1
|
McGuckian TB, Laracas J, Roseboom N, Eichler S, Kardas S, Piantella S, Cole MH, Eldridge R, Duckworth J, Steenbergen B, Green D, Wilson PH. Portable Touchscreen Assessment of Motor Skill: A Registered Report of the Reliability and Validity of EDNA MoTap. Assessment 2025; 32:269-282. [PMID: 39075871 PMCID: PMC11874617 DOI: 10.1177/10731911241266306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Portable and flexible administration of manual dexterity assessments is necessary to monitor recovery from brain injury and the effects of interventions across clinic and home settings, especially when in-person testing is not possible or convenient. This paper aims to assess the concurrent validity and test-retest reliability of a new suite of touchscreen-based manual dexterity tests (called EDNA™MoTap) that are designed for portable and efficient administration. A minimum sample of 49 healthy young adults will be conveniently recruited. The EDNA™MoTap tasks will be assessed for concurrent validity against standardized tools (the Box and Block Test [BBT] and the Purdue Pegboard Test) and for test-retest reliability over a 1- to 2-week interval. Correlation coefficients of r > .6 will indicate acceptable validity, and intraclass correlation coefficient (ICC) values > .75 will indicate acceptable reliability for healthy adults. The sample were primarily right-handed (91%) adults aged 19 and 34 years (M = 24.93, SD = 4.21, 50% female). The MoTap tasks did not demonstrate acceptable validity, with tasks showing weak-to-moderate associations with the criterion assessments. Some outcomes demonstrated acceptable test-retest reliability; however, this was not consistent. Touchscreen-based assessments of dexterity remain relevant; however, there is a need for further development of the EDNA™MoTap task administration.
Collapse
Affiliation(s)
| | - Jade Laracas
- Australian Catholic University, Fitzroy, Victoria, Australia
| | - Nadine Roseboom
- Australian Catholic University, Fitzroy, Victoria, Australia
| | - Sophie Eichler
- Australian Catholic University, Fitzroy, Victoria, Australia
| | - Szymon Kardas
- Australian Catholic University, Fitzroy, Victoria, Australia
| | | | - Michael H. Cole
- Australian Catholic University, Fitzroy, Victoria, Australia
| | | | | | | | | | - Peter H. Wilson
- Australian Catholic University, Fitzroy, Victoria, Australia
| |
Collapse
|
2
|
Hsiao A, Block HJ. The role of explicit knowledge in compensating for a visuo-proprioceptive cue conflict. Exp Brain Res 2024; 242:2249-2261. [PMID: 39042277 PMCID: PMC11512547 DOI: 10.1007/s00221-024-06898-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
It is unclear how explicit knowledge of an externally imposed mismatch between visual and proprioceptive cues of hand position affects perceptual recalibration. The Bayesian causal inference framework might suggest such knowledge should abolish the visual and proprioceptive recalibration that occurs when individuals perceive these cues as coming from the same source (their hand), while the visuomotor adaptation literature suggests explicit knowledge of a cue conflict does not eliminate implicit compensatory processes. Here we compared visual and proprioceptive recalibration in three groups with varying levels of knowledge about the visuo-proprioceptive cue conflict. All participants estimated the position of visual, proprioceptive, or combined targets related to their left index fingertip, with a 70 mm visuo-proprioceptive offset gradually imposed. Groups 1, 2, and 3 received no information, medium information, and high information, respectively, about the offset. Information was manipulated using instructional and visual cues. All groups performed the task similarly at baseline in terms of variance, weighting, and integration. Results suggest the three groups recalibrated vision and proprioception differently, but there was no difference in variance or weighting. Participants who received only instructional cues about the mismatch (Group 2) did not recalibrate less, on average, than participants provided no information about the mismatch (Group 1). However, participants provided instructional cues and extra visual cues of their hands during the perturbation (Group 3) demonstrated significantly less recalibration than other groups. These findings are consistent with the idea that instructional cues alone are insufficient to override participants' intrinsic belief in common cause and reduce recalibration.
Collapse
Affiliation(s)
- Anna Hsiao
- Department of Kinesiology, School of Public Health, Indiana University Bloomington, 1025 E. 7th St., PH 112, Bloomington, IN, 47405, USA
| | - Hannah J Block
- Department of Kinesiology, School of Public Health, Indiana University Bloomington, 1025 E. 7th St., PH 112, Bloomington, IN, 47405, USA.
| |
Collapse
|
3
|
Mirdamadi JL, Ting LH, Borich MR. Distinct Cortical Correlates of Perception and Motor Function in Balance Control. J Neurosci 2024; 44:e1520232024. [PMID: 38413231 PMCID: PMC11007305 DOI: 10.1523/jneurosci.1520-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024] Open
Abstract
Fluctuations in brain activity alter how we perceive our body and generate movements but have not been investigated in functional whole-body behaviors. During reactive balance, we recently showed that evoked brain activity is associated with the balance ability in young individuals. Furthermore, in PD, impaired whole-body motion perception in reactive balance is associated with impaired balance. Here, we investigated the brain activity during the whole-body motion perception in reactive balance in young adults (9 female, 10 male). We hypothesized that both ongoing and evoked cortical activity influences the efficiency of information processing for successful perception and movement during whole-body behaviors. We characterized two cortical signals using electroencephalography localized to the SMA: (1) the "N1," a perturbation-evoked potential that decreases in amplitude with expectancy and is larger in individuals with lower balance function, and (2) preperturbation β power, a transient rhythm that favors maintenance of the current sensorimotor state and is inversely associated with tactile perception. In a two-alternative forced choice task, participants judged whether pairs of backward support surface perturbations during standing were in the "same" or "different" direction. As expected, lower whole-body perception was associated with lower balance ability. Within a perturbation pair, N1 attenuation was larger on correctly perceived trials and associated with better balance, but not perception. In contrast, preperturbation β power was higher on incorrectly perceived trials and associated with poorer perception, but not balance. Together, ongoing and evoked cortical activity have unique roles in information processing that give rise to distinct associations with perceptual and balance ability.
Collapse
Affiliation(s)
- Jasmine L Mirdamadi
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Lena H Ting
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
- The Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322
| | - Michael R Borich
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
4
|
Ergen Hİ, Keskinbıçkı MV, Öksüz Ç. The Effect of Proprioceptive Training on Hand Function and Activity Limitation After Open Carpal Tunnel Release Surgery: A Randomized Controlled Study. Arch Phys Med Rehabil 2024; 105:664-672. [PMID: 38142026 DOI: 10.1016/j.apmr.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023]
Abstract
OBJECTIVE To investigate the effect of proprioceptive training on hand function and activity limitation in patients undergoing open carpal tunnel release surgery. DESIGN Randomized controlled study. SETTING A university hospital. PARTICIPANTS Thirty patients were included in the study and randomized to proprioceptive training (PT) and conventional rehabilitation (CR) groups. INTERVENTION One week after surgery, both groups received CR for 6 weeks. All participants were asked to perform home-based exercises daily in 3 sets with 10 repetitions. For the PT group, a 6-step PT program was conducted starting from Week 6. Both groups received face-to-face interventions twice a week for 12 weeks. MAIN OUTCOME MEASURES The outcome measures included the Purdue Pegboard Test (PPT), the joint position sense test (JPST), the Boston Carpal Tunnel Questionnaire, and the Patient-Specific Functional Scale. In total, 3 assessments were performed (at 1, 6 and 12 weeks postoperatively). RESULTS In the PT group, the results for PPT were statistically significant (P<.05). Although there was a greater decrease in the absolute angular error value (JPST) of the PT group compared to the CR group, the difference was nonsignificant (P>.05). Similar reductions in activity limitation were seen in both groups (PT: 176%, CR: 175%). Symptom severity decreased by 40% in the PT group vs 32% in the CR group. The effect sizes were larger for the changes between the second and third assessments in the PT group compared to the CR group in all parameters tested. CONCLUSION When applied after carpal tunnel release surgery, PT may potentially to improve hand functions, reduce activity limitation, increase participation in activities of daily living, and thus improve quality of life.
Collapse
Affiliation(s)
- Halil İbrahim Ergen
- Department of Physical Therapy and Rehabilitation, Faculty of Health Sciences, Gaziantep University, Gaziantep.
| | | | - Çiğdem Öksüz
- Department of Occupational Therapy, Faculty of Health Sciences, Hacettepe University, Ankara
| |
Collapse
|
5
|
Mirdamadi JL, Ting LH, Borich MR. Distinct cortical correlates of perception and motor function in balance control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554282. [PMID: 37662247 PMCID: PMC10473579 DOI: 10.1101/2023.08.22.554282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Fluctuations in brain state alter how we perceive our body and generate movements but have not been investigated in functional whole-body behaviors. During reactive balance control, we recently showed that evoked brain activity is associated with balance ability in healthy young individuals. Further, in individuals with Parkinson's disease, impairments in whole-body motion perception in reactive balance are associated with clinical balance impairment. Here we investigated brain activity during whole-body motion perception in reactive balance in healthy young adults. We hypothesized that flexibility in brain states underlies successful perception and movement during whole-body movement. We characterized two cortical sensorimotor signals using electroencephalography localized to the supplementary motor area: 1) the "N1 response", a perturbation-evoked potential that decreases in amplitude with expectancy and is larger in individuals with lower balance function; and 2) pre-perturbation beta oscillatory activity, a rhythm that favors maintenance of the current sensorimotor state and is inversely associated with perception in seated somatosensory perceptual tasks. In a two-alternative forced choice task, participants judged whether pairs of backward support-surface perturbations during standing were in the "same" or "different" direction. As expected, lower whole-body perception was associated with lower balance ability. Within a perturbation pair, N1 attenuation was larger on correctly perceived trials and associated with better balance, but not perception. In contrast, pre-perturbation beta power was higher on incorrectly perceived trials and associated with poorer perception, but not balance. Taken together, flexibility in different cortical processes influences perceptual accuracy but have distinct associations with balance and perceptual ability.
Collapse
Affiliation(s)
- Jasmine L. Mirdamadi
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lena H. Ting
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA 30322, USA
- The Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Michael R. Borich
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Oh J, Mahnan A, Xu J, Block HJ, Konczak J. Typical Development of Finger Position Sense From Late Childhood to Adolescence. J Mot Behav 2022; 55:102-110. [PMID: 36257920 DOI: 10.1080/00222895.2022.2134287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Finger position sense is a proprioceptive modality highly important for fine motor control. Its developmental time course is largely unknown. This cross-sectional study examined its typical development in 138 children (8-17 years) and a group of 14 healthy young adults using a fast and novel psychophysical test that yielded objective measures of position sense acuity. Participants placed their hands underneath a computer tablet and judged the perceived position of their unseen index finger relative to two visible areas displayed on a tablet following a two-forced-choice paradigm. Responses were fitted to a psychometric acuity function from which the difference between the point-of-subjective-equality and the veridical finger position (ΔPSE) was derived as a measure of position sense bias, and the uncertainty area (UA) as a measure of precision. The main results are: First, children under 12 exhibited a significantly greater UA than adults while adolescent children (13-17 years) exhibited no significant differences when compared to adults. Second, no significant age-related differences in ΔPSE were found across the age range of 8-17 years. This implies that the typical development of finger position sense from late childhood to adulthood is characterized as an age-dependent increase in proprioceptive precision and not as a decrease in bias.
Collapse
Affiliation(s)
- Jinseok Oh
- Human Sensorimotor Control Laboratory, School of Kinesiology, University of Minnesota, Minneapolis, MN, USA
| | - Arash Mahnan
- Human Sensorimotor Control Laboratory, School of Kinesiology, University of Minnesota, Minneapolis, MN, USA.,Reality Labs Health and Safety UXR, Meta, Redmond, WA, USA
| | - Jiapeng Xu
- Human Sensorimotor Control Laboratory, School of Kinesiology, University of Minnesota, Minneapolis, MN, USA
| | - Hannah J Block
- Sensorimotor Neurophysiology Laboratory, School of Public Health, Indiana University Bloomington, IN, USA
| | - Jürgen Konczak
- Human Sensorimotor Control Laboratory, School of Kinesiology, University of Minnesota, Minneapolis, MN, USA.,Center for Clinical Movement Science, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
D'Antonio E, Galofaro E, Zenzeri J, Patané F, Konczak J, Casadio M, Masia L. Robotic Assessment of Wrist Proprioception During Kinaesthetic Perturbations: A Neuroergonomic Approach. Front Neurorobot 2021; 15:640551. [PMID: 33732131 PMCID: PMC7958920 DOI: 10.3389/fnbot.2021.640551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/09/2021] [Indexed: 12/01/2022] Open
Abstract
Position sense refers to an aspect of proprioception crucial for motor control and learning. The onset of neurological diseases can damage such sensory afference, with consequent motor disorders dramatically reducing the associated recovery process. In regular clinical practice, assessment of proprioceptive deficits is run by means of clinical scales which do not provide quantitative measurements. However, existing robotic solutions usually do not involve multi-joint movements but are mostly applied to a single proximal or distal joint. The present work provides a testing paradigm for assessing proprioception during coordinated multi-joint distal movements and in presence of kinaesthetic perturbations: we evaluated healthy subjects' ability to match proprioceptive targets along two of the three wrist's degrees of freedom, flexion/extension and abduction/adduction. By introducing rotations along the pronation/supination axis not involved in the matching task, we tested two experimental conditions, which differed in terms of the temporal imposition of the external perturbation: in the first one, the disturbance was provided after the presentation of the proprioceptive target, while in the second one, the rotation of the pronation/ supination axis was imposed during the proprioceptive target presentation. We investigated if (i) the amplitude of the perturbation along the pronation/supination would lead to proprioceptive miscalibration; (ii) the encoding of proprioceptive target, would be influenced by the presentation sequence between the target itself and the rotational disturbance. Eighteen participants were tested by means of a haptic neuroergonomic wrist device: our findings provided evidence that the order of disturbance presentation does not alter proprioceptive acuity. Yet, a further effect has been noticed: proprioception is highly anisotropic and dependent on perturbation amplitude. Unexpectedly, the configuration of the forearm highly influences sensory feedbacks, and significantly alters subjects' performance in matching the proprioceptive targets, defining portions of the wrist workspace where kinaesthetic and proprioceptive acuity are more sensitive. This finding may suggest solutions and applications in multiple fields: from general haptics where, knowing how wrist configuration influences proprioception, might suggest new neuroergonomic solutions in device design, to clinical evaluation after neurological damage, where accurately assessing proprioceptive deficits can dramatically complement regular therapy for a better prediction of the recovery path.
Collapse
Affiliation(s)
- Erika D'Antonio
- Assistive Robotics and Interactive Exosuits (ARIES) Laboratory, Institute of Computer Engineering (ZITI), University of Heidelberg, Heidelberg, Germany
| | - Elisa Galofaro
- Assistive Robotics and Interactive Exosuits (ARIES) Laboratory, Institute of Computer Engineering (ZITI), University of Heidelberg, Heidelberg, Germany.,Department of Informatics, Bioengineering, Robotics, and System Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Jacopo Zenzeri
- Robotics, Brain, and Cognitive Sciences Unit, Italian Institute of Technology, Genoa, Italy
| | - Fabrizio Patané
- Mechanical Measurements and Microelectronics (M3Lab) Lab, Engineering Department, University Niccolò Cusano, Rome, Italy
| | - Jürgen Konczak
- Human Sensorimotor Control Laboratory, University of Minnesota, Minneapolis, MN, United States
| | - Maura Casadio
- Department of Informatics, Bioengineering, Robotics, and System Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Lorenzo Masia
- Assistive Robotics and Interactive Exosuits (ARIES) Laboratory, Institute of Computer Engineering (ZITI), University of Heidelberg, Heidelberg, Germany.,Faculty of Engineering, The Maersk Mc-Kinney Moller Institute, University of Southern Denmark (SDU), Odense, Denmark
| |
Collapse
|
8
|
Kitchen NM, Miall RC. Adaptation of reach action to a novel force-field is not predicted by acuity of dynamic proprioception in either older or younger adults. Exp Brain Res 2020; 239:557-574. [PMID: 33315127 PMCID: PMC7936968 DOI: 10.1007/s00221-020-05997-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/24/2020] [Indexed: 11/25/2022]
Abstract
Healthy ageing involves degeneration of the neuromuscular system which impacts movement control and proprioception. Yet the relationship between these sensory and motor deficits in upper limb reaching has not been examined in detail. Recently, we reported that age-related proprioceptive deficits were unrelated to accuracy in rapid arm movements, but whether this applied in motor tasks more heavily dependent on proprioceptive feedback was not clear. To address this, we have tested groups of younger and older adults on a force-field adaptation task under either full or limited visual feedback conditions and examined how performance was related to dynamic proprioceptive acuity. Adaptive performance was similar between the age groups, regardless of visual feedback condition, although older adults showed increased after-effects. Physically inactive individuals made larger systematic (but not variable) proprioceptive errors, irrespective of age. However, dynamic proprioceptive acuity was unrelated to adaptation and there was no consistent evidence of proprioceptive recalibration with adaptation to the force-field for any group. Finally, in spite of clear age-dependent loss of spatial working memory capacity, we found no relationship between memory capacity and adaptive performance or proprioceptive acuity. Thus, non-clinical levels of deficit in dynamic proprioception, due to age or physical inactivity, do not affect force-field adaptation, even under conditions of limited visual feedback that might require greater proprioceptive control.
Collapse
Affiliation(s)
- Nick M Kitchen
- School of Psychology, University of Birmingham, Birmingham, UK.
- Department of Speech and Hearing Science, University of Washington, Seattle, WA, USA.
| | - R Chris Miall
- School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
9
|
Galhardas L, Raimundo A, Marmeleira J. Test-retest reliability of upper-limb proprioception and balance tests in older nursing home residents. Arch Gerontol Geriatr 2020; 89:104079. [DOI: 10.1016/j.archger.2020.104079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/26/2022]
|
10
|
Mirdamadi JL, Block HJ. Somatosensory changes associated with motor skill learning. J Neurophysiol 2020; 123:1052-1062. [DOI: 10.1152/jn.00497.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trial-and-error motor adaptation has been linked to somatosensory plasticity and shifts in proprioception (limb position sense). The role of sensory processing in motor skill learning is less understood. Unlike adaptation, skill learning involves the acquisition of new movement patterns in the absence of perturbation, with performance limited by the speed-accuracy trade-off. We investigated somatosensory changes during motor skill learning at the behavioral and neurophysiological levels. Twenty-eight healthy young adults practiced a maze-tracing task, guiding a robotic manipulandum through an irregular two-dimensional track featuring several abrupt turns. Practice occurred on days 1 and 2. Skill was assessed before practice on day 1 and again on day 3, with learning indicated by a shift in the speed-accuracy function between these assessments. Proprioceptive function was quantified with a passive two-alternative forced-choice task. In a subset of 15 participants, we measured short-latency afferent inhibition (SAI) to index somatosensory projections to motor cortex. We found that motor practice enhanced the speed-accuracy skill function ( F4,108 = 32.15, P < 0.001) and was associated with improved proprioceptive sensitivity at retention ( t22 = 24.75, P = 0.0031). Furthermore, SAI increased after training ( F1,14 = 5.41, P = 0.036). Interestingly, individuals with larger increases in SAI, reflecting enhanced somatosensory afference to motor cortex, demonstrated larger improvements in motor skill learning. These findings suggest that SAI may be an important functional mechanism for some aspect of motor skill learning. Further research is needed to test what parameters (task complexity, practice time, etc.) are specifically linked to somatosensory function. NEW & NOTEWORTHY Somatosensory processing has been implicated in motor adaptation, where performance recovers from a perturbation such as a force field. We investigated somatosensory function during motor skill learning, where a new motor pattern is acquired in the absence of perturbation. After skill practice, we found changes in proprioception and short-latency afferent inhibition (SAI), signifying somatosensory change at both the behavioral and neurophysiological levels. SAI may be an important functional mechanism by which individuals learn motor skills.
Collapse
Affiliation(s)
- Jasmine L. Mirdamadi
- Program in Neuroscience, Indiana University, Bloomington, Indiana
- Department of Kinesiology, Indiana University, Bloomington, Indiana
| | - Hannah J. Block
- Program in Neuroscience, Indiana University, Bloomington, Indiana
- Department of Kinesiology, Indiana University, Bloomington, Indiana
| |
Collapse
|
11
|
Sadler CM, Cressman EK. Central fatigue mechanisms are responsible for decreases in hand proprioceptive acuity following shoulder muscle fatigue. Hum Mov Sci 2019; 66:220-230. [PMID: 31071614 DOI: 10.1016/j.humov.2019.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 11/25/2022]
Abstract
Muscle fatigue is a complex phenomenon, consisting of central and peripheral mechanisms which contribute to local and systemic changes in motor performance. In particular, it has been demonstrated that afferent processing in the fatigued muscle (e.g., shoulder), as well as in surrounding or distal muscles (e.g., hand) can be altered by fatigue. Currently, it is unclear how proximal muscle fatigue affects proprioceptive acuity of the distal limb. The purpose of the present study was to assess the effects of shoulder muscle fatigue on participants' ability to judge the location of their hand using only proprioceptive cues. Participants' (N = 16) limbs were moved outwards by a robot manipulandum and they were instructed to estimate the position of their hand relative to one of four visual reference targets (two near, two far). This estimation task was completed before and after a repetitive pointing task was performed to fatigue the shoulder muscles. To assess central versus peripheral effects of fatigue on the distal limb, the right shoulder was fatigued and proprioceptive acuity of the left and right hands were tested. Results showed that there was a significant decrease in the accuracy of proprioceptive estimates for both hands after the right shoulder was fatigued, with no change in the precision of proprioceptive estimates. A control experiment (N = 8), in which participants completed the proprioceptive estimation task before and after a period of quiet sitting, ruled out the possibility that the bilateral changes in proprioceptive accuracy were due to a practice effect. Together, these results indicate that shoulder muscle fatigue decreases proprioceptive acuity in both hands, suggesting that central fatigue mechanisms are primarily responsible for changes in afferent feedback processing of the distal upper limb.
Collapse
|
12
|
A Tablet-Based Tool for Accurate Measurement of Hand Proprioception After Stroke. J Neurol Phys Ther 2019; 43:106-116. [DOI: 10.1097/npt.0000000000000259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Ingram LA, Butler AA, Gandevia SC, Walsh LD. Proprioceptive measurements of perceived hand position using pointing and verbal localisation tasks. PLoS One 2019; 14:e0210911. [PMID: 30653568 PMCID: PMC6336330 DOI: 10.1371/journal.pone.0210911] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/03/2019] [Indexed: 11/19/2022] Open
Abstract
Previous studies revealed that healthy individuals consistently misjudge the size and shape of their hidden hand during a localisation task. Specifically, they overestimate the width of their hand and underestimate the length of their fingers. This would also imply that the same individuals misjudge the actual location of at least some parts of their hand during the task. Therefore, the primary aim of the current study was to determine whether healthy individuals could accurately locate the actual position of their hand when hidden from view, and whether accuracy depends on the type of localisation task used, the orientation of the hidden hand, and whether the left or right hand is tested. Sixteen healthy right-handed participants performed a hand localisation task that involved both pointing to and verbally indicating the perceived position of landmarks on their hidden hand. Hand position was consistently misjudged as closer to the wrist (proximal bias) and, to a lesser extent, away from the thumb (ulnar bias). The magnitude of these biases depended on the localisation task (pointing vs. verbal), the orientation of the hand (straight vs. rotated), and the hand tested (left vs. right). Furthermore, the proximal location bias increased in size as the duration of the experiment increased, while the magnitude of ulnar bias remained stable through the experiment. Finally, the resultant maps of perceived hand location appear to replicate the previously reported overestimation of hand width and underestimation of finger length. Once again, the magnitude of these distortions is dependent on the task, orientation, and hand tested. These findings underscore the need to control and standardise each component of the hand localisation task in future studies.
Collapse
Affiliation(s)
- Lewis A. Ingram
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Annie A. Butler
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Simon C. Gandevia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Lee D. Walsh
- Platypus Technical Consultants Pty Ltd, Canberra, Australia
| |
Collapse
|
14
|
Reliability, validity, and clinical feasibility of a rapid and objective assessment of post-stroke deficits in hand proprioception. J Neuroeng Rehabil 2018; 15:47. [PMID: 29880003 PMCID: PMC5991441 DOI: 10.1186/s12984-018-0387-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/11/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Proprioceptive function can be affected after neurological injuries such as stroke. Severe and persistent proprioceptive impairments may be associated with a poor functional recovery after stroke. To better understand their role in the recovery process, and to improve diagnostics, prognostics, and the design of therapeutic interventions, it is essential to quantify proprioceptive deficits accurately and sensitively. However, current clinical assessments lack sensitivity due to ordinal scales and suffer from poor reliability and ceiling effects. Robotic technology offers new possibilities to address some of these limitations. Nevertheless, it is important to investigate the psychometric and clinimetric properties of technology-assisted assessments. METHODS We present an automated robot-assisted assessment of proprioception at the level of the metacarpophalangeal joint, and evaluate its reliability, validity, and clinical feasibility in a study with 23 participants with stroke and an age-matched group of 29 neurologically intact controls. The assessment uses a two-alternative forced choice paradigm and an adaptive sampling procedure to identify objectively the difference threshold of angular joint position. RESULTS Results revealed a good reliability (ICC(2,1) = 0.73) for assessing proprioception of the impaired hand of participants with stroke. Assessments showed similar task execution characteristics (e.g., number of trials and duration per trial) between participants with stroke and controls and a short administration time of approximately 12 min. A difference in proprioceptive function could be found between participants with a right hemisphere stroke and control subjects (p<0.001). Furthermore, we observed larger proprioceptive deficits in participants with a right hemisphere stroke compared to a left hemisphere stroke (p=0.028), despite the exclusion of participants with neglect. No meaningful correlation could be established with clinical scales for different modalities of somatosensation. We hypothesize that this is due to their low resolution and ceiling effects. CONCLUSIONS This study has demonstrated the assessment's applicability in the impaired population and promising integration into clinical routine. In conclusion, the proposed assessment has the potential to become a powerful tool to investigate proprioceptive deficits in longitudinal studies as well as to inform and adjust sensorimotor rehabilitation to the patient's deficits.
Collapse
|