1
|
Nishida T, Suzumura N, Nakanishi Y, Maki N, Komeda H, Kawasaki M, Funabiki Y. Measurements of the lateral cerebellar hemispheres using near-infrared spectroscopy through comparison between autism spectrum disorder and typical development. Neurosci Lett 2023; 812:137381. [PMID: 37419305 DOI: 10.1016/j.neulet.2023.137381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
The cerebellum plays a vital role in cognition, communication with the cerebral cortex, and fine motor coordination. Near-infrared spectroscopy (NIRS) is a portable, less restrictive, and noninvasive functional brain imaging method that can capture brain activity during movements by measuring the relative oxyhemoglobin (oxy-Hb) concentrations in the blood. However, the feasibility of using NIRS to measure cerebellar activity requires discussion. We compared NIRS responses between areas assumed to be the cerebellum and the occipital lobe during a fine motor task (tying a bow knot) and a visual task. Our results showed that the oxy-Hb concentration increased more in the occipital lobe than in the cerebellum during the visual task (p =.034). In contrast, during the fine motor task, the oxy-Hb concentration decreased in the occipital lobe but increased significantly in the cerebellum, indicating a notable difference (p =.015). These findings suggest that we successfully captured cerebellar activity associated with processing, particularly fine motor coordination. Moreover, the observed responses did not differ between individuals with autism spectrum disorder and those with typical development. Our study demonstrates the meaningful utility of NIRS as a method for measuring cerebellar activity during movements.
Collapse
Affiliation(s)
- Toshiki Nishida
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan
| | - Nao Suzumura
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan
| | - Yuto Nakanishi
- Department of Psychiatry, Kyoto University Hospital, 54, Shogoin-kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Nao Maki
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan
| | - Hidetsugu Komeda
- Department of Education, College of Education, Psychology and Human Studies, Aoyama Gakuin University, 4 4 25, Shibuya, Shibuya-ku, Tokyo, Japan
| | - Masahiro Kawasaki
- Department of Intelligent Interaction Technology, Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1, Tennodai, Tsukuba-shi, Ibaraki, Japan
| | - Yasuko Funabiki
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
2
|
Olivo G, Lövdén M, Manzouri A, Terlau L, Jenner B, Jafari A, Petersson S, Li TQ, Fischer H, Månsson KNT. Estimated Gray Matter Volume Rapidly Changes after a Short Motor Task. Cereb Cortex 2022; 32:4356-4369. [PMID: 35136959 PMCID: PMC9528898 DOI: 10.1093/cercor/bhab488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/14/2022] Open
Abstract
Skill learning induces changes in estimates of gray matter volume (GMV) in the human brain, commonly detectable with magnetic resonance imaging (MRI). Rapid changes in GMV estimates while executing tasks may however confound between- and within-subject differences. Fluctuations in arterial blood flow are proposed to underlie this apparent task-related tissue plasticity. To test this hypothesis, we acquired multiple repetitions of structural T1-weighted and functional blood-oxygen level-dependent (BOLD) MRI measurements from 51 subjects performing a finger-tapping task (FTT; á 2 min) repeatedly for 30-60 min. Estimated GMV was decreased in motor regions during FTT compared with rest. Motor-related BOLD signal changes did not overlap nor correlate with GMV changes. Nearly simultaneous BOLD signals cannot fully explain task-induced changes in T1-weighted images. These sensitive and behavior-related GMV changes pose serious questions to reproducibility across studies, and morphological investigations during skill learning can also open new avenues on how to study rapid brain plasticity.
Collapse
Affiliation(s)
- Gaia Olivo
- Department of Psychology, University of Gothenburg, SE-40530, Gothenburg, Sweden.,Aging Research Center (ARC), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Martin Lövdén
- Department of Psychology, University of Gothenburg, SE-40530, Gothenburg, Sweden.,Aging Research Center (ARC), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Amirhossein Manzouri
- Department of Psychology, Stockholm University, SE-10691, Stockholm, Sweden.,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, SE-11364, Stockholm, Sweden
| | - Laura Terlau
- Center for Lifespan Psychology, Max Planck Institute for Human Development, D-14195, Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, D-14195, Berlin, London
| | - Bo Jenner
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, SE-11364, Stockholm, Sweden
| | - Arian Jafari
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, SE-11364, Stockholm, Sweden
| | - Sven Petersson
- Department of Medical Radiation and Nuclear Medicine, Karolinska University Hospital, Huddinge S-14186, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14152, Stockholm, Sweden
| | - Tie-Qiang Li
- Department of Medical Radiation and Nuclear Medicine, Karolinska University Hospital, Huddinge S-14186, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14152, Stockholm, Sweden
| | - Håkan Fischer
- Department of Psychology, Stockholm University, SE-10691, Stockholm, Sweden.,Stockholm University Brain Imaging Centre, SE-10691, Stockholm, Sweden
| | - Kristoffer N T Månsson
- Department of Psychology, Stockholm University, SE-10691, Stockholm, Sweden.,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, SE-11364, Stockholm, Sweden.,Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, US-03755, USA
| |
Collapse
|
3
|
See KB, Arpin DJ, Vaillancourt DE, Fang R, Coombes SA. Unraveling somatotopic organization in the human brain using machine learning and adaptive supervoxel-based parcellations. Neuroimage 2021; 245:118710. [PMID: 34780917 PMCID: PMC9008369 DOI: 10.1016/j.neuroimage.2021.118710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/03/2022] Open
Abstract
In addition to the well-established somatotopy in the pre- and post-central gyrus, there is now strong evidence that somatotopic organization is evident across other regions in the sensorimotor network. This raises several experimental questions: To what extent is activity in the sensorimotor network effector-dependent and effector-independent? How important is the sensorimotor cortex when predicting the motor effector? Is there redundancy in the distributed somatotopically organized network such that removing one region has little impact on classification accuracy? To answer these questions, we developed a novel experimental approach. fMRI data were collected while human subjects performed a precisely controlled force generation task separately with their hand, foot, and mouth. We used a simple linear iterative clustering (SLIC) algorithm to segment whole-brain beta coefficient maps to build an adaptive brain parcellation and then classified effectors using extreme gradient boosting (XGBoost) based on parcellations at various spatial resolutions. This allowed us to understand how data-driven adaptive brain parcellation granularity altered classification accuracy. Results revealed effector-dependent activity in regions of the post-central gyrus, precentral gyrus, and paracentral lobule. SMA, regions of the inferior and superior parietal lobule, and cerebellum each contained effector-dependent and effector-independent representations. Machine learning analyses showed that increasing the spatial resolution of the data-driven model increased classification accuracy, which reached 94% with 1755 supervoxels. Our SLIC-based supervoxel parcellation outperformed classification analyses using established brain templates and random simulations. Occlusion experiments further demonstrated redundancy across the sensorimotor network when classifying effectors. Our observations extend our understanding of effector-dependent and effector-independent organization within the human brain and provide new insight into the functional neuroanatomy required to predict the motor effector used in a motor control task.
Collapse
Affiliation(s)
- Kyle B See
- J. Crayton Pruitt Family Department of Biomedical Engineering, Smart Medical Informatics Learning and Evaluation Lab, College of Engineering, University of Florida, PO Box 116131, Gainesville, FL, United States
| | - David J Arpin
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118206, Gainesville, FL, United States
| | - David E Vaillancourt
- J. Crayton Pruitt Family Department of Biomedical Engineering, Smart Medical Informatics Learning and Evaluation Lab, College of Engineering, University of Florida, PO Box 116131, Gainesville, FL, United States; Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118206, Gainesville, FL, United States
| | - Ruogu Fang
- J. Crayton Pruitt Family Department of Biomedical Engineering, Smart Medical Informatics Learning and Evaluation Lab, College of Engineering, University of Florida, PO Box 116131, Gainesville, FL, United States; Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, United States; Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States.
| | - Stephen A Coombes
- J. Crayton Pruitt Family Department of Biomedical Engineering, Smart Medical Informatics Learning and Evaluation Lab, College of Engineering, University of Florida, PO Box 116131, Gainesville, FL, United States; Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118206, Gainesville, FL, United States.
| |
Collapse
|
4
|
Priovoulos N, Roos T, Ipek Ö, Meliado EF, Nkrumah RO, Klomp DWJ, van der Zwaag W. A local multi-transmit coil combined with a high-density receive array for cerebellar fMRI at 7 T. NMR IN BIOMEDICINE 2021; 34:e4586. [PMID: 34231292 PMCID: PMC8519055 DOI: 10.1002/nbm.4586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
The human cerebellum is involved in a wide array of functions, ranging from motor control to cognitive control, and as such is of great neuroscientific interest. However, its function is underexplored in vivo, due to its small size, its dense structure and its placement at the bottom of the brain, where transmit and receive fields are suboptimal. In this study, we combined two dense coil arrays of 16 small surface receive elements each with a transmit array of three antenna elements to improve BOLD sensitivity in the human cerebellum at 7 T. Our results showed improved B1+ and SNR close to the surface as well as g-factor gains compared with a commercial coil designed for whole-head imaging. This resulted in improved signal stability and large gains in the spatial extent of the activation close to the surface (<3.5 cm), while good performance was retained deeper in the cerebellum. Modulating the phase of the transmit elements of the head coil to constructively interfere in the cerebellum improved the B1+ , resulting in a temporal SNR gain. Overall, our results show that a dedicated transmit array along with the SNR gains of surface coil arrays can improve cerebellar imaging, at the cost of a decreased field of view and increased signal inhomogeneity.
Collapse
Affiliation(s)
- Nikos Priovoulos
- Spinoza Center for NeuroimagingRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Thomas Roos
- Spinoza Center for NeuroimagingRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Özlem Ipek
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
| | - Ettore F. Meliado
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtNetherlands
| | - Richard O. Nkrumah
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
| | - Dennis W. J. Klomp
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtNetherlands
| | - Wietske van der Zwaag
- Spinoza Center for NeuroimagingRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| |
Collapse
|
5
|
Raimondo L, Oliveira ĹAF, Heij J, Priovoulos N, Kundu P, Leoni RF, van der Zwaag W. Advances in resting state fMRI acquisitions for functional connectomics. Neuroimage 2021; 243:118503. [PMID: 34479041 DOI: 10.1016/j.neuroimage.2021.118503] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 01/21/2023] Open
Abstract
Resting state functional magnetic resonance imaging (rs-fMRI) is based on spontaneous fluctuations in the blood oxygen level dependent (BOLD) signal, which occur simultaneously in different brain regions, without the subject performing an explicit task. The low-frequency oscillations of the rs-fMRI signal demonstrate an intrinsic spatiotemporal organization in the brain (brain networks) that may relate to the underlying neural activity. In this review article, we briefly describe the current acquisition techniques for rs-fMRI data, from the most common approaches for resting state acquisition strategies, to more recent investigations with dedicated hardware and ultra-high fields. Specific sequences that allow very fast acquisitions, or multiple echoes, are discussed next. We then consider how acquisition methods weighted towards specific parts of the BOLD signal, like the Cerebral Blood Flow (CBF) or Volume (CBV), can provide more spatially specific network information. These approaches are being developed alongside the commonly used BOLD-weighted acquisitions. Finally, specific applications of rs-fMRI to challenging regions such as the laminae in the neocortex, and the networks within the large areas of subcortical white matter regions are discussed. We finish the review with recommendations for acquisition strategies for a range of typical applications of resting state fMRI.
Collapse
Affiliation(s)
- Luisa Raimondo
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | - Ĺcaro A F Oliveira
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | - Jurjen Heij
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | | | - Prantik Kundu
- Hyperfine Research Inc, Guilford, CT, United States; Icahn School of Medicine at Mt. Sinai, New York, United States
| | - Renata Ferranti Leoni
- InBrain, Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
6
|
Ionescu TM, Amend M, Hafiz R, Biswal BB, Wehrl HF, Herfert K, Pichler BJ. Elucidating the complementarity of resting-state networks derived from dynamic [ 18F]FDG and hemodynamic fluctuations using simultaneous small-animal PET/MRI. Neuroimage 2021; 236:118045. [PMID: 33848625 PMCID: PMC8339191 DOI: 10.1016/j.neuroimage.2021.118045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/15/2021] [Accepted: 04/04/2021] [Indexed: 12/02/2022] Open
Abstract
Functional connectivity (FC) and resting-state network (RSN) analyses using functional magnetic resonance imaging (fMRI) have evolved into a growing field of research and have provided useful biomarkers for the assessment of brain function in neurological disorders. However, the underlying mechanisms of the blood oxygen level-dependant (BOLD) signal are not fully resolved due to its inherent complexity. In contrast, [18F]fluorodeoxyglucose positron emission tomography ([18F]FDG-PET) has been shown to provide a more direct measure of local synaptic activity and may have additional value for the readout and interpretation of brain connectivity. We performed an RSN analysis from simultaneously acquired PET/fMRI data on a single-subject level to directly compare fMRI and [18F]FDG-PET-derived networks during the resting state. Simultaneous [18F]FDG-PET/fMRI scans were performed in 30 rats. Pairwise correlation analysis, as well as independent component analysis (ICA), were used to compare the readouts of both methods. We identified three RSNs with a high degree of similarity between PET and fMRI-derived readouts: the default-mode-like network (DMN), the basal ganglia network and the cerebellar-midbrain network. Overall, [18F]FDG connectivity indicated increased integration between different, often distant, brain areas compared to the results indicated by the more segregated fMRI-derived FC. Additionally, several networks exclusive to either modality were observed using ICA. These networks included mainly bilateral cortical networks of a limited spatial extent for fMRI and more spatially widespread networks for [18F]FDG-PET, often involving several subcortical areas. This is the first study using simultaneous PET/fMRI to report RSNs subject-wise from dynamic [18F]FDG tracer delivery and BOLD fluctuations with both independent component analysis (ICA) and pairwise correlation analysis in small animals. Our findings support previous studies, which show a close link between local synaptic glucose consumption and BOLD-fMRI-derived FC. However, several brain regions were exclusively attributed to either [18F]FDG or BOLD-derived networks underlining the complementarity of this hybrid imaging approach, which may contribute to the understanding of brain functional organization and could be of interest for future clinical applications.
Collapse
Affiliation(s)
- Tudor M Ionescu
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Mario Amend
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Rakibul Hafiz
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, United States
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, United States
| | - Hans F Wehrl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Kristina Herfert
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany.
| |
Collapse
|
7
|
Stirnberg R, Stöcker T. Segmented K-space blipped-controlled aliasing in parallel imaging for high spatiotemporal resolution EPI. Magn Reson Med 2020; 85:1540-1551. [PMID: 32936488 DOI: 10.1002/mrm.28486] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE A segmented k-space blipped-controlled aliasing in parallel imaging (skipped-CAIPI) sampling strategy for EPI is proposed, which allows for a flexible choice of EPI factor and phase encode bandwidth independent of the controlled aliasing in parallel imaging (CAIPI) sampling pattern. THEORY AND METHODS With previously proposed approaches, exactly two EPI trajectories were possible given a specific CAIPI pattern, either with slice gradient blips (blipped-CAIPI) or following a shot-selective CAIPI approach (higher resolution). Recently, interleaved multi-shot segmentation along shot-selective CAIPI trajectories has been applied for high-resolution anatomical imaging. For more flexibility and a broader range of applications, we propose segmentation along any blipped-CAIPI trajectory. Thus, all EPI factors and phase encode bandwidths available with traditional segmented EPI can be combined with controlled aliasing. RESULTS Temporal SNR maps of moderate-to-high-resolution time series acquisitions at varying undersampling factors demonstrate beneficial sampling alternatives to blipped-CAIPI or shot-selective CAIPI. Rapid high-resolution scans furthermore demonstrate SNR-efficient and motion-robust structural imaging with almost arbitrary EPI factor and minimal noise penalty. CONCLUSION Skipped-CAIPI sampling increases protocol flexibility for high spatiotemporal resolution EPI. In terms of SNR and efficiency, high-resolution functional or structural scans benefit vastly from a free choice of the CAIPI pattern. Even at moderate resolutions, the independence of sampling pattern, TE, and image matrix size is valuable for optimized functional protocol design. Although demonstrated with 3D-EPI, skipped-CAIPI is also applicable with simultaneous multislice EPI.
Collapse
Affiliation(s)
| | - Tony Stöcker
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Physics and Astronomy, University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Whole-body somatotopic maps in the cerebellum revealed with 7T fMRI. Neuroimage 2020; 211:116624. [PMID: 32058002 DOI: 10.1016/j.neuroimage.2020.116624] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/20/2019] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
The cerebellum is known to contain a double somatotopic body representation. While the anterior lobe body map has shown a robust somatotopic organization in previous fMRI studies, the representations in the posterior lobe have been more difficult to observe and are less precisely characterized. In this study, participants went through a simple motor task asking them to move either the eyes (left-right guided saccades), tongue (left-right movement), thumbs, little fingers or toes (flexion). Using high spatial resolution fMRI data acquired at ultra-high field (7T), with special care taken to obtain sufficient B1 over the entire cerebellum and a cerebellar surface reconstruction facilitating visual inspection of the results, we were able to precisely map the somatotopic representations of these five distal body parts on both subject- and group-specific cerebellar surfaces. The anterior lobe (including lobule VI) showed a consistent and robust somatotopic gradient. Although less robust, the presence of such a gradient in the posterior lobe, from Crus II to lobule VIIIb, was also observed. Additionally, the eyes were also strongly represented in Crus I and the oculomotor vermis. Overall, crosstalk between the different body part representations was negligible. Taken together, these results show that multiple representations of distal body parts are present in the cerebellum, across many lobules, and they are organized in an orderly manner.
Collapse
|
9
|
Lehman VT, Black DF, DeLone DR, Blezek DJ, Kaufmann TJ, Brinjikji W, Welker KM. Current concepts of cross-sectional and functional anatomy of the cerebellum: a pictorial review and atlas. Br J Radiol 2020; 93:20190467. [PMID: 31899660 PMCID: PMC7055440 DOI: 10.1259/bjr.20190467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 01/31/2023] Open
Abstract
Recognition of key concepts of structural and functional anatomy of the cerebellum can facilitate image interpretation and clinical correlation. Recently, the human brain mapping literature has increased our understanding of cerebellar anatomy, function, connectivity with the cerebrum, and significance of lesions involving specific areas.Both the common names and numerically based Schmahmann classifications of cerebellar lobules are illustrated. Anatomic patterns, or signs, of key fissures and white matter branching are introduced to facilitate easy recognition of the major anatomic features. Color-coded overlays of cross-sectional imaging are provided for reference of more complex detail. Examples of exquisite detail of structural and functional cerebellar anatomy at 7 T MRI are also depicted.The functions of the cerebellum are manifold with the majority of areas involved with non-motor association function. Key concepts of lesion-symptom mapping which correlates lesion location to clinical manifestation are introduced, emphasizing that lesions in most areas of the cerebellum are associated with predominantly non-motor deficits. Clinical correlation is reinforced with examples of intrinsic pathologic derangement of cerebellar anatomy and altered functional connectivity due to pathology of the cerebral hemisphere. The purpose of this pictorial review is to illustrate basic concepts of these topics in a cross-sectional imaging-based format that can be easily understood and applied by radiologists.
Collapse
Affiliation(s)
- Vance T. Lehman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States
| | - David F. Black
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States
| | - David R. DeLone
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Daniel J. Blezek
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States
| | | | - Waleed Brinjikji
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Kirk M. Welker
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
10
|
Kinakool AN, Abualait TS. Online polarity-dependent effects of cerebellar transcranial direct current stimulation on motor speed and fine manual dexterity. A randomized controlled trial. Saudi Med J 2020; 41:18-24. [PMID: 31915790 PMCID: PMC7001060 DOI: 10.15537/smj.2020.1.24813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES To investigate the role of cerebellar transcranial direct current stimulation (ctDCS) in modulating cerebellar functions in the motor domains of fine motor dexterity and motor speed. Methods: A single-blind, randomized sham-controlled study was conducted between January and July 2018 at the neuroscience laboratory of Imam Abdulrahman Bin Faisal University. A total of 63 healthy participants were assessed for eligibility. Sixty subjects met the criteria of the study and were randomly divided into 3 groups that received anodal, cathodal or sham ctDCS. Subjects performed 2 motor tasks, The Grooved Pegboard test (GPT) assessed fine manual dexterity and the Finger Tapping Task (FTT) assessed motor speed. Subjects undertook the 2 tasks in a single intervention session while 20 minutes of 2mA ctDCS was administered online. The short form of the Edinburgh Handedness Inventory was used to assess handedness and both tasks were performed first with the dominant and then the non-dominant hand. The primary outcome measures included the time of completion of GPT for fine manual dexterity and the mean number of finger-taps for motor speed of each hand. Results: ANOVA revealed a highly significant polarity dependent Group*Task interaction (p less than 0.01) for FTT scores. ANOVA also revealed a non-significant Group*Task interaction for GPT scores. Conclusion: Findings indicate that ctDCS has a modulatory effect on motor speed and could be a promising therapeutic intervention for treatment of neurological conditions with motor deficits.
Collapse
Affiliation(s)
- Aysha N Kinakool
- Department of Physical Therapy, College of Applied Medical Sciences, Imam Abdulrahman, Bin Faisal University, Dammam, Kingdom of Saudi Arabia. E-mail.
| | | |
Collapse
|
11
|
El Mendili MM, Petracca M, Podranski K, Fleysher L, Cocozza S, Inglese M. SUITer: An Automated Method for Improving Segmentation of Infratentorial Structures at Ultra-High-Field MRI. J Neuroimaging 2019; 30:28-39. [PMID: 31691416 DOI: 10.1111/jon.12672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE The advent of high and ultra-high-field MRI has significantly improved the investigation of infratentorial structures by providing high-resolution images. However, none of the publicly available methods for cerebellar image analysis has been optimized for high-resolution images yet. METHODS We present the implementation of an automated algorithm-SUITer (spatially unbiased infratentorial for enhanced resolution) method for cerebellar lobules parcellation on high-resolution MR images acquired at both 3 and 7T MRI. SUITer was validated on five manually segmented data and compared with SUIT, FreeSurfer, and convolutional neural networks (CNN). SUITer was then applied to 3 and 7T MR images from 10 multiple sclerosis (MS) patients and 10 healthy controls (HCs). RESULTS The difference in volumes estimation for the cerebellar grey matter (GM), between the manual segmentation (ground truth), SUIT, CNN, and SUITer was reduced when computed by SUITer compared to SUIT (5.56 vs. 29.23 mL) and CNN (5.56 vs. 9.43 mL). FreeSurfer showed low volumes difference (3.56 mL). SUITer segmentations showed a high correlation (R2 = .91) and a high overlap with manual segmentations for cerebellar GM (83.46%). SUITer also showed low volumes difference (7.29 mL), high correlation (R2 = .99), and a high overlap (87.44%) for cerebellar GM segmentations across magnetic fields. SUITer showed similar cerebellar GM volume differences between MS patients and HC at both 3T and 7T (7.69 and 7.76 mL, respectively). CONCLUSIONS SUITer provides accurate segmentations of infratentorial structures across different resolutions and MR fields.
Collapse
Affiliation(s)
| | - Maria Petracca
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY
| | - Kornelius Podranski
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Lazar Fleysher
- Department of Radiology, Icahn School of Medicine at Mount Sinai, NY
| | - Sirio Cocozza
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY.,Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Matilde Inglese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY.,Department of Radiology, Icahn School of Medicine at Mount Sinai, NY.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, NY.,Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI) University of Genova, Genoa, Italy
| |
Collapse
|
12
|
Hendriks AD, Luijten PR, Klomp DWJ, Petridou N. Potential acceleration performance of a 256-channel whole-brain receive array at 7 T. Magn Reson Med 2018; 81:1659-1670. [PMID: 30257049 PMCID: PMC6585755 DOI: 10.1002/mrm.27519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/09/2018] [Accepted: 08/11/2018] [Indexed: 11/21/2022]
Abstract
Purpose Assess the potential gain in acceleration performance of a 256‐channel versus 32‐channel receive coil array at 7 T in combination with a 2D CAIPIRINHA sequence for 3D data sets. Methods A 256‐channel receive setup was simulated by placing 2 small 16‐channel high‐density receive arrays at 2 × 8 different locations on the head of healthy participants. Multiple consecutive measurements were performed and coil sensitivity maps were combined to form a complete 256‐channel data set. This setup was compared with a standard 32‐channel head coil, in terms of SNR, noise correlation, and acceleration performance (g‐factor). Results In the periphery of the brain, the receive SNR was on average a factor 1.5 higher (ranging up to a factor 2.7 higher) than the 32‐channel coil; in the center of the brain the SNR was comparable or lower, depending on the size of the region of interest, with a factor 1.0 on average (ranging from 0.7 up to a factor of 1.6). The average noise correlation between coil elements was 3% for the 256‐channel coil, and 5% for the 32‐channel coil. At acceptable g‐factors (< 2), the achievable acceleration factor using SENSE and 2D CAIPIRINHA was 24 and 28, respectively, versus 9 and 12 for the 32‐channel coil. Conclusion The receive performance of the simulated 256 channel array was better than the 32‐channel reference. Combined with 2D CAIPIRINHA, a peak acceleration factor of 28 was assessed, showing great potential for high‐density receive arrays.
Collapse
Affiliation(s)
- Arjan D Hendriks
- Department of Radiology, Imaging Division, University Medical Center Utrecht, Utrecht, Netherlands
| | - Peter R Luijten
- Department of Radiology, Imaging Division, University Medical Center Utrecht, Utrecht, Netherlands
| | - Dennis W J Klomp
- Department of Radiology, Imaging Division, University Medical Center Utrecht, Utrecht, Netherlands
| | - Natalia Petridou
- Department of Radiology, Imaging Division, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
13
|
Distortion-matched T1 maps and unbiased T1-weighted images as anatomical reference for high-resolution fMRI. Neuroimage 2018; 176:41-55. [DOI: 10.1016/j.neuroimage.2018.04.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 11/20/2022] Open
|
14
|
Keuken MC, Isaacs BR, Trampel R, van der Zwaag W, Forstmann BU. Visualizing the Human Subcortex Using Ultra-high Field Magnetic Resonance Imaging. Brain Topogr 2018; 31:513-545. [PMID: 29497874 PMCID: PMC5999196 DOI: 10.1007/s10548-018-0638-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/28/2018] [Indexed: 12/15/2022]
Abstract
With the recent increased availability of ultra-high field (UHF) magnetic resonance imaging (MRI), substantial progress has been made in visualizing the human brain, which can now be done in extraordinary detail. This review provides an extensive overview of the use of UHF MRI in visualizing the human subcortex for both healthy and patient populations. The high inter-subject variability in size and location of subcortical structures limits the usability of atlases in the midbrain. Fortunately, the combined results of this review indicate that a large number of subcortical areas can be visualized in individual space using UHF MRI. Current limitations and potential solutions of UHF MRI for visualizing the subcortex are also discussed.
Collapse
Affiliation(s)
- M C Keuken
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Postbus 15926, 1001NK, Amsterdam, The Netherlands.
- Cognitive Psychology Unit, Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.
| | - B R Isaacs
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Postbus 15926, 1001NK, Amsterdam, The Netherlands
- Maastricht University Medical Center, Maastricht, The Netherlands
| | - R Trampel
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - B U Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Postbus 15926, 1001NK, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
15
|
van Gemert JHF, Brink WM, Webb AG, Remis RF. High-Permittivity Pad Design for Dielectric Shimming in Magnetic Resonance Imaging Using Projection-Based Model Reduction and a Nonlinear Optimization Scheme. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1035-1044. [PMID: 29610080 DOI: 10.1109/tmi.2018.2791179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Inhomogeneities in the transmit radio frequency magnetic field ( ) reduce the quality of magnetic resonance (MR) images. This quality can be improved by using high-permittivity pads that tailor the fields. The design of an optimal pad is application-specific and not straightforward and would therefore benefit from a systematic optimization approach. In this paper, we propose such a method to efficiently design dielectric pads. To this end, a projection-based model order reduction technique is used that significantly decreases the dimension of the design problem. Subsequently, the resulting reduced-order model is incorporated in an optimization method in which a desired field in a region of interest can be set. The method is validated by designing a pad for imaging the cerebellum at 7 T. The optimal pad that is found is used in an MR measurement to demonstrate its effectiveness in improving the image quality.
Collapse
|
16
|
Hendriks AD, Fracasso A, Arteaga de Castro CS, Gosselink MW, Luijten PR, Petridou N, Klomp DW. Maximizing sensitivity for fast GABA edited spectroscopy in the visual cortex at 7 T. NMR IN BIOMEDICINE 2018; 31:e3890. [PMID: 29442388 PMCID: PMC5887933 DOI: 10.1002/nbm.3890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 11/13/2017] [Accepted: 12/03/2017] [Indexed: 05/03/2023]
Abstract
The combination of functional MRI (fMRI) and MRS is a promising approach to relate BOLD imaging to neuronal metabolism, especially at high field strength. However, typical scan times for GABA edited spectroscopy are of the order of 6-30 min, which is long compared with functional changes observed with fMRI. The aim of this study is to reduce scan time and increase GABA sensitivity for edited spectroscopy in the human visual cortex, by enlarging the volume of activated tissue in the primary visual cortex. A dedicated setup at 7 T for combined fMRI and GABA MRS is developed. This setup consists of a half volume multi-transmit coil with a large screen for visual cortex activation, two high density receive arrays and an optimized single-voxel MEGA-sLASER sequence with macromolecular suppression for signal acquisition. The coil setup performance as well as the GABA measurement speed, SNR, and stability were evaluated. A 2.2-fold gain of the average SNR for GABA detection was obtained, as compared with a conventional 7 T setup. This was achieved by increasing the viewing angle of the participant with respect to the visual stimulus, thereby activating almost the entire primary visual cortex, allowing larger spectroscopy measurement volumes and resulting in an improved GABA SNR. Fewer than 16 signal averages, lasting 1 min 23 s in total, were needed for the GABA fit method to become stable, as demonstrated in three participants. The stability of the measurement setup was sufficient to detect GABA with an accuracy of 5%, as determined with a GABA phantom. In vivo, larger variations in GABA concentration are found: 14-25%. Overall, the results bring functional GABA detections at a temporal resolution closer to the physiological time scale of BOLD cortex activation.
Collapse
Affiliation(s)
- Arjan D. Hendriks
- Department of Radiology, Imaging DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Alessio Fracasso
- Department of Radiology, Imaging DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
- Experimental Psychology, Helmholtz InstituteUtrecht UniversityUtrechtThe Netherlands
| | | | - Mark W.J.M. Gosselink
- Department of Radiology, Imaging DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Peter R. Luijten
- Department of Radiology, Imaging DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Natalia Petridou
- Department of Radiology, Imaging DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Dennis W.J. Klomp
- Department of Radiology, Imaging DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
17
|
Walther S, Schäppi L, Federspiel A, Bohlhalter S, Wiest R, Strik W, Stegmayer K. Resting-State Hyperperfusion of the Supplementary Motor Area in Catatonia. Schizophr Bull 2017; 43:972-981. [PMID: 27729486 PMCID: PMC5581902 DOI: 10.1093/schbul/sbw140] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Catatonia is a psychomotor syndrome that not only frequently occurs in the context of schizophrenia but also in other conditions. The neural correlates of catatonia remain unclear due to small-sized studies. We therefore compared resting-state cerebral blood flow (rCBF) and gray matter (GM) density between schizophrenia patients with current catatonia and without catatonia and healthy controls. We included 42 schizophrenia patients and 41 controls. Catatonia was currently present in 15 patients (scoring >2 items on the Bush Francis Catatonia Rating Scale screening). Patients did not differ in antipsychotic medication or positive symptoms. We acquired whole-brain rCBF using arterial spin labeling and GM density. We compared whole-brain perfusion and GM density over all and between the groups using 1-way ANCOVAs (F and T tests). We found a group effect (F test) of rCBF within bilateral supplementary motor area (SMA), anterior cingulate cortex, dorsolateral prefrontal cortex, left interior parietal lobe, and cerebellum. T tests indicated 1 cluster (SMA) to be specific to catatonia. Moreover, catatonia of excited and retarded types differed in SMA perfusion. Furthermore, increased catatonia severity was associated with higher perfusion in SMA. Finally, catatonia patients had a distinct pattern of GM density reduction compared to controls with prominent GM loss in frontal and insular cortices. SMA resting-state hyperperfusion is a marker of current catatonia in schizophrenia. This is highly compatible with a dysregulated motor system in catatonia, particularly affecting premotor areas. Moreover, SMA perfusion was differentially altered in retarded and excited catatonia subtypes, arguing for distinct pathobiology.
Collapse
Affiliation(s)
- Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland;,To whom correspondence should be addressed; Translational Research Center, University Hospital of Psychiatry, Bolligenstrasse 111, 3060 Bern, Switzerland; tel: +41-31-930-9483, fax: +41-31-930-9404, e-mail:
| | - Lea Schäppi
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | - Stephan Bohlhalter
- Neurology and Neurorehabilitation Center, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Roland Wiest
- Support Center of Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern, Switzerland
| | - Werner Strik
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| |
Collapse
|
18
|
Lobular homology in cerebellar hemispheres of humans, non-human primates and rodents: a structural, axonal tracing and molecular expression analysis. Brain Struct Funct 2017; 222:2449-2472. [PMID: 28508291 DOI: 10.1007/s00429-017-1436-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 04/28/2017] [Indexed: 02/07/2023]
Abstract
Comparative neuroanatomy provides insights into the evolutionary functional adaptation of specific mammalian cerebellar lobules, in which the lobulation pattern and functional localization are conserved. However, accurate identification of homologous lobules among mammalian species is challenging. In this review, we discuss the inter-species homology of crus I and II lobules which occupy a large volume in the posterior cerebellar hemisphere, particularly in humans. Both crus I/II in humans are homologous to crus I/II in non-human primates, according to Paxinos and colleagues; however, this area has been defined as crus I alone in non-human primates, according to Larsell and Brodal. Our neuroanatomical analyses in humans, macaques, marmosets, rats, and mice demonstrate that both crus I/II in humans are homologous to crus I/II or crus I alone in non-human primates, depending on previous definitions, and to crus I alone in rodents. Here, we refer to the region homologous to human crus I/II lobules as "ansiform area (AA)" across animals. Our results show that the AA's olivocerebellar climbing fiber and Purkinje cell projections as well as aldolase C gene expression patterns are both distinct and conserved in marmosets and rodents. The relative size of the AA, as represented by the AA volume fraction in the whole cerebellum was 0.34 in human, 0.19 in macaque, and approximately 0.1 in marmoset and rodents. These results indicate that the AA reflects an evolutionarily conserved structure in the mammalian cerebellum, which is characterized by distinct connectivity from neighboring lobules and a massive expansion in skillful primates.
Collapse
|
19
|
Abboud R, Noronha C, Diwadkar VA. Motor system dysfunction in the schizophrenia diathesis: Neural systems to neurotransmitters. Eur Psychiatry 2017. [PMID: 28641214 DOI: 10.1016/j.eurpsy.2017.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Motor control is a ubiquitous aspect of human function, and from its earliest origins, abnormal motor control has been proposed as being central to schizophrenia. The neurobiological architecture of the motor system is well understood in primates and involves cortical and sub-cortical components including the primary motor cortex, supplementary motor area, dorsal anterior cingulate cortex, the prefrontal cortex, the basal ganglia, and cerebellum. Notably all of these regions are associated in some manner to the pathophysiology of schizophrenia. At the molecular scale, both dopamine and γ-Aminobutyric Acid (GABA) abnormalities have been associated with working memory dysfunction, but particularly relating to the basal ganglia and the prefrontal cortex respectively. As evidence from multiple scales (behavioral, regional and molecular) converges, here we provide a synthesis of the bio-behavioral relevance of motor dysfunction in schizophrenia, and its consistency across scales. We believe that the selective compendium we provide can supplement calls arguing for renewed interest in studying the motor system in schizophrenia. We believe that in addition to being a highly relevant target for the study of schizophrenia related pathways in the brain, such focus provides tractable behavioral probes for in vivo imaging studies in the illness. Our assessment is that the motor system is a highly valuable research domain for the study of schizophrenia.
Collapse
Affiliation(s)
- R Abboud
- College of Osteopathic Medicine, Michigan State University Lansing, MI, USA
| | - C Noronha
- School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - V A Diwadkar
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Suite 5A, Tolan Park Medical Building, 3901 Chrysler Service Drive, 48201 Detroit, MI, USA.
| |
Collapse
|
20
|
De Martino F, Yacoub E, Kemper V, Moerel M, Uludağ K, De Weerd P, Ugurbil K, Goebel R, Formisano E. The impact of ultra-high field MRI on cognitive and computational neuroimaging. Neuroimage 2017; 168:366-382. [PMID: 28396293 DOI: 10.1016/j.neuroimage.2017.03.060] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/20/2017] [Accepted: 03/29/2017] [Indexed: 01/14/2023] Open
Abstract
The ability to measure functional brain responses non-invasively with ultra high field MRI (7 T and above) represents a unique opportunity in advancing our understanding of the human brain. Compared to lower fields (3 T and below), ultra high field MRI has an increased sensitivity, which can be used to acquire functional images with greater spatial resolution, and greater specificity of the blood oxygen level dependent (BOLD) signal to the underlying neuronal responses. Together, increased resolution and specificity enable investigating brain functions at a submillimeter scale, which so far could only be done with invasive techniques. At this mesoscopic spatial scale, perception, cognition and behavior can be probed at the level of fundamental units of neural computations, such as cortical columns, cortical layers, and subcortical nuclei. This represents a unique and distinctive advantage that differentiates ultra high from lower field imaging and that can foster a tighter link between fMRI and computational modeling of neural networks. So far, functional brain mapping at submillimeter scale has focused on the processing of sensory information and on well-known systems for which extensive information is available from invasive recordings in animals. It remains an open challenge to extend this methodology to uniquely human functions and, more generally, to systems for which animal models may be problematic. To succeed, the possibility to acquire high-resolution functional data with large spatial coverage, the availability of computational models of neural processing as well as accurate biophysical modeling of neurovascular coupling at mesoscopic scale all appear necessary.
Collapse
Affiliation(s)
- Federico De Martino
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 sixth street SE, 55455 Minneapolis, MN, USA.
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 sixth street SE, 55455 Minneapolis, MN, USA
| | - Valentin Kemper
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands
| | - Michelle Moerel
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands; Maastricht Center for System Biology, Maastricht University, Universiteitssingel 60, 6229 ER Maastricht, The Netherlands
| | - Kâmil Uludağ
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands
| | - Peter De Weerd
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 sixth street SE, 55455 Minneapolis, MN, USA
| | - Rainer Goebel
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands
| | - Elia Formisano
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands; Maastricht Center for System Biology, Maastricht University, Universiteitssingel 60, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
21
|
Abstract
There is increasing evidence that points to the central role of the cerebellum in many areas of human behaviour - in health and in illness. The findings reviewed here shed further light on the developmental vulnerability of cerebellar cell types, and highlight the new imaging techniques being used in this research. This article reviews some new advances in our understanding of the normal cerebellar growth trajectory, and how this may become disturbed by pathological processes. Cerebellar development is now being implicated in many conditions, from autism and other neuropsychiatric disorders to diabetes.
Collapse
|