedy in viticulture to prevent copper contamination of the agricultural soils.
Collapse
|
6
|
Llerena JPP, Coasaca RL, Rodriguez HOL, Llerena SÁP, Valencia YD, Mazzafera P. Metallothionein production is a common tolerance mechanism in four species growing in polluted Cu mining areas in Peru. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:112009. [PMID: 33556811 DOI: 10.1016/j.ecoenv.2021.112009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/04/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Cu pollution is a problem in mining areas in Peru. Here we evaluate the phytoextraction capacity, physiological and proteomic responses of four species growing in copper-contaminated areas in Arequipa, Peru. The plants used in the experiments were obtained by collecting seedlings (Tessaria integrifolia, Bacharis salicifolia), rhizomes (Eleocharis montevidensis) and seeds (Chenopodium murale) along a polluted river. They were exposed to solutions containing 2, 4, 8, 16 and 32 mg Cu L-1 during 20 days. Growth was affected in a concentration-dependent way. According to the tolerance index, B. salicifolia and C. murale were the most sensitive species, but with greater Cu phytoextraction capacity and accumulation in the biomass. The content and ratio of photosynthetic pigments changed differently for each specie and carotenoids level were less affected than chlorophyll. Cu also induced changes in the protein and sugar contents. Antioxidant enzyme activities (catalase and superoxide dismutase) increased with a decrease in the malondialdehyde. There were marked changes in the protein 2D-PAGE profiles with an increase in the abundance of metallothioneins (MT) of class II type I and II. Our results suggest that these species can grow in Cu polluted areas because they developed multiple tolerance mechanisms, such as and MTs production seems a important one.
Collapse
Affiliation(s)
- Juan Pablo Portilla Llerena
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil; Academic Department of Biology, Professional and Academic School of Biology, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru.
| | - Raúl Lima Coasaca
- Department of Sanitation and Environment, Faculty of Civil Engineering, Architecture and Urbanism, State University of Campinas, Campinas, SP 13083-970, Brazil; School of Chemical Engineering, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Herbert Omar Lazo Rodriguez
- Academic Department of Biology, Professional and Academic School of Biology, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Sofía Ángela Portilla Llerena
- Academic Department of Biology, Professional and Academic School of Biology, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Ysabel Diaz Valencia
- Academic Department of Biology, Professional and Academic School of Biology, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil; Department of Crop Science, College of Agriculture "Luiz de Queiroz" - ESALQ, University of São Paulo - USP, Piracicaba, SP, Brazil
| |
Collapse
|
7
|
Karatassiou M, Giannakoula A, Tsitos D, Stefanou S. Response of Three Greek Populations of Aegilops triuncialis (Crop Wild Relative) to Serpentine Soil. PLANTS (BASEL, SWITZERLAND) 2021; 10:516. [PMID: 33801916 PMCID: PMC8001976 DOI: 10.3390/plants10030516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
A common garden experiment was established to investigate the effects of serpentine soil on the photosynthetic and biochemical traits of plants from three Greek populations of Aegilops triuncialis. We measured photosynthetic and chlorophyll fluorescence parameters, proline content, and nutrient uptake of the above plants growing in serpentine and non-serpentine soil. The photochemical activity of PSII was inhibited in plants growing in the serpentine soil regardless of the population; however, this inhibition was lower in the Aetolia-Acarnania population. The uptake and the allocation of Ni, as well as that of some other essential nutrient elements (Ca, Mg, Fe, Mn), to upper parts were decreased with the lower decrease recorded in the Aetolia-Acarnania population. Our results showed that excess Ni significantly increased the synthesis of proline, an antioxidant compound that plays an important role in the protection against oxidative stress. We conclude that the reduction in the photosynthetic performance is most probably due to reduced nutrient supply to the upper plant parts. Moreover, nickel accumulation in the roots recorded in plants from all three populations seems to be a mechanism to alleviate the detrimental effects of the serpentine soil stress. In addition, our data suggest that the population from Aetolia-Acarnania could be categorized among the nickel excluders.
Collapse
Affiliation(s)
- Maria Karatassiou
- Laboratory of Rangeland Ecology (PO 286), School of Forestry and Natural Environment, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Anastasia Giannakoula
- Laboratory of Plant Physiology, Department of Agriculture, International Hellenic University, 54700 Sindos, Greece;
| | - Dimitrios Tsitos
- Laboratory of Rangeland Ecology (PO 286), School of Forestry and Natural Environment, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Stefanos Stefanou
- Laboratory of Soil Science, Department of Agriculture, International Hellenic University, 54700 Sindos, Greece;
| |
Collapse
|
8
|
Gomes DG, Lopes-Oliveira PJ, Debiasi TV, da Cunha LS, Oliveira HC. Regression models to stratify the copper toxicity responses and tolerance mechanisms of Glycine max (L.) Merr. plants. PLANTA 2021; 253:43. [PMID: 33479798 DOI: 10.1007/s00425-021-03573-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/08/2021] [Indexed: 05/23/2023]
Abstract
MAIN CONCLUSION Root antioxidant defense, restricted root-to-shoot Cu translocation, altered nutrient partition, and leaf gas exchange adjustments occurred as tolerance mechanisms of soybean plants to increasing soil Cu levels. The intensive application of copper (Cu) fungicides has been related to the accumulation of this metal in agricultural soils. This study aimed to evaluate the effects of increasing soil Cu levels on soybean (Glycine max) plants. Soybean was cultivated under greenhouse conditions in soils containing different Cu concentrations (11.2, 52.3, 79.4, 133.5, 164.0, 205.1, or 243.8 mg kg-1), and biochemical and morphophysiological plant responses were analyzed through linear and nonlinear regression models. Although Cu concentrations around 50 mg kg-1 promoted some positive effects on the initial development of soybean plants (e.g., increased root length and dry weight), these Cu concentrations also induced root oxidative stress and activated defense mechanisms (such as the induction of antioxidant response, N and S accumulation in the roots). At higher concentrations, Cu led to growth inhibition (mainly of the root), nutritional imbalance, and damage to the photosynthetic apparatus of soybean plants, resulting in decreased CO2 assimilation and stomatal conductance. In contrast, low translocation of Cu to the leaves, conservative water use, and increased carboxylation efficiency contributed to the partial mitigation of Cu-induced stress. These responses allowed soybean plants treated with Cu levels in the soil as high as 90 mg kg-1 to maintain growth parameters higher than or similar to those of plants in the non-contaminated soil. These data provide a warning for the potentially deleterious consequences of the increasing use of Cu-based fungicides. However, it is necessary to verify how the responses to Cu contamination are affected by different types of soil and soybean cultivars.
Collapse
Affiliation(s)
- Diego G Gomes
- Department of Agronomy, State University of Londrina (UEL), Celso Garcia Cid Road, km 380, Londrina, PR, 86057-970, Brazil
- Department of Animal and Plant Biology, State University of Londrina (UEL), Celso Garcia Cid Road, km 380, Londrina, PR, 86057-970, Brazil
| | - Patrícia J Lopes-Oliveira
- Department of Animal and Plant Biology, State University of Londrina (UEL), Celso Garcia Cid Road, km 380, Londrina, PR, 86057-970, Brazil
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of São Paulo (USP), Matão Street, 277, São Paulo, SP, 05508-090, Brazil
| | - Tatiane V Debiasi
- Department of Animal and Plant Biology, State University of Londrina (UEL), Celso Garcia Cid Road, km 380, Londrina, PR, 86057-970, Brazil
| | - Lucas S da Cunha
- Department of Statistics, State University of Londrina (UEL), Celso Garcia Cid Road, km 380, Londrina, PR, 86057-970, Brazil
| | - Halley C Oliveira
- Department of Animal and Plant Biology, State University of Londrina (UEL), Celso Garcia Cid Road, km 380, Londrina, PR, 86057-970, Brazil.
| |
Collapse
|
9
|
Buturi CV, Mauro RP, Fogliano V, Leonardi C, Giuffrida F. Mineral Biofortification of Vegetables as a Tool to Improve Human Diet. Foods 2021; 10:223. [PMID: 33494459 PMCID: PMC7911230 DOI: 10.3390/foods10020223] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
Vegetables represent pillars of good nutrition since they provide important phytochemicals such as fiber, vitamins, antioxidants, as well as minerals. Biofortification proposes a promising strategy to increase the content of specific compounds. As minerals have important functionalities in the human metabolism, the possibility of enriching fresh consumed products, such as many vegetables, adopting specific agronomic approaches, has been considered. This review discusses the most recent findings on agronomic biofortification of vegetables, aimed at increasing in the edible portions the content of important minerals, such as calcium (Ca), magnesium (Mg), iodine (I), zinc (Zn), selenium (Se), iron (Fe), copper (Cu), and silicon (Si). The focus was on selenium and iodine biofortification thus far, while for the other mineral elements, aspects related to vegetable typology, genotypes, chemical form, and application protocols are far from being well defined. Even if agronomic fortification is considered an easy to apply technique, the approach is complex considering several interactions occurring at crop level, as well as the bioavailability of different minerals for the consumer. Considering the latter, only few studies examined in a broad approach both the definition of biofortification protocols and the quantification of bioavailable fraction of the element.
Collapse
Affiliation(s)
- Camila Vanessa Buturi
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia, 5-95123 Catania, Italy; (C.V.B.); (C.L.); (F.G.)
| | - Rosario Paolo Mauro
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia, 5-95123 Catania, Italy; (C.V.B.); (C.L.); (F.G.)
| | - Vincenzo Fogliano
- Department of Agrotechnology and Food Sciences, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands;
| | - Cherubino Leonardi
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia, 5-95123 Catania, Italy; (C.V.B.); (C.L.); (F.G.)
| | - Francesco Giuffrida
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia, 5-95123 Catania, Italy; (C.V.B.); (C.L.); (F.G.)
| |
Collapse
|
10
|
Wang S, Wang J, Li J, Hou Y, Shi L, Lian C, Shen Z, Chen Y. Evaluation of biogas production potential of trace element-contaminated plants via anaerobic digestion. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111598. [PMID: 33396119 DOI: 10.1016/j.ecoenv.2020.111598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 05/24/2023]
Abstract
Within the domain of phytoremediation research, the proper disposal of harvestable plant parts, that remove pollutants from contaminated soil, has been attracted extensive attention. Here, the bioenergy generation capability of trace metals (Cu, Pb, Zn, Cd, Mn, and As) polluted plants was assessed. The biogas production potential of accumulators or hyperaccumulator plants, Elsholtzia haichowensis, Sedum alfredii, Solanum nigrum, Phytolacca americana and Pteris vittata were 259.2 ± 1.9, 238.7 ± 4.2, 135.9 ± 0.9, 129.5 ± 2.9 and 106.8 ± 2.1 mL/g, respectively. The presence of Cu (at approximately 1000 mg/kg) increased the cumulative biogas production, the daily methane production and the methane yield of E. haichowensis. For S. alfredii, the presence of Zn (≥500 mg/kg) showed a significant negative impact on the methane content in biogas, and the daily methane production, which decreased the biogas and methane yield. The biogas production potential increased when the content of Mn was at 5 000-10,000 mg/kg, subsequently, decreased when the value of Mn at 20,000 mg/kg. However, Cd (1-200 mg/kg), Pb (125-2000 mg/kg) and As (1250-10,000 mg/kg) showed no distinctive change in the cumulative biogas production of S. nigrum, S. alfredii and P. vittata, respectively. The methane yield showed a strong positive correlation (R2 =0.9704) with cumulative biogas production, and the energy potential of the plant residues were at 415-985 kWh/ton. Thus, the anaerobic digestion has bright potential for the disposal of trace metal contaminated plants, and has promising prospects for the use in energy production.
Collapse
Affiliation(s)
- Shengxiao Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianmin Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanan Hou
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunlan Lian
- Asian Natural Environmental Science Center, The University of Tokyo, 1-1-8 Midori-cho, Nishitokyoshi, Tokyo 188-0002, Japan
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing 210095, China; National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing 210095, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing 210095, China; Asian Natural Environmental Science Center, The University of Tokyo, 1-1-8 Midori-cho, Nishitokyoshi, Tokyo 188-0002, Japan.
| |
Collapse
|
11
|
Covre WP, Pereira WVDS, Gonçalves DAM, Teixeira OMM, Amarante CBD, Fernandes AR. Phytoremediation potential of Khaya ivorensis and Cedrela fissilis in copper contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 268:110733. [PMID: 32510453 DOI: 10.1016/j.jenvman.2020.110733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Mineral exploration of copper (Cu) in the Amazon has significantly impacted the environment, leading to contamination of large areas that require remediation. Tropical tree species that can immobilize metals and restore plant cover should be selected for phytoremediation programs. The phytoremediation behavior of Khaya ivorensis and Cedrela fissilis was studied in Cu contaminated soil (60, 200, 400, and 600 mg kg-1). K. ivorensis absorbed extremely high amounts of Cu in the roots (329 mg kg-1) and excessive amounts in the shoot (52 mg kg-1), while maintaining similar growth to control plants. C. fissilis seedlings presented a higher Dickson quality index. Bioaccumulation (BCF) and translocation (TF) factors were low in both species, indicating that even with the high amounts of copper absorbed, these contents were lower than the soil concentration (BCF < 1) and that most of Cu was compartmentalized in the roots (TF < 1). The tolerance index of K. ivorensis (>1) and C. fissilis (~1) indicate their ability to grow in Cu contaminated soil. These results suggest that these species could potentially be used as phytoremediators.
Collapse
|
12
|
Morpho-Physiological and Proteomic Analyses of Eucalyptus camaldulensis as a Bioremediator in Copper-Polluted Soil in Saudi Arabia. PLANTS 2019; 8:plants8020043. [PMID: 30781434 PMCID: PMC6409862 DOI: 10.3390/plants8020043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 11/24/2022]
Abstract
The present investigation aimed to assess the impact of copper (Cu) stress on the physiological and proteomic behavior of Eucalyptus camaldulensis.E. camaldulensis is likely a potential phytoremediator in areas vulnerable to Cu contamination, such as the industrial areas of Riyadh. To realize this objective, young seedlings of E. camaldulensis were potted in an open area with soil comprised of clay and sand. Different doses of Cu (30, 50, and 100 µM) were applied to the plants as CuSO4·5H2O for 6 weeks. Plant growth was monitored during the Cu exposure period, and morphological and physiological indicators were measured once a week to determine the growth rates. A proteomics study was also conducted to find out the influence of Cu stress on proteins. Our results showed that growth was negatively affected by Cu treatment, particularly at the highest concentrations. Moreover, using a proteomic analysis showed 26 targets involved in protein expression. Elevated levels of Cu increased the expression of 11 proteins and decreased the expression of 15 proteins. Changes were detected in proteins involved in photosynthesis, translation, transcription, metabolism, and antioxidant enzymes. Our findings provided insights into the molecular mechanisms related to Cu stress, in addition to its influence on the morphological and physiological attributes of E. camaldulensis seedlings. This investigation aimed to characterize the mechanism behind the impact of Cu stress on the plant.
Collapse
|
13
|
Franić M, Galić V. As, Cd, Cr, Cu, Hg: Physiological Implications and Toxicity in Plants. PLANT METALLOMICS AND FUNCTIONAL OMICS 2019:209-251. [DOI: 10.1007/978-3-030-19103-0_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
14
|
Hayes F, Spurgeon DJ, Lofts S, Jones L. Evidence-based logic chains demonstrate multiple impacts of trace metals on ecosystem services. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 223:150-164. [PMID: 29929071 DOI: 10.1016/j.jenvman.2018.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/04/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Trace metals can have far-reaching ecosystem impacts. In this study, we develop consistent and evidence-based logic chains to demonstrate the wider effects of trace metal contamination on a suite of ecosystem services. They demonstrate knock-on effects from an initial receptor that is sensitive to metal toxicity, along a cascade of impact, to final ecosystem services via alterations to multiple ecosystem processes. We developed logic chains to highlight two aspects of metal toxicity: for impacts of copper pollution in soil ecosystems, and for impacts of mercury in freshwaters. Each link of the chains is supported by published evidence, with an indication of the strength of the supporting science. Copper pollution to soils (134 unique chains) showed a complex network of pathways originating from direct effects on a range of invertebrate and microbial taxa and plants. In contrast, mercury pollution on freshwaters (63 unique chains) shows pathways that broadly follow the food web of this habitat, reflecting the potential for mercury bioaccumulation. Despite different pathways, there is considerable overlap in the final ecosystem services impacted by both of these metals and in both ecosystems. These included reduced human-use impacts (food, fishing), reduced human non-use impacts (amenity value) and positive or negative alterations to climate regulation (impacts on carbon sequestration). Other final ecosystem goods impacted include reduced crop production, animal production, flood regulation, drinking water quality and soil purification. Taking an ecosystem services approach demonstrates that consideration of only the direct effects of metal contamination of soils and water will considerably underestimate the total impacts of these pollutants. Construction of logic chains, evidenced by published literature, allows a robust assessment of potential impacts indicating primary, secondary and tertiary effects.
Collapse
Affiliation(s)
- F Hayes
- Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, United Kingdom.
| | - D J Spurgeon
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, OX10 8BB, United Kingdom
| | - S Lofts
- Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP, United Kingdom
| | - L Jones
- Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, United Kingdom
| |
Collapse
|
15
|
Li M, Xu G, Xia X, Wang M, Yin X, Zhang B, Zhang X, Cui Y. Deciphering the physiological and molecular mechanisms for copper tolerance in autotetraploid Arabidopsis. PLANT CELL REPORTS 2017; 36:1585-1597. [PMID: 28685360 DOI: 10.1007/s00299-017-2176-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/29/2017] [Indexed: 05/21/2023]
Abstract
Autotetraploid Arabidopsis line esd and 4COL exhibit enhanced tolerance to Cu stress by enhancing activation of antioxidative defenses, altering expression of genes related to Cu transport, chelation, and ABA-responsive. Autopolyploidy is ubiquitous among angiosperms and often results in better adaptation to stress conditions. Although copper (Cu) is an essential trace element, excess amounts can inhibit plant growth and even result in death. Here, we report that autotetraploid Arabidopsis thaliana esd and 4COL exhibit higher tolerance to Cu stress. Under such conditions, tetraploid plants had lower Cu contents and significantly more biomass compared with diploid plants. When exposed to excess Cu for 24 h, levels of superoxide anions, hydrogen peroxide, and malondialdehyde were lower in tetraploids than in diploids. Moreover, activities of the antioxidant enzymes superoxide dismutase and peroxidase were stimulated and glutathione content was maintained at a relative higher level in the tetraploids. The expression of genes related to Cu transport and chelation was altered in autotetraploid Arabidopsis under Cu stress, and several key genes involved in the response to abscisic acid (ABA) were significantly up-regulated. Our results indicate that tetraploid Arabidopsis esd and 4COL acquire improved tolerance to Cu stress through enhanced activation of antioxidative defense mechanisms, altered expression of genes related to Cu transport and chelation, and positive regulation of expression for ABA-responsive genes.
Collapse
Affiliation(s)
- Mingjuan Li
- Key Laboratory for Agro-ecological Process in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoyun Xu
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, 450001, China
| | - Xinjie Xia
- Key Laboratory for Agro-ecological Process in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Manling Wang
- Key Laboratory for Agro-ecological Process in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Xuming Yin
- Key Laboratory for Agro-ecological Process in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Bin Zhang
- Key Laboratory for Agro-ecological Process in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhang
- Key Laboratory for Agro-ecological Process in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanchun Cui
- Key Laboratory for Agro-ecological Process in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
| |
Collapse
|
16
|
Wang C, Wang J, Wang X, Xia Y, Chen C, Shen Z, Chen Y. Proteomic analysis on roots of Oenothera glazioviana under copper-stress conditions. Sci Rep 2017; 7:10589. [PMID: 28878286 PMCID: PMC5587583 DOI: 10.1038/s41598-017-10370-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/04/2017] [Indexed: 01/20/2023] Open
Abstract
Proteomic studies were performed to identify proteins involved in the response of Oenothera glazioviana seedlings under Cu stress. Exposure of 28-d-old seedlings to 50 μM CuSO4 for 3 d led to inhibition of shoot and root growth as well as a considerable increase in the level of lipid peroxidation in the roots. Cu absorbed by O. glazioviana accumulated more easily in the root than in the shoot. Label-free proteomic analysis indicated 58 differentially abundant proteins (DAPs) of the total 3,149 proteins in the roots of O. glazioviana seedlings, of which 36 were upregulated and 22 were downregulated under Cu stress conditions. Gene Ontology analysis showed that most of the identified proteins could be annotated to signal transduction, detoxification, stress defence, carbohydrate, energy, and protein metabolism, development, and oxidoreduction. We also retrieved 13 proteins from the enriched Kyoto Encyclopaedia of Genes and Genomes and the protein-protein interaction databases related to various pathways, including the citric acid (CA) cycle. Application of exogenous CA to O. glazioviana seedlings exposed to Cu alleviated the stress symptoms. Overall, this study provided new insights into the molecular mechanisms of plant response to Cu at the protein level in relation to soil properties.
Collapse
Affiliation(s)
- Chong Wang
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jie Wang
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiao Wang
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yan Xia
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chen Chen
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhenguo Shen
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yahua Chen
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|