1
|
Soleja N, Mohsin M. Exploring the landscape of FRET-based molecular sensors: Design strategies and recent advances in emerging applications. Biotechnol Adv 2024; 77:108466. [PMID: 39419421 DOI: 10.1016/j.biotechadv.2024.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Probing biological processes in living organisms that could provide one-of-a-kind insights into real-time alterations of significant physiological parameters is a formidable task that calls for specialized analytic devices. Classical biochemical methods have significantly aided our understanding of the mechanisms that regulate essential biological processes. These methods, however, are typically insufficient for investigating transient molecular events since they focus primarily on the end outcome. Fluorescence resonance energy transfer (FRET) microscopy is a potent tool used for exploring non-invasively real-time dynamic interactions between proteins and a variety of biochemical signaling events using sensors that have been meticulously constructed. Due to their versatility, FRET-based sensors have enabled the rapid and standardized assessment of a large array of biological variables, facilitating both high-throughput research and precise subcellular measurements with exceptional temporal and spatial resolution. This review commences with a brief introduction to FRET theory and a discussion of the fluorescent molecules that can serve as tags in different sensing modalities for studies in chemical biology, followed by an outlining of the imaging techniques currently utilized to quantify FRET highlighting their strengths and shortcomings. The article also discusses the various donor-acceptor combinations that can be utilized to construct FRET scaffolds. Specifically, the review provides insights into the latest real-time bioimaging applications of FRET-based sensors and discusses the common architectures of such devices. There has also been discussion of FRET systems with multiplexing capabilities and multi-step FRET protocols for use in dual/multi-analyte detections. Future research directions in this exciting field are also mentioned, along with the obstacles and opportunities that lie ahead.
Collapse
Affiliation(s)
- Neha Soleja
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd Mohsin
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
2
|
Wang J, Maeda E, Tsujimura Y, Abe T, Kiyonari H, Kitaguchi T, Yokota H, Matsumoto T. In situ FRET measurement of cellular tension using conventional confocal laser microscopy in newly established reporter mice expressing actinin tension sensor. Sci Rep 2023; 13:22729. [PMID: 38123655 PMCID: PMC10733408 DOI: 10.1038/s41598-023-50142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
FRET-based sensors are utilized for real-time measurements of cellular tension. However, transfection of the sensor gene shows low efficacy and is only effective for a short period. Reporter mice expressing such sensors have been developed, but sensor fluorescence has not been measured successfully using conventional confocal microscopy. Therefore, methods for spatiotemporal measurement of cellular tension in vivo or ex vivo are still limited. We established a reporter mouse line expressing FRET-based actinin tension sensors consisting of EGFP as the donor and mCherry as the acceptor and whose FRET ratio change is observable with confocal microscopy. Tension-induced changes in FRET signals were monitored in the aorta and tail tendon fascicles, as well as aortic smooth muscle cells isolated from these mice. The pattern of FRET changes was distinctive, depending on tissue type. Indeed, aortic smooth muscle cells exhibit different sensitivity to macroscopic tensile strain in situ and in an isolated state. This mouse strain will enable novel types of biomechanical investigations of cell functions in important physiological events.
Collapse
Affiliation(s)
- Junfeng Wang
- Biomechanics Laboratory, Department of Mechanical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8603, Japan
| | - Eijiro Maeda
- Biomechanics Laboratory, Department of Mechanical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8603, Japan
| | - Yuki Tsujimura
- RIKEN Center for Advanced Photonics, RIKEN, Wako, Saitama, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Hideo Yokota
- RIKEN Center for Advanced Photonics, RIKEN, Wako, Saitama, Japan
| | - Takeo Matsumoto
- Biomechanics Laboratory, Department of Mechanical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8603, Japan.
| |
Collapse
|
3
|
McCarthy M, Dodd WB, Lu X, Pritko DJ, Patel ND, Haskell CV, Sanabria H, Blenner MA, Birtwistle MR. Theory for High-Throughput Genetic Interaction Screening. ACS Synth Biol 2023; 12:2290-2300. [PMID: 37463472 PMCID: PMC10443530 DOI: 10.1021/acssynbio.2c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 07/20/2023]
Abstract
Systematic, genome-scale genetic screens have been instrumental for elucidating genotype-phenotype relationships, but approaches for probing genetic interactions have been limited to at most ∼100 pre-selected gene combinations in mammalian cells. Here, we introduce a theory for high-throughput genetic interaction screens. The theory extends our recently developed Multiplexing using Spectral Imaging and Combinatorics (MuSIC) approach to propose ∼105 spectrally unique, genetically encoded MuSIC barcodes from 18 currently available fluorescent proteins. Simulation studies based on constraints imposed by spectral flow cytometry equipment suggest that genetic interaction screens at the human genome-scale may be possible if MuSIC barcodes can be paired to guide RNAs. While experimental testing of this theory awaits, it offers transformative potential for genetic perturbation technology and knowledge of genetic function. More broadly, the availability of a genome-scale spectral barcode library for non-destructive identification of single cells could find more widespread applications such as traditional genetic screening and high-dimensional lineage tracing.
Collapse
Affiliation(s)
- Madeline
E. McCarthy
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29631, United States
| | - William B. Dodd
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29631, United States
| | - Xiaoming Lu
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29631, United States
| | - Daniel J. Pritko
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29631, United States
| | - Nishi D. Patel
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29631, United States
| | - Charlotte V. Haskell
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29631, United States
| | - Hugo Sanabria
- Department
of Physics and Astronomy, Clemson University, Clemson, South Carolina 29631, United States
| | - Mark A. Blenner
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29631, United States
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Marc R. Birtwistle
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29631, United States
- Department
of Bioengineering, Clemson University, Clemson, South Carolina 29631, United States
| |
Collapse
|
4
|
Lace B, Su C, Invernot Perez D, Rodriguez-Franco M, Vernié T, Batzenschlager M, Egli S, Liu CW, Ott T. RPG acts as a central determinant for infectosome formation and cellular polarization during intracellular rhizobial infections. eLife 2023; 12:80741. [PMID: 36856086 PMCID: PMC9991063 DOI: 10.7554/elife.80741] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Host-controlled intracellular accommodation of nitrogen-fixing bacteria is essential for the establishment of a functional Root Nodule Symbiosis (RNS). In many host plants, this occurs via transcellular tubular structures (infection threads - ITs) that extend across cell layers via polar tip-growth. Comparative phylogenomic studies have identified RPG (RHIZOBIUM-DIRECTED POLAR GROWTH) among the critical genetic determinants for bacterial infection. In Medicago truncatula, RPG is required for effective IT progression within root hairs but the cellular and molecular function of the encoded protein remains elusive. Here, we show that RPG resides in the protein complex formed by the core endosymbiotic components VAPYRIN (VPY) and LUMPY INFECTION (LIN) required for IT polar growth, co-localizes with both VPY and LIN in IT tip- and perinuclear-associated puncta of M. truncatula root hairs undergoing infection and is necessary for VPY recruitment into these structures. Fluorescence Lifetime Imaging Microscopy (FLIM) of phosphoinositide species during bacterial infection revealed that functional RPG is required to sustain strong membrane polarization at the advancing tip of the IT. In addition, loss of RPG functionality alters the cytoskeleton-mediated connectivity between the IT tip and the nucleus and affects the polar secretion of the cell wall modifying enzyme NODULE PECTATE LYASE (NPL). Our results integrate RPG into a core host machinery required to support symbiont accommodation, suggesting that its occurrence in plant host genomes is essential to co-opt a multimeric protein module committed to endosymbiosis to sustain IT-mediated bacterial infection.
Collapse
Affiliation(s)
- Beatrice Lace
- University of Freiburg, Faculty of BiologyFreiburgGermany
| | - Chao Su
- University of Freiburg, Faculty of BiologyFreiburgGermany
| | | | | | - Tatiana Vernié
- LRSV, Université de Toulouse, CNRS, UPS, INP ToulouseCastanet-TolosanFrance
| | | | - Sabrina Egli
- University of Freiburg, Faculty of BiologyFreiburgGermany
| | - Cheng-Wu Liu
- School of Life Sciences, Division of Life Sciences and Medicine, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of ChinaHefeiChina
| | - Thomas Ott
- University of Freiburg, Faculty of BiologyFreiburgGermany
- CIBSS – Centre of Integrative Biological Signalling Studies, University of FreiburgFreiburgGermany
| |
Collapse
|
5
|
Investigating Plant Protein-Protein Interactions Using FRET-FLIM with a Focus on the Actin Cytoskeleton. Methods Mol Biol 2023; 2604:353-366. [PMID: 36773249 DOI: 10.1007/978-1-0716-2867-6_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The study of protein-protein interactions is fundamental to understanding how actin-dependent processes are controlled through the regulation of actin-binding proteins by their interactors. FRET-FLIM (Förster resonance energy transfer-fluorescence lifetime imaging microscopy) is a sensitive bioimaging method to detect protein-protein interactions in living cells through measurement of FRET, facilitated by the interactions of fluorophore-tagged fusion protein. As a sensitive and noninvasive method for the spatiotemporal visualization of dynamic protein-protein interactions, FRET-FLIM holds several advantages over other methods of protein interaction assays. FRET-FLIM has been widely employed to characterize many plant protein interactions, including interactions between actin-regulatory proteins and their binding partners. As we increasingly understand the plant actin cytoskeleton to coordinate a diverse number of complex functions, the study of actin-regulatory proteins and their interactors becomes increasingly technically challenging. Sophisticated and sensitive in vivo methods such as FRET-FLIM are likely to be crucial to the study of protein-protein interactions as more complex and challenging hypotheses are addressed.
Collapse
|
6
|
Tang L, Bednar RM, Rozanov ND, Hemshorn ML, Mehl RA, Fang C. Rational Design for High Bioorthogonal Fluorogenicity of Tetrazine-Encoded Green Fluorescent Proteins. NATURAL SCIENCES (WEINHEIM, GERMANY) 2022; 2:e20220028. [PMID: 36440454 PMCID: PMC9699285 DOI: 10.1002/ntls.20220028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The development of bioorthogonal fluorogenic probes constitutes a vital force to advance life sciences. Tetrazine-encoded green fluorescent proteins (GFPs) show high bioorthogonal reaction rate and genetic encodability, but suffer from low fluorogenicity. Here, we unveil the real-time fluorescence mechanisms by investigating two site-specific tetrazine-modified superfolder GFPs via ultrafast spectroscopy and theoretical calculations. Förster resonance energy transfer (FRET) is quantitatively modeled and revealed to govern the fluorescence quenching; for GFP150-Tet with a fluorescence turn-on ratio of ~9, it contains trimodal subpopulations with good (P1), random (P2), and poor (P3) alignments between the transition dipole moments of protein chromophore (donor) and tetrazine tag (Tet-v2.0, acceptor). By rationally designing a more free/tight environment, we created new mutants Y200A/S202Y to introduce more P2/P1 populations and improve the turn-on ratios to ~14/31, making the fluorogenicity of GFP150-Tet-S202Y the highest among all up-to-date tetrazine-encoded GFPs. In live eukaryotic cells, the GFP150-Tet-v3.0-S202Y mutant demonstrates notably increased fluorogenicity, substantiating our generalizable design strategy.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA
| | - Riley M. Bednar
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences Building, Corvallis, Oregon 97331-7305, USA
| | - Nikita D. Rozanov
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA
| | - Marcus L. Hemshorn
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences Building, Corvallis, Oregon 97331-7305, USA
| | - Ryan A. Mehl
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences Building, Corvallis, Oregon 97331-7305, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA
| |
Collapse
|
7
|
Common sequence motifs of nascent chains engage the ribosome surface and trigger factor. Proc Natl Acad Sci U S A 2021; 118:2103015118. [PMID: 34930833 PMCID: PMC8719866 DOI: 10.1073/pnas.2103015118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
Proteins are produced by ribosomes in the cell, and during this process, can begin to adopt their biologically active forms assisted by molecular chaperones such as trigger factor. This fundamental cellular mechanism is crucial to maintaining a functional proteome and avoiding deleterious misfolding. Here, we study how disordered nascent chains emerge from the ribosome exit tunnel, and find that interactions with the ribosome surface dominate their dynamics in vitro and in vivo. Moreover, we show that the types of amino acids that mediate such interactions are also those that recruit trigger factor. This lays the foundation to describe how nascent chains are handed over from the ribosome surface to chaperones during biosynthesis within the crowded cytosol. In the cell, the conformations of nascent polypeptide chains during translation are modulated by both the ribosome and its associated molecular chaperone, trigger factor. The specific interactions that underlie these modulations, however, are still not known in detail. Here, we combine protein engineering, in-cell and in vitro NMR spectroscopy, and molecular dynamics simulations to explore how proteins interact with the ribosome during their biosynthesis before folding occurs. Our observations of α-synuclein nascent chains in living Escherichia coli cells reveal that ribosome surface interactions dictate the dynamics of emerging disordered polypeptides in the crowded cytosol. We show that specific basic and aromatic motifs drive such interactions and directly compete with trigger factor binding while biasing the direction of the nascent chain during its exit out of the tunnel. These results reveal a structural basis for the functional role of the ribosome as a scaffold with holdase characteristics and explain how handover of the nascent chain to specific auxiliary proteins occurs among a host of other factors in the cytosol.
Collapse
|
8
|
Hickey SM, Ung B, Bader C, Brooks R, Lazniewska J, Johnson IRD, Sorvina A, Logan J, Martini C, Moore CR, Karageorgos L, Sweetman MJ, Brooks DA. Fluorescence Microscopy-An Outline of Hardware, Biological Handling, and Fluorophore Considerations. Cells 2021; 11:35. [PMID: 35011596 PMCID: PMC8750338 DOI: 10.3390/cells11010035] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Fluorescence microscopy has become a critical tool for researchers to understand biological processes at the cellular level. Micrographs from fixed and live-cell imaging procedures feature in a plethora of scientific articles for the field of cell biology, but the complexities of fluorescence microscopy as an imaging tool can sometimes be overlooked or misunderstood. This review seeks to cover the three fundamental considerations when designing fluorescence microscopy experiments: (1) hardware availability; (2) amenability of biological models to fluorescence microscopy; and (3) suitability of imaging agents for intended applications. This review will help equip the reader to make judicious decisions when designing fluorescence microscopy experiments that deliver high-resolution and informative images for cell biology.
Collapse
Affiliation(s)
- Shane M. Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | - Ben Ung
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhang D, Redington E, Gong Y. Rational engineering of ratiometric calcium sensors with bright green and red fluorescent proteins. Commun Biol 2021; 4:924. [PMID: 34326458 PMCID: PMC8322158 DOI: 10.1038/s42003-021-02452-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022] Open
Abstract
Ratiometric genetically encoded calcium indicators (GECIs) record neural activity with high brightness while mitigating motion-induced artifacts. Recently developed ratiometric GECIs primarily employ cyan and yellow-fluorescent fluorescence resonance energy transfer pairs, and thus fall short in some applications that require deep tissue penetration and resistance to photobleaching. We engineered a set of green-red ratiometric calcium sensors that fused two fluorescent proteins and calcium sensing domain within an alternate configuration. The best performing elements of this palette of sensors, Twitch-GR and Twitch-NR, inherited the superior photophysical properties of their constituent fluorescent proteins. These properties enabled our sensors to outperform existing ratiometric calcium sensors in brightness and photobleaching metrics. In turn, the shot-noise limited signal fidelity of our sensors when reporting action potentials in cultured neurons and in the awake behaving mice was higher than the fidelity of existing sensors. Our sensor enabled a regime of imaging that simultaneously captured neural structure and function down to the deep layers of the mouse cortex.
Collapse
Affiliation(s)
- Diming Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | - Emily Redington
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yiyang Gong
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
10
|
Štefl M, Herbst K, Rübsam M, Benda A, Knop M. Single-Color Fluorescence Lifetime Cross-Correlation Spectroscopy In Vivo. Biophys J 2020; 119:1359-1370. [PMID: 32919495 DOI: 10.1016/j.bpj.2020.06.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/29/2020] [Accepted: 06/16/2020] [Indexed: 01/18/2023] Open
Abstract
The ability to quantify protein concentrations and to measure protein interactions in vivo is key information needed for the understanding of complex processes inside cells, but the acquisition of such information from living cells is still demanding. Fluorescence-based methods like two-color fluorescence cross-correlation spectroscopy can provide this information, but measurement precision is hampered by various sources of errors caused by instrumental or optical limitations such as imperfect overlap of detection volumes or detector cross talk. Furthermore, the nature and properties of used fluorescent proteins or fluorescent dyes, such as labeling efficiency, fluorescent protein maturation, photostability, bleaching, and fluorescence brightness can have an impact. Here, we take advantage of previously published fluorescence lifetime correlation spectroscopy which relies on lifetime differences as a mean to discriminate fluorescent proteins with similar spectral properties and to use them for single-color fluorescence lifetime cross-correlation spectroscopy (sc-FLCCS). By using only one excitation and one detection wavelength, this setup avoids all sources of errors resulting from chromatic aberrations and detector cross talk. To establish sc-FLCCS, we first engineered and tested multiple green fluorescent protein (GFP)-like fluorescent proteins for their suitability. This identified a novel, to our knowledge, GFP variant termed short-lifetime monomeric GFP with the so-far shortest lifetime. Monte-Carlo simulations were employed to explore the suitability of different combinations of GFP variants. Two GFPs, Envy and short-lifetime monomeric GFP, were predicted to constitute the best performing couple for sc-FLCCS measurements. We demonstrated application of this GFP pair for measuring protein interactions between the proteasome and interacting proteins and for measuring protein interactions between three partners when combined with a red florescent protein. Together, our findings establish sc-FLCCS as a valid alternative for conventional dual-color fluorescence cross-correlation spectroscopy measurements.
Collapse
Affiliation(s)
- Martin Štefl
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Heidelberg, Germany; J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Prague, Czech Republic.
| | - Konrad Herbst
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Heidelberg, Germany
| | - Marc Rübsam
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Heidelberg, Germany
| | - Aleš Benda
- IMCF at BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Heidelberg, Germany; Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany.
| |
Collapse
|
11
|
Cho U, Chen JK. Lanthanide-Based Optical Probes of Biological Systems. Cell Chem Biol 2020; 27:921-936. [PMID: 32735780 DOI: 10.1016/j.chembiol.2020.07.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/28/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
The unique photophysical properties of lanthanides, such as europium, terbium, and ytterbium, make them versatile molecular probes of biological systems. In particular, their long-lived photoluminescence, narrow bandwidth emissions, and large Stokes shifts enable experiments that are infeasible with organic fluorophores and fluorescent proteins. The ability of these metal ions to undergo luminescence resonance energy transfer, and photon upconversion further expands the capabilities of lanthanide probes. In this review, we describe recent advances in the design of lanthanide luminophores and their application in biological research. We also summarize the latest detection systems that have been developed to fully exploit the optical properties of lanthanide luminophores. We conclude with a discussion of remaining challenges and new frontiers in lanthanide technologies. The unprecedented levels of sensitivity and multiplexing afforded by rare-earth elements illustrate how chemistry can enable new approaches in biology.
Collapse
Affiliation(s)
- Ukrae Cho
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA.
| | - James K Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Datta R, Heaster TM, Sharick JT, Gillette AA, Skala MC. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-43. [PMID: 32406215 PMCID: PMC7219965 DOI: 10.1117/1.jbo.25.7.071203] [Citation(s) in RCA: 399] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/24/2020] [Indexed: 05/18/2023]
Abstract
SIGNIFICANCE Fluorescence lifetime imaging microscopy (FLIM) is a powerful technique to distinguish the unique molecular environment of fluorophores. FLIM measures the time a fluorophore remains in an excited state before emitting a photon, and detects molecular variations of fluorophores that are not apparent with spectral techniques alone. FLIM is sensitive to multiple biomedical processes including disease progression and drug efficacy. AIM We provide an overview of FLIM principles, instrumentation, and analysis while highlighting the latest developments and biological applications. APPROACH This review covers FLIM principles and theory, including advantages over intensity-based fluorescence measurements. Fundamentals of FLIM instrumentation in time- and frequency-domains are summarized, along with recent developments. Image segmentation and analysis strategies that quantify spatial and molecular features of cellular heterogeneity are reviewed. Finally, representative applications are provided including high-resolution FLIM of cell- and organelle-level molecular changes, use of exogenous and endogenous fluorophores, and imaging protein-protein interactions with Förster resonance energy transfer (FRET). Advantages and limitations of FLIM are also discussed. CONCLUSIONS FLIM is advantageous for probing molecular environments of fluorophores to inform on fluorophore behavior that cannot be elucidated with intensity measurements alone. Development of FLIM technologies, analysis, and applications will further advance biological research and clinical assessments.
Collapse
Affiliation(s)
- Rupsa Datta
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Tiffany M. Heaster
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Joe T. Sharick
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Amani A. Gillette
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
| |
Collapse
|
13
|
Ravotto L, Duffet L, Zhou X, Weber B, Patriarchi T. A Bright and Colorful Future for G-Protein Coupled Receptor Sensors. Front Cell Neurosci 2020; 14:67. [PMID: 32265667 PMCID: PMC7098945 DOI: 10.3389/fncel.2020.00067] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/05/2020] [Indexed: 01/07/2023] Open
Abstract
Neurochemicals have a large impact on brain states and animal behavior but are notoriously hard to detect accurately in the living brain. Recently developed genetically encoded sensors obtained from engineering a circularly permuted green fluorescent protein into G-protein coupled receptors (GPCR) provided a vital boost to neuroscience, by innovating the way we monitor neural communication. These new probes are becoming widely successful due to their flexible combination with state of the art optogenetic tools and in vivo imaging techniques, mainly fiber photometry and 2-photon microscopy, to dissect dynamic changes in brain chemicals with unprecedented spatial and temporal resolution. Here, we highlight current approaches and challenges as well as novel insights in the process of GPCR sensor development, and discuss possible future directions of the field.
Collapse
Affiliation(s)
- Luca Ravotto
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Loïc Duffet
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Xuehan Zhou
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
McCullock TW, MacLean DM, Kammermeier PJ. Comparing the performance of mScarlet-I, mRuby3, and mCherry as FRET acceptors for mNeonGreen. PLoS One 2020; 15:e0219886. [PMID: 32023253 PMCID: PMC7001971 DOI: 10.1371/journal.pone.0219886] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/23/2020] [Indexed: 11/19/2022] Open
Abstract
Förster Resonance Energy Transfer (FRET) has become an immensely powerful tool to profile intra- and inter-molecular interactions. Through fusion of genetically encoded fluorescent proteins (FPs) researchers have been able to detect protein oligomerization, receptor activation, and protein translocation among other biophysical phenomena. Recently, two bright monomeric red fluorescent proteins, mRuby3 and mScarlet-I, have been developed. These proteins offer much improved physical properties compared to previous generations of monomeric red FPs that should help facilitate more general adoption of Green/Red FRET. Here we assess the ability of these two proteins, along with mCherry, to act as a FRET acceptor for the bright, monomeric, green-yellow FP mNeonGreen using intensiometric FRET and 2-photon Fluorescent Lifetime Imaging Microscopy (FLIM) FRET techniques. We first determined that mNeonGreen was a stable donor for 2-photon FLIM experiments under a variety of imaging conditions. We then tested the red FP's ability to act as FRET acceptors using mNeonGreen-Red FP tandem construct. With these constructs we found that mScarlet-I and mCherry are able to efficiently FRET with mNeonGreen in spectroscopic and FLIM FRET. In contrast, mNeonGreen and mRuby3 FRET with a much lower efficiency than predicted in these same assays. We explore possible explanations for this poor performance and determine mRuby3's protein maturation properties are a major contributor. Overall, we find that mNeonGreen is an excellent FRET donor, and both mCherry and mScarlet-I, but not mRuby3, act as practical FRET acceptors, with the brighter mScarlet-I out performing mCherry in intensiometric studies, but mCherry out performing mScarlet-I in instances where consistent efficiency in a population is critical.
Collapse
Affiliation(s)
- Tyler W. McCullock
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - David M. MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Paul J. Kammermeier
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
15
|
Wang S, Chacko JV, Sagar AK, Eliceiri KW, Yuan M. Nonparametric empirical Bayesian framework for fluorescence-lifetime imaging microscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:5497-5517. [PMID: 31799027 PMCID: PMC6865096 DOI: 10.1364/boe.10.005497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/31/2019] [Accepted: 09/29/2019] [Indexed: 05/02/2023]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a powerful imaging tool used to study the molecular environment of flurophores. In time domain FLIM, extracting lifetime from fluorophores signals entails fitting data to a decaying exponential distribution function. However, most existing techniques for this purpose need large amounts of photons at each pixel and a long computation time, thus making it difficult to obtain reliable inference in applications requiring either short acquisition or minimal computation time. In this work, we introduce a new nonparametric empirical Bayesian framework for FLIM data analysis (NEB-FLIM), leading to both improved pixel-wise lifetime estimation and a more robust and computationally efficient integral property inference. This framework is developed based on a newly proposed hierarchical statistical model for FLIM data and adopts a novel nonparametric maximum likelihood estimator to estimate the prior distribution. To demonstrate the merit of the proposed framework, we applied it on both simulated and real biological datasets and compared it with previous classical methods on these datasets.
Collapse
Affiliation(s)
- Shulei Wang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jenu V Chacko
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Abdul K Sagar
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53706, USA
| | - Ming Yuan
- Department of Statistics, Columbia University, New York, NY 10027, USA
| |
Collapse
|
16
|
Algar WR, Hildebrandt N, Vogel SS, Medintz IL. FRET as a biomolecular research tool — understanding its potential while avoiding pitfalls. Nat Methods 2019; 16:815-829. [DOI: 10.1038/s41592-019-0530-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 07/15/2019] [Indexed: 01/14/2023]
|
17
|
Karunanayake Mudiyanselage APKK, Wu R, Leon-Duque MA, Ren K, You M. "Second-generation" fluorogenic RNA-based sensors. Methods 2019; 161:24-34. [PMID: 30660865 PMCID: PMC6589113 DOI: 10.1016/j.ymeth.2019.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 02/07/2023] Open
Abstract
A fluorogenic aptamer can specifically interact with a fluorophore to activate its fluorescence. These nucleic acid-based fluorogenic modules have been dramatically developed over the past decade, and have been used as versatile reporters in the sensor development and for intracellular imaging. In this review, we summarize the design principles, applications, and challenges of the first-generation fluorogenic RNA-based sensors. Moreover, we discuss some strategies to develop next-generation biosensors with improved sensitivity, selectivity, quantification property, and eukaryotic robustness. Using genetically encoded catalytic hairpin assembly strategy as an example, we further introduce a standard protocol to design, characterize, and apply these fluorogenic RNA-based sensors for in vitro detection and cellular imaging of target biomolecules. By incorporating natural RNA machineries, nucleic acid nanotechnology, and systematic evolution approaches, next-generation fluorogenic RNA-based devices can be potentially engineered to be widely applied in cell biology and biomedicine.
Collapse
Affiliation(s)
| | - Rigumula Wu
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Mark A Leon-Duque
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Kewei Ren
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
18
|
Zhao BQ, Ding WL, Tan ZZ, Tang QY, Zhao KH. A Large Stokes Shift Fluorescent Protein Constructed from the Fusion of Red Fluorescent mCherry and Far-Red Fluorescent BDFP1.6. Chembiochem 2019; 20:1167-1173. [PMID: 30609201 DOI: 10.1002/cbic.201800695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Indexed: 01/17/2023]
Abstract
Phycobiliproteins are constituents of phycobilisomes that can harvest orange, red, and far-red light for photosynthesis in cyanobacteria and red algae. Phycobiliproteins in the phycobilisome cores, such as allophycocyanins, absorb far-red light to funnel energy to the reaction centers. Therefore, allophycocyanin subunits have been engineered as far-red fluorescent proteins, such as BDFP1.6. However, most current fluorescent probes have small Stokes shifts, which limit their applications in multicolor bioimaging. mCherry is an excellent fluorescent protein that has maximal emittance in the red spectral range and a high fluorescence quantum yield, and thus, can be used as a donor for energy transfer to a far-red acceptor, such as BDFP1.6, by FRET. In this study, mCherry was fused with BDFP1.6, which resulted in a highly bright far-red fluorescent protein, BDFP2.0, with a large Stokes shift (≈79 nm). The excitation energy was absorbed maximally at 587 nm by mCherry and transferred to BDFP1.6 efficiently; thus emitting strong far-red fluorescence maximally at 666 nm. The effective brightness of BDFP2.0 in mammalian cells was 4.2-fold higher than that of iRFP670, which has been reported as the brightest far-red fluorescent protein. The large Stokes shift of BDFP2.0 facilitates multicolor bioimaging. Therefore, BDFP2.0 not only biolabels mammalian cells, including human cells, but also biolabels various intracellular components in dual-color imaging.
Collapse
Affiliation(s)
- Bao-Qing Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Wen-Long Ding
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Zi-Zhu Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Qi-Ying Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
19
|
Goryashchenko AS, Khrenova MG, Savitsky AP. Detection of protease activity by fluorescent protein FRET sensors: from computer simulation to live cells. Methods Appl Fluoresc 2018; 6:022001. [DOI: 10.1088/2050-6120/aa9e47] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Abstract
Fluorescence lifetime (FLT) is a robust intrinsic property and material constant of fluorescent matter. Measuring this important physical indicator has evolved from a laboratory curiosity to a powerful and established technique for a variety of applications in drug discovery, medical diagnostics and basic biological research. This distinct trend was mainly driven by improved and meanwhile affordable laser and detection instrumentation on the one hand, and the development of suitable FLT probes and biological assays on the other. In this process two essential working approaches emerged. The first one is primarily focused on high throughput applications employing biochemical in vitro assays with no requirement for high spatial resolution. The second even more dynamic trend is the significant expansion of assay methods combining highly time and spatially resolved fluorescence data by fluorescence lifetime imaging. The latter approach is currently pursued to enable not only the investigation of immortal tumor cell lines, but also specific tissues or even organs in living animals. This review tries to give an actual overview about the current status of FLT based bioassays and the wide range of application opportunities in biomedical and life science areas. In addition, future trends of FLT technologies will be discussed.
Collapse
Affiliation(s)
- Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, D-64295 Darmstadt, Germany
| |
Collapse
|
21
|
Bozhanova NG, Baranov MS, Sarkisyan KS, Gritcenko R, Mineev KS, Golodukhina SV, Baleeva NS, Lukyanov KA, Mishin AS. Yellow and Orange Fluorescent Proteins with Tryptophan-based Chromophores. ACS Chem Biol 2017; 12:1867-1873. [PMID: 28525263 DOI: 10.1021/acschembio.7b00337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rapid development of new microscopy techniques exposed the need for genetically encoded fluorescent tags with special properties. Recent works demonstrated the potential of fluorescent proteins with tryptophan-based chromophores. We applied rational design and random mutagenesis to the monomeric red fluorescent protein FusionRed and found two groups of mutants carrying a tryptophan-based chromophore: with yellow (535 nm) or orange (565 nm) emission. On the basis of the properties of proteins, a model synthetic chromophore, and a computational modeling, we concluded that the presence of a ketone-containing chromophore in different isomeric forms can explain the observed yellow and orange phenotypes.
Collapse
Affiliation(s)
- Nina G Bozhanova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Pirogov Russian National Research Medical University , Ostrovitianov 1, 117997 Moscow, Russia
| | - Karen S Sarkisyan
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Roman Gritcenko
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University , 22100 Lund, Sweden
| | - Konstantin S Mineev
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology , Institutsky per., 9, 141701 Dolgoprudny, Russia
| | - Svetlana V Golodukhina
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Nadezhda S Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Pirogov Russian National Research Medical University , Ostrovitianov 1, 117997 Moscow, Russia
| | - Konstantin A Lukyanov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Alexander S Mishin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
22
|
Pletnev VZ, Pletneva NV, Efremov RG, Goryacheva EA, Artemyev IV, Arkhipova SF, Sarkisyan KS, Mishin AS, Lukyanov KA, Pletnev SV. Three-dimensional structure of a pH-dependent fluorescent protein WasCFP with a tryptophan based deprotonated chromophore. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162016050149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Wang Z, Luo M, Mao C, Wei Q, Zhao T, Li Y, Huang G, Gao J. A Redox-Activatable Fluorescent Sensor for the High-Throughput Quantification of Cytosolic Delivery of Macromolecules. Angew Chem Int Ed Engl 2016; 56:1319-1323. [PMID: 27981718 DOI: 10.1002/anie.201610302] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Indexed: 12/19/2022]
Abstract
Efficient delivery of biomacromolecules (e.g., proteins, nucleic acids) into cell cytosol remains a critical challenge for the development of macromolecular therapeutics or diagnostics. To date, most common approaches to assess cytosolic delivery rely on fluorescent labeling of macromolecules with an "always on" reporter and subcellular imaging of endolysosomal escape by confocal microscopy. This strategy is limited by poor signal-to-noise ratio and only offers low throughput, qualitative information. Herein we describe a quantitative redox-activatable sensor (qRAS) for the real-time monitoring of cytosolic delivery of macromolecules. qRAS-labeled macromolecules are silent (off) inside the intact endocytic organelles, but can be turned on by redox activation after endolysosomal disruption and delivery into the cytosol, thereby greatly improving the detection accuracy. In addition to confocal microscopy, this quantitative sensing technology allowed for a high-throughput screening of a panel of polymer carriers toward efficient cytosolic delivery of model proteins on a plate reader. The simple and versatile qRAS design offers a useful tool for the investigation of new strategies for endolysosomal escape of biomacromolecules to facilitate the development of macromolecular therapeutics for a variety of disease indications.
Collapse
Affiliation(s)
- Zhaohui Wang
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Min Luo
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Chengqiong Mao
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Qi Wei
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Tian Zhao
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Yang Li
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Gang Huang
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Jinming Gao
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| |
Collapse
|
24
|
Wang Z, Luo M, Mao C, Wei Q, Zhao T, Li Y, Huang G, Gao J. A Redox‐Activatable Fluorescent Sensor for the High‐Throughput Quantification of Cytosolic Delivery of Macromolecules. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201610302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Zhaohui Wang
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Min Luo
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Chengqiong Mao
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Qi Wei
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Tian Zhao
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Yang Li
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Gang Huang
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Jinming Gao
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| |
Collapse
|
25
|
Mitchell JA, Whitfield JH, Zhang WH, Henneberger C, Janovjak H, O’Mara ML, Jackson CJ. Rangefinder: A Semisynthetic FRET Sensor Design Algorithm. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joshua A. Mitchell
- Research
School of Chemistry, Australian National University, Canberra, 2601, Australia
| | - Jason H. Whitfield
- Research
School of Chemistry, Australian National University, Canberra, 2601, Australia
| | - William H. Zhang
- Research
School of Chemistry, Australian National University, Canberra, 2601, Australia
| | - Christian Henneberger
- Institute
of Neurology, University College London, London, WC1E 6BT, United Kingdom
- German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany
- Institute
of Cellular Neurosciences, University of Bonn, 53113 Bonn, Germany
| | - Harald Janovjak
- Institute of Science and Technology, 3400 Klosterneuburg, Austria
| | - Megan L. O’Mara
- Research
School of Chemistry, Australian National University, Canberra, 2601, Australia
| | - Colin J. Jackson
- Research
School of Chemistry, Australian National University, Canberra, 2601, Australia
| |
Collapse
|
26
|
A Guide to Fluorescent Protein FRET Pairs. SENSORS 2016; 16:s16091488. [PMID: 27649177 PMCID: PMC5038762 DOI: 10.3390/s16091488] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 12/20/2022]
Abstract
Förster or fluorescence resonance energy transfer (FRET) technology and genetically encoded FRET biosensors provide a powerful tool for visualizing signaling molecules in live cells with high spatiotemporal resolution. Fluorescent proteins (FPs) are most commonly used as both donor and acceptor fluorophores in FRET biosensors, especially since FPs are genetically encodable and live-cell compatible. In this review, we will provide an overview of methods to measure FRET changes in biological contexts, discuss the palette of FP FRET pairs developed and their relative strengths and weaknesses, and note important factors to consider when using FPs for FRET studies.
Collapse
|
27
|
Bajar BT, Wang ES, Lam AJ, Kim BB, Jacobs CL, Howe ES, Davidson MW, Lin MZ, Chu J. Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting. Sci Rep 2016; 6:20889. [PMID: 26879144 PMCID: PMC4754705 DOI: 10.1038/srep20889] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/06/2016] [Indexed: 11/08/2022] Open
Abstract
Many genetically encoded biosensors use Förster resonance energy transfer (FRET) to dynamically report biomolecular activities. While pairs of cyan and yellow fluorescent proteins (FPs) are most commonly used as FRET partner fluorophores, respectively, green and red FPs offer distinct advantages for FRET, such as greater spectral separation, less phototoxicity, and lower autofluorescence. We previously developed the green-red FRET pair Clover and mRuby2, which improves responsiveness in intramolecular FRET reporters with different designs. Here we report the engineering of brighter and more photostable variants, mClover3 and mRuby3. mClover3 improves photostability by 60% and mRuby3 by 200% over the previous generation of fluorophores. Notably, mRuby3 is also 35% brighter than mRuby2, making it both the brightest and most photostable monomeric red FP yet characterized. Furthermore, we developed a standardized methodology for assessing FP performance in mammalian cells as stand-alone markers and as FRET partners. We found that mClover3 or mRuby3 expression in mammalian cells provides the highest fluorescence signals of all jellyfish GFP or coral RFP derivatives, respectively. Finally, using mClover3 and mRuby3, we engineered an improved version of the CaMKIIα reporter Camuiα with a larger response amplitude.
Collapse
Affiliation(s)
- Bryce T. Bajar
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Emily S. Wang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Amy J. Lam
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Bongjae B. Kim
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Conor L. Jacobs
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | | | | | - Michael Z. Lin
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Jun Chu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|