1
|
Zafar A, Baig RM, Arshad A, Rashid A, Oreshkov S, Frederiksen HN, Ansar M. Deciphering the Genetic Basis of Degenerative and Developmental Eye Disorders in 50 Pakistani Consanguineous Families Using Whole-Exome Sequencing. Int J Mol Sci 2025; 26:2715. [PMID: 40141357 PMCID: PMC11942243 DOI: 10.3390/ijms26062715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Degenerative and developmental eye disorders, including inherited retinal dystrophies (IRDs), anophthalmia, and congenital cataracts arise from genetic mutations, causing progressive vision loss or congenital structural abnormalities. IRDs include a group of rare, genetically, and clinically heterogeneous retinal diseases. It is caused by variations in at least 324 genes, affecting numerous retinal regions. In addition to IRDs, other developmental eye disorders such as anophthalmia and congenital cataracts also have a strong genetic basis. Autosomal recessive IRDs, anophthalmia, and congenital cataracts are common in consanguineous populations. In many endogamous populations, including those in Pakistan, a significant proportion of IRD and anophthalmia cases remain genetically undiagnosed. The present study investigated the variations in IRDs, anophthalmia, and congenital cataracts genes in 50 affected families. These unrelated consanguineous families were recruited from the different provinces of Pakistan including Punjab, Khyber Pakhtoon Khwa, Sindh, Gilgit Baltistan, and Azad Kashmir. Whole exome sequencing (WES) was conducted for the proband of each family. An in-house customized pipeline examined the data, and bioinformatics analysis predicted the pathogenic effects of identified variants. The relevant identified DNA variants of selected families were assessed in parents and healthy siblings via Sanger sequencing. WES identified 12 novel variants across 10 known IRD-associated genes. The four most frequently implicated genes were CRB1 (14.3%), GUCY2D (9.5%), AIPL1 (9.5%), and CERKL (7.1%) that together accounted for 40.4% of all molecularly diagnosed cases. Additionally, 25 reported variants in 19 known IRDs, anophthalmia, and congenital cataracts-associated genes were found. Among the identified variants, p. Trp278X, a stop-gain mutation in the AIPL1 (NM_014336) gene, was the most common causative variant detected. The most frequently observed phenotype was retinitis pigmentosa (46.5%) followed by Leber congenital amaurosis (18.6%). Furthermore, 98% of pedigrees (49 out of 50) were affected by autosomal recessive IRDs, anophthalmia and congenital cataracts. The discovery of 12 novel likely pathogenic variants in 10 IRD genes, 25 reported variants in 19 known IRDs, anophthalmia and congenital cataracts genes, atypical phenotypes, and inter and intra-familial variability underscores the genetic and phenotypic heterogeneity of developmental and degenerative eye disorders in the Pakistani population and further expands the mutational spectrum of genes associated with these ocular disorders.
Collapse
Affiliation(s)
- Ainee Zafar
- Department of Zoology, Wildlife and Fisheries, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan; (A.Z.)
| | - Ruqia Mehmood Baig
- Department of Zoology, Wildlife and Fisheries, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan; (A.Z.)
| | - Abida Arshad
- Department of Zoology, Wildlife and Fisheries, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan; (A.Z.)
| | - Abdur Rashid
- Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile Des Aveugles, 1004 Lausanne, Switzerland; (A.R.); (S.O.); (H.N.F.)
| | - Sergey Oreshkov
- Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile Des Aveugles, 1004 Lausanne, Switzerland; (A.R.); (S.O.); (H.N.F.)
| | - Helen Nabiryo Frederiksen
- Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile Des Aveugles, 1004 Lausanne, Switzerland; (A.R.); (S.O.); (H.N.F.)
| | - Muhammad Ansar
- Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile Des Aveugles, 1004 Lausanne, Switzerland; (A.R.); (S.O.); (H.N.F.)
- Advanced Molecular Genetics and Genomics Disease Research and Treatment Centre, Dow University of Health Sciences, Karachi 74200, Pakistan
| |
Collapse
|
2
|
Stanbury K, Schofield EC, McLaughlin B, Forman OP, Mellersh CS. Exonic Short Interspersed Nuclear Element Insertion in FAM161A Is Associated with Autosomal Recessive Progressive Retinal Atrophy in the English Shepherd. Genes (Basel) 2024; 15:952. [PMID: 39062732 PMCID: PMC11275866 DOI: 10.3390/genes15070952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Progressive retinal atrophies (PRAs) are a genetically heterogeneous group of inherited eye diseases that affect over 100 breeds of dog. The initial clinical sign is visual impairment in scotopic conditions, as a consequence of rod photoreceptor cell degeneration. Photopic vision degeneration then follows, due to progression of the disease to the cone photoreceptors, and ultimately results in complete blindness. Two full-sibling English Shepherds were diagnosed with PRA at approximately 5 years old and tested clear of all published PRA genetic variants. This study sought to identify the novel PRA-associated variant segregating in the breed. We utilised a combined approach of whole genome sequencing of the probands and homozygosity mapping of four cases and 22 controls and identified a short interspersed nuclear element within an alternatively spliced exon in FAM161A. The XP_005626197.1 c.17929_ins210 variant was homozygous in six PRA cases and heterozygous or absent in control dogs, consistent with a recessive mode of inheritance. The insertion is predicted to extend exon 4 by 39 aberrant amino acids followed by an early termination stop codon. PRA is intractable to treatment, so the development of a genetic screening test, based on the associated variant, is significant, because it provides dog breeders/owners with a means of reducing the frequency of the disease variant within this breed as well as minimising the risk of breeding puppies that will develop this blinding disease.
Collapse
Affiliation(s)
- Katherine Stanbury
- Canine Genetics Centre, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Ellen C. Schofield
- Canine Genetics Centre, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Bryan McLaughlin
- Canine Genetics Centre, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Oliver P. Forman
- Wisdom Panel, Mars Petcare (Science and Diagnostics Division), Freeby Lane, Waltham on the Wolds, Leicestershire LE14 4RS, UK
| | - Cathryn S. Mellersh
- Canine Genetics Centre, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
3
|
Basharat R, de Bruijn SE, Zahid M, Rodenburg K, Hitti-Malin RJ, Rodríguez-Hidalgo M, Boonen EGM, Jarral A, Mahmood A, Corominas J, Khalil S, Zai JA, Ali G, Ruiz-Ederra J, Gilissen C, Cremers FPM, Ansar M, Panneman DM, Roosing S. Next-generation sequencing to genetically diagnose a diverse range of inherited eye disorders in 15 consanguineous families from Pakistan. Exp Eye Res 2024; 244:109945. [PMID: 38815792 DOI: 10.1016/j.exer.2024.109945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/19/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Inherited retinal dystrophies (IRDs) are characterized by photoreceptor dysfunction or degeneration. Clinical and phenotypic overlap between IRDs makes the genetic diagnosis very challenging and comprehensive genomic approaches for accurate diagnosis are frequently required. While there are previous studies on IRDs in Pakistan, causative genes and variants are still unknown for a significant portion of patients. Therefore, there is a need to expand the knowledge of the genetic spectrum of IRDs in Pakistan. Here, we recruited 52 affected and 53 normal individuals from 15 consanguineous Pakistani families presenting non-syndromic and syndromic forms of IRDs. We employed single molecule Molecular Inversion Probes (smMIPs) based panel sequencing and whole genome sequencing to identify the probable disease-causing variants in these families. Using this approach, we obtained a 93% genetic solve rate and identified 16 (likely) causative variants in 14 families, of which seven novel variants were identified in ATOH7, COL18A1, MERTK, NDP, PROM1, PRPF8 and USH2A while nine recurrent variants were identified in CNGA3, CNGB1, HGSNAT, NMNAT1, SIX6 and TULP1. The novel MERTK variant and one recurrent TULP1 variant explained the intra-familial locus heterogeneity in one of the screened families while two recurrent CNGA3 variants explained compound heterozygosity in another family. The identification of variants in known disease-associated genes emphasizes the utilization of time and cost-effective screening approaches for rapid diagnosis. The timely genetic diagnosis will not only identify any associated systemic issues in case of syndromic IRDs, but will also aid in the acceleration of personalized medicine for patients affected with IRDs.
Collapse
Affiliation(s)
- Rabia Basharat
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Suzanne E de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Muhammad Zahid
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Kim Rodenburg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rebekkah J Hitti-Malin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - María Rodríguez-Hidalgo
- Department of Neuroscience, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Department of Dermatology, Ophthalmology, and Otorhinolaryngology, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Spain
| | - Erica G M Boonen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Afeefa Jarral
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, (AJK), Pakistan
| | - Arif Mahmood
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jordi Corominas
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sharqa Khalil
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jawaid Ahmed Zai
- Department of Physiology and MLT, University of Sindh, Jamshoro, Pakistan
| | - Ghazanfar Ali
- Department of Biotechnology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Javier Ruiz-Ederra
- Department of Neuroscience, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Department of Dermatology, Ophthalmology, and Otorhinolaryngology, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Spain
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Muhammad Ansar
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Daan M Panneman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Munir A, Afsar S, Rehman AU. A systematic review of inherited retinal dystrophies in Pakistan: updates from 1999 to April 2023. BMC Ophthalmol 2024; 24:55. [PMID: 38317096 PMCID: PMC10840256 DOI: 10.1186/s12886-024-03319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Inherited retinal degenerations (IRDs) are a group of rare genetic conditions affecting retina of the eye that range in prevalence from 1 in 2000 to 1 in 4000 people globally. This review is based on a retrospective analysis of research articles reporting IRDs associated genetic findings in Pakistani families between 1999 and April 2023. METHODS Articles were retrieved through survey of online sources, notably, PubMed, Google Scholar, and Web of Science. Following a stringent selection criterion, a total of 126 research articles and conference abstracts were considered. All reported variants were cross-checked and validated for their correct genomic nomenclature using different online resources/databases, and their pathogenicity scores were explained as per ACMG guidelines. RESULTS A total of 277 unique sequence variants in 87 distinct genes, previously known to cause IRDs, were uncovered. In around 70% cases, parents of the index patient were consanguineously married, and approximately 88.81% of the detected variants were found in a homozygous state. Overall, more than 95% of the IRDs cases were recessively inherited. Missense variants were predominant (41.88%), followed by Indels/frameshift (26.35%), nonsense (19.13%), splice site (12.27%) and synonymous change (0.36%). Non-syndromic IRDs were significantly higher than syndromic IRDs (77.32% vs. 22.68%). Retinitis pigmentosa (RP) was the most frequently observed IRD followed by Leber's congenital amaurosis (LCA). Altogether, mutations in PDE6A gene was the leading cause of IRDs in Pakistani families followed by mutations in TULP1 gene. CONCLUSION In summary, Pakistani families are notable in expressing recessively inherited monogenic disorders including IRDs likely due to the highest prevalence of consanguinity in the country that leads to expression of rare pathogenic variants in homozygous state.
Collapse
Affiliation(s)
- Asad Munir
- Department of Zoology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, 21300, Khyber Pakhtunkhwa, Pakistan
| | - Salma Afsar
- Department of Zoology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, 21300, Khyber Pakhtunkhwa, Pakistan
| | - Atta Ur Rehman
- Department of Zoology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, 21300, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
5
|
Matsevich C, Gopalakrishnan P, Chang N, Obolensky A, Beryozkin A, Salameh M, Kostic C, Sharon D, Arsenijevic Y, Banin E. Gene augmentation therapy attenuates retinal degeneration in a knockout mouse model of Fam161a retinitis pigmentosa. Mol Ther 2023; 31:2948-2961. [PMID: 37580905 PMCID: PMC10556223 DOI: 10.1016/j.ymthe.2023.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023] Open
Abstract
Photoreceptor cell degeneration and death is the major hallmark of a wide group of human blinding diseases including age-related macular degeneration and inherited retinal diseases such as retinitis pigmentosa. In recent years, inherited retinal diseases have become the "testing ground" for novel therapeutic modalities, including gene and cell-based therapies. Currently there is no available treatment for retinitis pigmentosa caused by FAM161A biallelic pathogenic variants. In this study, we injected an adeno-associated virus encoding for the longer transcript of mFam161a into the subretinal space of P24-P29 Fam161a knockout mice to characterize the safety and efficacy of gene augmentation therapy. Serial in vivo assessment of retinal function and structure at 3, 6, and 8 months of age using the optomotor response test, full-field electroretinography, fundus autofluorescence, and optical coherence tomography imaging as well as ex vivo quantitative histology and immunohistochemical studies revealed a significant structural and functional rescue effect in treated eyes accompanied by expression of the FAM161A protein in photoreceptors. The results of this study may serve as an important step toward future application of gene augmentation therapy in FAM161A-deficient patients by identifying a promising isoform to rescue photoreceptors and their function.
Collapse
Affiliation(s)
- Chen Matsevich
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Ning Chang
- Group for Retinal Disorder Research, Department of Ophthalmology, University Lausanne - Jules-Gonin Eye Hospital Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Alexey Obolensky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Manar Salameh
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Corinne Kostic
- Group for Retinal Disorder Research, Department of Ophthalmology, University Lausanne - Jules-Gonin Eye Hospital Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Dror Sharon
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Yvan Arsenijevic
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Eyal Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
6
|
Marwan M, Dawood M, Ullah M, Shah IU, Khan N, Hassan MT, Karam M, Rawlins LE, Baple EL, Crosby AH, Saleha S. Unravelling the genetic basis of retinal dystrophies in Pakistani consanguineous families. BMC Ophthalmol 2023; 23:205. [PMID: 37165311 PMCID: PMC10170854 DOI: 10.1186/s12886-023-02948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/26/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Retinitis Pigmentosa (RP) is a clinically and genetically progressive retinal dystrophy associated with severe visual impairments and sometimes blindness, the most common syndromic form of which is Usher syndrome (USH). This study aimed to further increase understanding of the spectrum of RP in the Khyber Pakhtunkhwa region of Pakistan. METHODOLOGY Four consanguineous families of Pashtun ethnic group were investigated which were referred by the local collaborating ophthalmologists. In total 42 individuals in four families were recruited and investigated using whole exome and dideoxy sequencing. Among them, 20 were affected individuals including 6 in both family 1 and 2, 5 in family 3 and 3 in family 4. RESULT Pathogenic gene variants were identified in all four families, including two in cone dystrophy and RP genes in the same family (PDE6C; c.480delG, p.Asn161ThrfsTer33 and TULP1; c.238 C > T, p.Gln80Ter) with double-homozygous individuals presenting with more severe disease. Other pathogenic variants were identified in MERTK (c.2194C > T, p.Arg732Ter), RHO (c.448G > A, p.Glu150Lys) associated with non-syndromic RP, and MYO7A (c.487G > A, p.Gly163Arg) associated with USH. In addition, the reported variants were of clinical significance as the PDE6C variant was detected novel, whereas TULP1, MERTK, and MYO7A variants were detected rare and first time found segregating with retinal dystrophies in Pakistani consanguineous families. CONCLUSIONS This study increases knowledge of the genetic basis of retinal dystrophies in families from Pakistan providing information important for genetic testing and diagnostic provision particularly from the Khyber Pakhtunkhwa region.
Collapse
Affiliation(s)
- Muhammad Marwan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Muhammad Dawood
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Mukhtar Ullah
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, 4031, Switzerland
- Department of Ophthalmology, University of Basel, Basel, 4056, Switzerland
| | - Irfan Ullah Shah
- Department of Ophthalmology, KMU Institute of Medical Sciences KIMS, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Niamat Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Muhammad Taimur Hassan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Muhammad Karam
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Lettie E Rawlins
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK
| | - Emma L Baple
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Andrew H Crosby
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan.
| |
Collapse
|
7
|
Han J, Joo K, Kim US, Woo SJ, Lee EK, Lee JY, Park TK, Kim SJ, Byeon SH. Voretigene Neparvovec for the Treatment of RPE65-associated Retinal Dystrophy: Consensus and Recommendations from the Korea RPE65-IRD Consensus Paper Committee. KOREAN JOURNAL OF OPHTHALMOLOGY 2023; 37:166-186. [PMID: 36950921 PMCID: PMC10151174 DOI: 10.3341/kjo.2023.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023] Open
Abstract
Mutations in the RPE65 gene, associated with Leber congenital amaurosis, early-onset severe retinal dystrophy, and retinitis pigmentosa, gained growing attention since gene therapy for patients with RPE65-associated retinal dystrophy is available in clinical practice. RPE65 gene accounts for a very small proportion of patients with inherited retinal degeneration, especially Asian patients. Because RPE65-associated retinal dystrophy shares common clinical characteristics, such as early-onset severe nyctalopia, nystagmus, low vision, and progressive visual field constriction, with retinitis pigmentosa by other genetic mutations, appropriate genetic testing is essential to make a correct diagnosis. Also, fundus abnormalities can be minimal in early childhood, and the phenotype is highly variable depending on the type of mutations in RPE65-associated retinal dystrophy, which makes a diagnostic difficulty. The aim of this paper is to review the epidemiology of RPE65-associated retinal dystrophy, mutation spectrum, genetic diagnosis, clinical characteristics, and voretigene neparvovec, a gene therapy product for the treatment of RPE65-related retinal dystrophy.
Collapse
Affiliation(s)
- Jinu Han
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam,
Korea
| | - Ungsoo Samuel Kim
- Department of Ophthalmology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong,
Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam,
Korea
| | - Eun Kyoung Lee
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Tae Kwann Park
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon,
Korea
| | - Sang Jin Kim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Suk Ho Byeon
- Institute of Vision Research, Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| | | |
Collapse
|
8
|
The Natural History of CNGB1-Related Retinopathy: A Longitudinal Phenotypic Analysis. Int J Mol Sci 2022; 23:ijms23126785. [PMID: 35743231 PMCID: PMC9245601 DOI: 10.3390/ijms23126785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Cyclic nucleotide-gated channel β 1 (CNGB1) encodes a subunit of the rod cyclic nucleotide-gated channel. Pathogenic variants in CNGB1 are responsible for 4% of autosomal recessive retinitis pigmentosa (RP). Several treatment strategies show promise for treating inherited retinal degenerations, however relevant metrics of progression and sensitive clinical trial endpoints are needed to assess therapeutic efficacy. This study reports the natural history of CNGB1-related RP with a longitudinal phenotypic analysis of 33 molecularly-confirmed patients with a mean follow-up period of 4.5 ± 3.9 years (range 0-17). The mean best corrected visual acuity (BCVA) of the right eye was 0.31 ± 0.43 logMAR at baseline and 0.47 ± 0.63 logMAR at the final visit over the study period. The ellipsoid zone (EZ) length was measurable in at least one eye of 23 patients and had a mean rate of constriction of 178 ± 161 µm per year (range 1.0-661 µm), with 57% of patients having a decrease in EZ length of greater than 250 µm in a simulated two-year trial period. Hyperautofluorescent outer ring (hyperAF) area was measurable in 17 patients, with 10 patients not displaying a ring phenotype. The results support previous findings of CNGB1-related RP being a slowly progressive disease with patients maintaining visual acuity. Prospective deep phenotyping studies assessing multimodal retinal imaging and functional measures are now required to determine clinical endpoints to be used in a trial.
Collapse
|
9
|
Biswas P, Villanueva AL, Soto-Hermida A, Duncan JL, Matsui H, Borooah S, Kurmanov B, Richard G, Khan SY, Branham K, Huang B, Suk J, Bakall B, Goldberg JL, Gabriel L, Khan NW, Raghavendra PB, Zhou J, Devalaraja S, Huynh A, Alapati A, Zawaydeh Q, Weleber RG, Heckenlively JR, Hejtmancik JF, Riazuddin S, Sieving PA, Riazuddin SA, Frazer KA, Ayyagari R. Deciphering the genetic architecture and ethnographic distribution of IRD in three ethnic populations by whole genome sequence analysis. PLoS Genet 2021; 17:e1009848. [PMID: 34662339 PMCID: PMC8589175 DOI: 10.1371/journal.pgen.1009848] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 11/12/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Patients with inherited retinal dystrophies (IRDs) were recruited from two understudied populations: Mexico and Pakistan as well as a third well-studied population of European Americans to define the genetic architecture of IRD by performing whole-genome sequencing (WGS). Whole-genome analysis was performed on 409 individuals from 108 unrelated pedigrees with IRDs. All patients underwent an ophthalmic evaluation to establish the retinal phenotype. Although the 108 pedigrees in this study had previously been examined for mutations in known IRD genes using a wide range of methodologies including targeted gene(s) or mutation(s) screening, linkage analysis and exome sequencing, the gene mutations responsible for IRD in these 108 pedigrees were not determined. WGS was performed on these pedigrees using Illumina X10 at a minimum of 30X depth. The sequence reads were mapped against hg19 followed by variant calling using GATK. The genome variants were annotated using SnpEff, PolyPhen2, and CADD score; the structural variants (SVs) were called using GenomeSTRiP and LUMPY. We identified potential causative sequence alterations in 61 pedigrees (57%), including 39 novel and 54 reported variants in IRD genes. For 57 of these pedigrees the observed genotype was consistent with the initial clinical diagnosis, the remaining 4 had the clinical diagnosis reclassified based on our findings. In seven pedigrees (12%) we observed atypical causal variants, i.e. unexpected genotype(s), including 4 pedigrees with causal variants in more than one IRD gene within all affected family members, one pedigree with intrafamilial genetic heterogeneity (different affected family members carrying causal variants in different IRD genes), one pedigree carrying a dominant causative variant present in pseudo-recessive form due to consanguinity and one pedigree with a de-novo variant in the affected family member. Combined atypical and large structural variants contributed to about 20% of cases. Among the novel mutations, 75% were detected in Mexican and 50% found in European American pedigrees and have not been reported in any other population while only 20% were detected in Pakistani pedigrees and were not previously reported. The remaining novel IRD causative variants were listed in gnomAD but were found to be very rare and population specific. Mutations in known IRD associated genes contributed to pathology in 63% Mexican, 60% Pakistani and 45% European American pedigrees analyzed. Overall, contribution of known IRD gene variants to disease pathology in these three populations was similar to that observed in other populations worldwide. This study revealed a spectrum of mutations contributing to IRD in three populations, identified a large proportion of novel potentially causative variants that are specific to the corresponding population or not reported in gnomAD and shed light on the genetic architecture of IRD in these diverse global populations.
Collapse
Affiliation(s)
- Pooja Biswas
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
- School of Biotechnology, REVA University, Bengaluru, Karnataka, India
| | - Adda L. Villanueva
- Retina and Genomics Institute, Yucatán, México
- Laboratoire de Diagnostic Moleculaire, Hôpital Maisonneuve Rosemont, Montreal, Quebec, Canada
| | - Angel Soto-Hermida
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Jacque L. Duncan
- Ophthalmology, University of California San Francisco, San Francisco, California, United States of America
| | - Hiroko Matsui
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Shyamanga Borooah
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Berzhan Kurmanov
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | | | - Shahid Y. Khan
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kari Branham
- Ophthalmology & Visual Science, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan, United States of America
| | - Bonnie Huang
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - John Suk
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Benjamin Bakall
- Ophthalmology, University of Arizona College of Medicine Phoenix, Phoenix, Arizona, United States of America
| | - Jeffrey L. Goldberg
- Byers Eye Institute, Stanford, Palo Alto, California, United States of America
| | - Luis Gabriel
- Genetics and Ophthalmology, Genelabor, Goiânia, Brazil
| | - Naheed W. Khan
- Ophthalmology & Visual Science, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan, United States of America
| | - Pongali B. Raghavendra
- School of Biotechnology, REVA University, Bengaluru, Karnataka, India
- School of Regenerative Medicine, Manipal University, Bengaluru, Karnataka, India
| | - Jason Zhou
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Sindhu Devalaraja
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Andrew Huynh
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Akhila Alapati
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Qais Zawaydeh
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Richard G. Weleber
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - John R. Heckenlively
- Ophthalmology & Visual Science, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan, United States of America
| | - J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
| | - Paul A. Sieving
- National Eye Institute, Bethesda, Maryland, United States of America
- Ophthalmology & Vision Science, UC Davis Medical Center, California, United States of America
| | - S. Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kelly A. Frazer
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, United States of America
- Department of Pediatrics, Rady Children’s Hospital, Division of Genome Information Sciences, San Diego, California, United States of America
| | - Radha Ayyagari
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
10
|
Homozygosity mapping coupled with whole-exome sequencing and protein modelling identified a novel missense mutation in GUCY2D in a consanguineous Pakistani family with Leber congenital amaurosis. J Genet 2021. [DOI: 10.1007/s12041-021-01310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Nassisi M, Smirnov VM, Solis Hernandez C, Mohand‐Saïd S, Condroyer C, Antonio A, Kühlewein L, Kempf M, Kohl S, Wissinger B, Nasser F, Ragi SD, Wang N, Sparrow JR, Greenstein VC, Michalakis S, Mahroo OA, Ba‐Abbad R, Michaelides M, Webster AR, Degli Esposti S, Saffren B, Capasso J, Levin A, Hauswirth WW, Dhaenens C, Defoort‐Dhellemmes S, Tsang SH, Zrenner E, Sahel J, Petersen‐Jones SM, Zeitz C, Audo I. CNGB1-related rod-cone dystrophy: A mutation review and update. Hum Mutat 2021; 42:641-666. [PMID: 33847019 PMCID: PMC8218941 DOI: 10.1002/humu.24205] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 12/29/2022]
Abstract
Cyclic nucleotide-gated channel β1 (CNGB1) encodes the 240-kDa β subunit of the rod photoreceptor cyclic nucleotide-gated ion channel. Disease-causing sequence variants in CNGB1 lead to autosomal recessive rod-cone dystrophy/retinitis pigmentosa (RP). We herein present a comprehensive review and analysis of all previously reported CNGB1 sequence variants, and add 22 novel variants, thereby enlarging the spectrum to 84 variants in total, including 24 missense variants (two of which may also affect splicing), 21 nonsense, 19 splicing defects (7 at noncanonical positions), 10 small deletions, 1 small insertion, 1 small insertion-deletion, 7 small duplications, and 1 gross deletion. According to the American College of Medical Genetics and Genomics classification criteria, 59 variants were considered pathogenic or likely pathogenic and 25 were variants of uncertain significance. In addition, we provide further phenotypic data from 34 CNGB1-related RP cases, which, overall, are in line with previous findings suggesting that this form of RP has long-term retention of useful central vision despite the early onset of night blindness, which is valuable for patient counseling, but also has implications for it being considered a priority target for gene therapy trials.
Collapse
Affiliation(s)
- Marco Nassisi
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
- Centre Hospitalier National d'Ophtalmologie des Quinze‐Vingts, INSERM‐DGOS CIC1423ParisFrance
- Department of Clinical Sciences and Community HealthUniversity of MilanMilanItaly
- Ophthalmological Unit, Fondazione IRCCS Ca' GrandaOspedale Maggiore PoliclinicoMilanItaly
| | - Vasily M. Smirnov
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
- Exploration de la vision et Neuro‐Ophthalmologie, CHU de LilleLilleFrance
- Faculté de MédecineUniversité de LilleLilleFrance
| | - Cyntia Solis Hernandez
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
| | - Saddek Mohand‐Saïd
- Centre Hospitalier National d'Ophtalmologie des Quinze‐Vingts, INSERM‐DGOS CIC1423ParisFrance
| | - Christel Condroyer
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
| | - Aline Antonio
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
| | - Laura Kühlewein
- University Eye Hospital, Centre for OphthalmologyUniversity of TübingenTübingenGermany
- Institute for Ophthalmic Research, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Melanie Kempf
- University Eye Hospital, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Fadi Nasser
- University Eye Hospital, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Sara D. Ragi
- Department of OphthalmologyColumbia University, New YorkNew YorkUSA
| | - Nan‐Kai Wang
- Department of OphthalmologyColumbia University, New YorkNew YorkUSA
- College of MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Ophthalmology, Chang Gung Memorial HospitalLinkou Medical CenterTaoyuanTaiwan
| | - Janet R. Sparrow
- Department of OphthalmologyColumbia University, New YorkNew YorkUSA
| | | | | | - Omar A. Mahroo
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Rola Ba‐Abbad
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Michel Michaelides
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Andrew R. Webster
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Simona Degli Esposti
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Brooke Saffren
- Philadelphia College of Osteopathic MedicinePhiladelphiaPennsylvaniaUSA
| | | | - Alex Levin
- Pediatric Ophthalmology and Ocular Genetics, Flaum Eye Institute, Pediatric Genetics, Golisano Children's HospitalUniversity of RochesterRochesterNew YorkUSA
| | | | - Claire‐Marie Dhaenens
- Univ. Lille, Inserm, CHU Lille, U1172‐LilNCog‐Lille Neuroscience & CognitionLilleFrance
| | | | - Stephen H. Tsang
- Department of OphthalmologyColumbia University, New YorkNew YorkUSA
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma LaboratoryNew YorkNew YorkUSA
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
- Stem Cell Initiative (CSCI), Institute of Human Nutrition, Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Eberhart Zrenner
- University Eye Hospital, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Jose‐Alain Sahel
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
- Department of OphthalmologyThe University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Fondation Ophtalmologique Adolphe de RothschildParisFrance
| | - Simon M. Petersen‐Jones
- Department of Small Animal Clinical SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Christina Zeitz
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
| | - Isabelle Audo
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
- Centre Hospitalier National d'Ophtalmologie des Quinze‐Vingts, INSERM‐DGOS CIC1423ParisFrance
- University College London Institute of OphthalmologyLondonUK
| |
Collapse
|
12
|
Ahmed AN, Tahir R, Khan N, Ahmad M, Dawood M, Basit A, Yasin M, Nowshid M, Marwan M, Sultan K, Saleha S. USH2A gene variants cause Keratoconus and Usher syndrome phenotypes in Pakistani families. BMC Ophthalmol 2021; 21:191. [PMID: 33926394 PMCID: PMC8086330 DOI: 10.1186/s12886-021-01957-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/21/2021] [Indexed: 01/07/2023] Open
Abstract
Background Retinitis pigmentosa (RP) is the most common inherited retinal dystrophy, affecting approximately 1 in 4000 individuals worldwide. The most common form of syndromic RP is Usher syndrome (USH) accounting for approximately 20–30 % of RP cases. Mutations in the USH2A gene cause a significant proportion of recessive non-syndromic RP and USH type II (USH2). This study aimed to determine the causative role of the USH2A gene in autosomal recessive inherited ocular diseases and to establish genotype-phenotype correlation associated with USH2A variants. Methods We performed direct Sanger sequencing and co-segregation analysis of the USH2A gene to identify disease causing variants in a non-syndromic RP family, two USH2 families and two Keratoconus (KC) families. Results Disease causing variants in the USH2A gene were identified in two families displayed KC and USH2 phenotypes. A novel variant c.4029T > G, p.Asn1343Lys in the USH2A gene was detected in a Pakistani family with KC phenotype. In addition, a missense variant (c.7334 C > T, p. Ser2445Phe) in the USH2A gene was found segregating in another Pakistani family with USH2 phenotype. Homozygosity of identified missense USH2A variants was found associated with autosomal recessive inherited KC and USH2 phenotypes in investigated families. These variants were not detected in ethnically matched healthy controls. Moreover, the USH2A variants were predicted to be deleterious or potentially disease causing by PolyPhen-2, PROVEAN and SIFT. Conclusions This study provided first evidence for association of a novel USH2A variant with KC phenotype in a Pakistani family as well as established the phenotype-genotype correlation of a USH2A variant (c.7334 C > T, p. Ser2445Phe) with USH2 phenotype in another Pakistani family. The phenotype-genotype correlations established in present study may improve clinical diagnosis of affected individuals for better management and counseling.
Collapse
Affiliation(s)
- Asif Naveed Ahmed
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Raheel Tahir
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Niamat Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Mushtaq Ahmad
- Medical Teaching Institution, Hayatabad Medical Complex, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Dawood
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Basit
- Medical Teaching Institution, Hayatabad Medical Complex, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Yasin
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Maha Nowshid
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Marwan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Komal Sultan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
13
|
Beryozkin A, Matsevich C, Obolensky A, Kostic C, Arsenijevic Y, Wolfrum U, Banin E, Sharon D. A new mouse model for retinal degeneration due to Fam161a deficiency. Sci Rep 2021; 11:2030. [PMID: 33479377 PMCID: PMC7820261 DOI: 10.1038/s41598-021-81414-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/04/2021] [Indexed: 01/08/2023] Open
Abstract
FAM161A mutations are the most common cause of inherited retinal degenerations in Israel. We generated a knockout (KO) mouse model, Fam161atm1b/tm1b, lacking the major exon #3 which was replaced by a construct that include LacZ under the expression of the Fam161a promoter. LacZ staining was evident in ganglion cells, inner and outer nuclear layers and inner and outer-segments of photoreceptors in KO mice. No immunofluorescence staining of Fam161a was evident in the KO retina. Visual acuity and electroretinographic (ERG) responses showed a gradual decrease between the ages of 1 and 8 months. Optical coherence tomography (OCT) showed thinning of the whole retina. Hypoautofluorescence and hyperautofluorescence pigments was observed in retinas of older mice. Histological analysis revealed a progressive degeneration of photoreceptors along time and high-resolution transmission electron microscopy (TEM) analysis showed that photoreceptor outer segment disks were disorganized in a perpendicular orientation and outer segment base was wider and shorter than in WT mice. Molecular degenerative markers, such as microglia and CALPAIN-2, appear already in a 1-month old KO retina. These results indicate that a homozygous Fam161a frameshift mutation affects retinal function and causes retinal degeneration. This model will be used for gene therapy treatment in the future.
Collapse
Affiliation(s)
- Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Chen Matsevich
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Alexey Obolensky
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Corinne Kostic
- Department of Ophthalmology, Jules-Gonin Eye Hospital, University of Lausanne, 1004, Lausanne, Switzerland
| | - Yvan Arsenijevic
- Department of Ophthalmology, Jules-Gonin Eye Hospital, University of Lausanne, 1004, Lausanne, Switzerland
| | - Uwe Wolfrum
- Institute for Molecular Physiology, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
| |
Collapse
|
14
|
Beryozkin A, Khateb S, Idrobo-Robalino CA, Khan MI, Cremers FPM, Obolensky A, Hanany M, Mezer E, Chowers I, Newman H, Ben-Yosef T, Sharon D, Banin E. Unique combination of clinical features in a large cohort of 100 patients with retinitis pigmentosa caused by FAM161A mutations. Sci Rep 2020; 10:15156. [PMID: 32938956 PMCID: PMC7495424 DOI: 10.1038/s41598-020-72028-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/30/2020] [Indexed: 01/06/2023] Open
Abstract
FAM161A mutations are the most common cause of autosomal recessive retinitis pigmentosa in the Israeli-Jewish population. We aimed to characterize the spectrum of FAM161A-associated phenotypes and identify characteristic clinical features. We identified 114 bi-allelic FAM161A patients and obtained clinical records of 100 of these patients. The most frequent initial symptom was night blindness. Best-corrected visual acuity was largely preserved through the first three decades of life and severely deteriorated during the 4th–5th decades. Most patients manifest moderate-high myopia. Visual fields were markedly constricted from early ages, but maintained for decades. Bone spicule-like pigmentary changes appeared relatively late, accompanied by nummular pigmentation. Full-field electroretinography responses were usually non-detectable at first testing. Fundus autofluorescence showed a hyper-autofluorescent ring around the fovea in all patients already at young ages. Macular ocular coherence tomography showed relative preservation of the outer nuclear layer and ellipsoid zone in the fovea, and frank cystoid macular changes were very rare. Interestingly, patients with a homozygous nonsense mutation manifest somewhat more severe disease. Our clinical analysis is one of the largest ever reported for RP caused by a single gene allowing identification of characteristic clinical features and may be relevant for future application of novel therapies.
Collapse
Affiliation(s)
- Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel
| | - Samer Khateb
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel
| | - Carlos Alberto Idrobo-Robalino
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel
| | - Muhammad Imran Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Alexey Obolensky
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel
| | - Eedy Mezer
- Department of Ophthalmology, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Itay Chowers
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel
| | - Hadas Newman
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Department of Ophthalmology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Tamar Ben-Yosef
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel.
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel.
| |
Collapse
|
15
|
Salmaninejad A, Motaee J, Farjami M, Alimardani M, Esmaeilie A, Pasdar A. Next-generation sequencing and its application in diagnosis of retinitis pigmentosa. Ophthalmic Genet 2020; 40:393-402. [PMID: 31755340 DOI: 10.1080/13816810.2019.1675178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Retinitis Pigmentosa (RP) is a major cause of heritable human blindness with a high genetic heterogeneity. It is characterized by the initial degeneration of rod photoreceptors followed by cone photoreceptors. RP is also a prominent reason of visual impairment, by a global prevalence of 1:4000. RP is usually specified with nyctalopia in puberty, followed by concentric visual field loss, that reflects the main impairment of rod photoreceptors; later in the life, as disease progresses, because of cone dysfunction, central vision loss also occurs. A precise molecular diagnosis is crucial for disease characterization and clinical prognosis. DNA sequencing is a powerful tool for deciphering various causes of different human diseases. The arrival of next-generation sequencing (NGS) technologies has diminished sequencing cost and considerably augmented the throughput, making whole-genome sequencing (WGS) a conceivable way for obtaining comprehensive genomic data and a more precise clinical decision. Nevertheless, the advantages gained from NGS technologies are among a number of challenges that must be sufficiently addressed before this technique can be altered from an investigation tools to a helpful method in routine clinical practices. This article aims to provide an overview about NGS technology and its related platforms. The challenges in the analysis and choosing an appropriate NGS method likewise their potential applications in clinical diagnosis are also discussed. The merit of such technique has been reflected in some recent studies where it is shown that using NGS and molecular information could help with clinical diagnosis, providing potential treatment options or changes, up-to-date family counseling and management.
Collapse
Affiliation(s)
- Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshid Motaee
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Farjami
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maliheh Alimardani
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Alireza Pasdar
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Applied Medicine,Medical School, University of Aberdeen, Foresterhill, Aberdeen, UK
| |
Collapse
|
16
|
Yu D, Zou J, Chen Q, Zhu T, Sui R, Yang J. Structural modeling, mutation analysis, and in vitro expression of usherin, a major protein in inherited retinal degeneration and hearing loss. Comput Struct Biotechnol J 2020; 18:1363-1382. [PMID: 32637036 PMCID: PMC7317166 DOI: 10.1016/j.csbj.2020.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 11/15/2022] Open
Abstract
Usherin is the most common causative protein associated with autosomal recessive retinitis pigmentosa (RP) and Usher syndrome (USH), which are characterized by retinal degeneration alone and in combination with hearing loss, respectively. Usherin is essential for photoreceptor survival and hair cell bundle integrity. However, the molecular mechanism underlying usherin function in normal and disease conditions is unclear. In this study, we investigated structural models of usherin domains and localization of usherin pathogenic small in-frame mutations, mainly homozygous missense mutations. We found that usherin fibronectin III (FN3) domains and most laminin-related domains have a β-sandwich structure. Some FN3 domains are predicted to interact with each other and with laminin-related domains. The usherin protein may bend at some FN3 linker regions. RP- and USH-associated small in-frame mutations are differentially located in usherin domains. Most of them are located at the periphery of β-sandwiches, with some at the interface between interacting domains. The usherin laminin epidermal growth factor repeats adopt a rod-shaped structure, which is maintained by disulfide bonds. Most missense mutations and deletion of exon 13 in this region disrupt the disulfide bonds and may affect local protein folding. Despite low expression of the recombinant entire protein and protein fragments in mammalian cell culture, usherin FN3 fragments are more robustly expressed and secreted than its laminin-related fragments. Our findings provide new insights into the usherin structure and the disease mechanisms caused by pathogenic small in-frame mutations, which will help inform future experimental research on diagnosis, disease mechanisms, and therapeutic approaches.
Collapse
Key Words
- Cell adhesion
- DCC, deleted in colorectal cancer
- FN3, fibronectin III
- GMQE, global quality estimation score
- HGMD, Human Gene Mutation Database
- Hair cell
- I-TASSER, Iterative Threading ASSEmbly Refinement
- LE, laminin EGF
- LG, laminin globular
- LGL, laminin globular-like
- LN, laminin N-terminal
- Membrane protein
- NCBI, National Center for Biotechnology Information
- Photoreceptor
- Protein folding
- QMEAN, qualitative model energy analysis score
- QSQE, Quaternary Structure Quality Estimation
- RMSD, root mean square deviation
- RP, retinitis pigmentosa
- Recombinant protein expression
- Retinitis pigmentosa
- SMTL, SWISS-MODEL template library
- Structural model
- TM-score, template modeling score
- USH, Usher syndrome
- Usher syndrome
- hFc, human Fc fragment
- mFc, mouse Fc fragment
Collapse
Affiliation(s)
- Dongmei Yu
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, United States
| | - Junhuang Zou
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, United States
| | - Qian Chen
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, United States
| | - Tian Zhu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, United States
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States
- Division of Otolaryngology, Department of Surgery, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
17
|
Uyhazi KE, Aravand P, Bell BA, Wei Z, Leo L, Serrano LW, Pearson DJ, Shpylchak I, Pham J, Vasireddy V, Bennett J, Aleman TS. Treatment Potential for LCA5-Associated Leber Congenital Amaurosis. Invest Ophthalmol Vis Sci 2020; 61:30. [PMID: 32428231 PMCID: PMC7405811 DOI: 10.1167/iovs.61.5.30] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose To determine the therapeutic window for gene augmentation for Leber congenital amaurosis (LCA) associated with mutations in LCA5. Methods Five patients (ages 6-31) with LCA and biallelic LCA5 mutations underwent an ophthalmic examination including optical coherence tomography (SD-OCT), full-field stimulus testing (FST), and pupillometry. The time course of photoreceptor degeneration in the Lca5gt/gt mouse model and the efficacy of subretinal gene augmentation therapy with AAV8-hLCA5 delivered at postnatal day 5 (P5) (early, n = 11 eyes), P15 (mid, n = 14), and P30 (late, n = 13) were assessed using SD-OCT, histologic study, electroretinography (ERG), and pupillometry. Comparisons were made with the human disease. Results Patients with LCA5-LCA showed a maculopathy with detectable outer nuclear layer (ONL) in the pericentral retina and at least 4 log units of dark-adapted sensitivity loss. The Lca5gt/gt mouse has a similarly severe and rapid photoreceptor degeneration. The ONL became progressively thinner and was undetectable by P60. Rod- and cone-mediated ERGs were severely reduced in amplitudes at P30 and became nondetectable by P60. Subretinal AAV8-hLCA5 administered to Lca5gt/gt mice at P5 and P15, but not at P30, resulted in structural and functional rescue. Conclusions LCA5-LCA is a particularly severe form of LCA that was recapitulated in the Lca5gt/gt mouse. Gene augmentation resulted in structural and functional rescue in the Lca5gt/gt mouse if delivered before P30. Retained photoreceptors were visible within the central retina in all patients with LCA5-LCA, at a level equivalent to that observed in rescued Lca5gt/gt mice, suggesting a window of opportunity for the treatment of patients with LCA5-LCA.
Collapse
Affiliation(s)
- Katherine E. Uyhazi
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
- Scheie Eye Institute at The Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Puya Aravand
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Brent A. Bell
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhangyong Wei
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lanfranco Leo
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Leona W. Serrano
- Scheie Eye Institute at The Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Denise J. Pearson
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
- Scheie Eye Institute at The Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Shpylchak
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Pham
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Vidyullatha Vasireddy
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomas S. Aleman
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
- Scheie Eye Institute at The Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
18
|
Exploring the Genetic Landscape of Retinal Diseases in North-Western Pakistan Reveals a High Degree of Autozygosity and a Prevalent Founder Mutation in ABCA4. Genes (Basel) 2019; 11:genes11010012. [PMID: 31877759 PMCID: PMC7017091 DOI: 10.3390/genes11010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Variants in more than 271 different genes have been linked to hereditary retinal diseases, making comprehensive genomic approaches mandatory for accurate diagnosis. We explored the genetic landscape of retinal disorders in consanguineous families from North-Western Pakistan, harboring a population of approximately 35 million inhabitants that remains relatively isolated and highly inbred (~50% consanguinity). We leveraged on the high degree of consanguinity by applying genome-wide high-density single-nucleotide polymorphism (SNP) genotyping followed by targeted Sanger sequencing of candidate gene(s) lying inside autozygous intervals. In addition, we performed whole-exome sequencing (WES) on at least one proband per family. We identified 7 known and 4 novel variants in a total of 10 genes (ABCA4, BBS2, CNGA1, CNGA3, CNGB3, MKKS, NMNAT1, PDE6B, RPE65, and TULP1) previously known to cause inherited retinal diseases. In spite of all families being consanguineous, compound heterozygosity was detected in one family. All homozygous pathogenic variants resided in autozygous intervals ≥2.0 Mb in size. Putative founder variants were observed in the ABCA4 (NM_000350.2:c.214G>A; p.Gly72Arg; ten families) and NMNAT1 genes (NM_022787.3:c.25G>A; p.Val9Met; two families). We conclude that geographic isolation and sociocultural tradition of intrafamilial mating in North-Western Pakistan favor both the clinical manifestation of rare “generic” variants and the prevalence of founder mutations.
Collapse
|
19
|
Charbel Issa P, Reuter P, Kühlewein L, Birtel J, Gliem M, Tropitzsch A, Whitcroft KL, Bolz HJ, Ishihara K, MacLaren RE, Downes SM, Oishi A, Zrenner E, Kohl S, Hummel T. Olfactory Dysfunction in Patients With CNGB1-Associated Retinitis Pigmentosa. JAMA Ophthalmol 2019; 136:761-769. [PMID: 29800053 DOI: 10.1001/jamaophthalmol.2018.1621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Importance Co-occurrence of retinitis pigmentosa (RP) and olfactory dysfunction may have a common genetic cause. Objective To report olfactory function and the retinal phenotype in patients with biallelic mutations in CNGB1, a gene coding for a signal transduction channel subunit expressed in rod photoreceptors and olfactory sensory neurons. Design, Setting, and Participants This case series was conducted from August 2015 through July 2017. The setting was a multicenter study involving 4 tertiary referral centers for inherited retinal dystrophies. Participants were 9 patients with CNGB1-associated RP. Main Outcomes and Measures Results of olfactory testing, ocular phenotyping, and molecular genetic testing using targeted next-generation sequencing. Results Nine patients were included in the study, 3 of whom were female. Their ages ranged between 34 and 79 years. All patients had an early onset of night blindness but were usually not diagnosed as having RP before the fourth decade because of slow retinal degeneration. Retinal features were characteristic of a rod-cone dystrophy. Olfactory testing revealed reduced or absent olfactory function, with all except one patient scoring in the lowest quartile in relation to age-related norms. Brain magnetic resonance imaging and electroencephalography measurements in response to olfactory stimulation were available for 1 patient and revealed no visible olfactory bulbs and reduced responses to odor, respectively. Molecular genetic testing identified 5 novel (c.1312C>T, c.2210G>A, c.2492+1G>A, c.2763C>G, and c.3044_3050delGGAAATC) and 5 previously reported mutations in CNGB1. Conclusions and Relevance Mutations in CNGB1 may cause an autosomal recessive RP-olfactory dysfunction syndrome characterized by a slow progression of retinal degeneration and variable anosmia or hyposmia.
Collapse
Affiliation(s)
- Peter Charbel Issa
- Oxford Eye Hospital, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom.,Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Peggy Reuter
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Laura Kühlewein
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Johannes Birtel
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Martin Gliem
- Oxford Eye Hospital, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom.,Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Anke Tropitzsch
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Katherine L Whitcroft
- University College London (UCL) Ear Institute and Royal National Throat, Nose and Ear Hospital, London, United Kingdom.,Centre for the Study of the Senses, Institute of Philosophy, School of Advanced Study, University of London, London, United Kingdom.,Smell and Taste Clinic, Department of Otorhinolaryngology-Head and Neck Surgery, Technische Universität Dresden, Dresden, Germany
| | - Hanno J Bolz
- Bioscientia Center for Human Genetics, Ingelheim, Germany.,Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | - Kenji Ishihara
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom.,Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Susan M Downes
- Oxford Eye Hospital, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom.,Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Akio Oishi
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eberhart Zrenner
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology-Head and Neck Surgery, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
20
|
Identification of a CNGB1 Frameshift Mutation in a Han Chinese Family with Retinitis Pigmentosa. Optom Vis Sci 2019; 95:1155-1161. [PMID: 30451805 DOI: 10.1097/opx.0000000000001305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
SIGNIFICANCE Retinitis pigmentosa (RP) is a severe hereditary retinal disorder characterized by progressive degeneration of rod and cone photoreceptors. This study identified a novel frameshift mutation, c.385delC, p.(L129WfsTer148), in the cyclic nucleotide-gated channel beta 1 (CNGB1) gene of a consanguineous Han Chinese family with autosomal recessive RP (arRP). This expands the spectrum of CNGB1 gene variants in RP cases and possibly refines future genetic counseling. PURPOSE The present study sought to identify potential pathogenetic gene mutations in a five-generation consanguineous Han Chinese family with RP. METHODS Two members of a five-generation consanguineous Han Chinese pedigree with arRP and 100 normal individuals were enrolled in this study. Exome sequencing was performed on the 70-year-old male proband from a consanguineous family to screen potential pathogenic mutations according to the American College of Medical Genetics and Genomics for the interpretation of sequence variants. Sanger sequencing was performed on the proband, the proband's unaffected son, and 100 normal individuals to verify the disease-causing mutation. RESULTS A novel frameshift mutation, c.385delC, p.(L129WfsTer148), with homozygous status in the CNGB1 gene was identified in the proband of the family with arRP, and the mutation with heterozygous status was carried by the asymptomatic son. CONCLUSIONS The c.385delC (p.(L129WfsTer148)) mutation in the CNGB1 gene screened by exome sequencing is probably responsible for the RP phenotype in this family. The result expands the spectrum of CNGB1 gene variants in RP cases and possibly refines future genetic counseling.
Collapse
|
21
|
Hu YS, Song H, Li Y, Xiao ZY, Li T. Whole-exome sequencing identifies novel mutations in genes responsible for retinitis pigmentosa in 2 nonconsanguineous Chinese families. Int J Ophthalmol 2019; 12:915-923. [PMID: 31236346 DOI: 10.18240/ijo.2019.06.06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
AIM To detect the pathogenetic mutations responsible for nonsyndromic autosomal recessive retinitis pigmentosa (RP) in 2 nonconsanguineous Chinese families. METHODS The clinical data, including detailed medical history, best corrected visual acuity (BCVA), slit-lamp biomicroscope examination, fundus photography, optical coherence tomography, static perimetry, and full field electroretinogram, were collected from the members of 2 nonconsanguineous Chinese families preliminarily diagnosed with RP. Genomic DNA was extracted from the probands and other available family members; whole-exome sequencing was conducted with the DNA samples provided by the probands, and all mutations detected by whole-exome sequencing were verified using Sanger sequencing in the probands and the other available family members. The verified novel mutations were further sequenced in 192 ethnicity matched healthy controls. RESULTS The patients from the 2 families exhibited the typical symptoms of RP, including night blindness and progressive constriction of the visual field, and the fundus examinations showed attenuated retinal arterioles, peripheral bone spicule pigment deposits, and waxy optic discs. Whole-exome sequencing revealed a novel nonsense mutation in FAM161A (c.943A>T, p.Lys315*) and compound heterozygous mutations in RP1L1 (c.56C>A, p.Pro19His; c.5470C>T, p.Gln1824*). The nonsense c.5470C>T, p.Gln1824* mutation was novel. All mutations were verified by Sanger sequencing. The mutation p.Lys315* in FAM161A co-segregated with the phenotype, and all the nonsense mutations were absent from the ethnicity matched healthy controls and all available databases. CONCLUSION We identify 2 novel mutations in genes responsible for autosomal recessive RP, and the mutation in FAM161A is reported for the first time in a Chinese population. Our result not only enriches the knowledge of the mutation frequency and spectrum in the genes responsible for nonsyndromic RP but also provides a new target for future gene therapy.
Collapse
Affiliation(s)
- Yan-Shan Hu
- Department of Ophthalmology, the Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, China
| | - Hui Song
- Department of Ophthalmology, the Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, China
| | - Yin Li
- Department of Ophthalmology, the Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, China
| | - Zi-Yun Xiao
- Department of Ophthalmology, the Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, China
| | - Tuo Li
- Department of Ophthalmology, the Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, China
| |
Collapse
|
22
|
Challenges of Identifying Clinically Actionable Genetic Variants for Precision Medicine. JOURNAL OF HEALTHCARE ENGINEERING 2018; 2016:3617572. [PMID: 27195526 PMCID: PMC4955563 DOI: 10.1155/2016/3617572] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/17/2016] [Indexed: 12/30/2022]
Abstract
Advances in genomic medicine have the potential to change the way we treat human disease, but translating these advances into reality for improving healthcare outcomes depends essentially on our ability to discover disease- and/or drug-associated clinically actionable genetic mutations. Integration and manipulation of diverse genomic data and comprehensive electronic health records (EHRs) on a big data infrastructure can provide an efficient and effective way to identify clinically actionable genetic variants for personalized treatments and reduce healthcare costs. We review bioinformatics processing of next-generation sequencing (NGS) data, bioinformatics infrastructures for implementing precision medicine, and bioinformatics approaches for identifying clinically actionable genetic variants using high-throughput NGS data and EHRs.
Collapse
|
23
|
Petersen-Jones SM, Occelli LM, Winkler PA, Lee W, Sparrow JR, Tsukikawa M, Boye SL, Chiodo V, Capasso JE, Becirovic E, Schön C, Seeliger MW, Levin AV, Michalakis S, Hauswirth WW, Tsang SH. Patients and animal models of CNGβ1-deficient retinitis pigmentosa support gene augmentation approach. J Clin Invest 2017; 128:190-206. [PMID: 29202463 PMCID: PMC5749539 DOI: 10.1172/jci95161] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/10/2017] [Indexed: 01/07/2023] Open
Abstract
Retinitis pigmentosa (RP) is a major cause of blindness that affects 1.5 million people worldwide. Mutations in cyclic nucleotide-gated channel β 1 (CNGB1) cause approximately 4% of autosomal recessive RP. Gene augmentation therapy shows promise for treating inherited retinal degenerations; however, relevant animal models and biomarkers of progression in patients with RP are needed to assess therapeutic outcomes. Here, we evaluated RP patients with CNGB1 mutations for potential biomarkers of progression and compared human phenotypes with those of mouse and dog models of the disease. Additionally, we used gene augmentation therapy in a CNGβ1-deficient dog model to evaluate potential translation to patients. CNGB1-deficient RP patients and mouse and dog models had a similar phenotype characterized by early loss of rod function and slow rod photoreceptor loss with a secondary decline in cone function. Advanced imaging showed promise for evaluating RP progression in human patients, and gene augmentation using adeno-associated virus vectors robustly sustained the rescue of rod function and preserved retinal structure in the dog model. Together, our results reveal an early loss of rod function in CNGB1-deficient patients and a wide window for therapeutic intervention. Moreover, the identification of potential biomarkers of outcome measures, availability of relevant animal models, and robust functional rescue from gene augmentation therapy support future work to move CNGB1-RP therapies toward clinical trials.
Collapse
Affiliation(s)
- Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Laurence M Occelli
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Paige A Winkler
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Winston Lee
- Department of Ophthalmology Pathology & Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Janet R Sparrow
- Department of Ophthalmology Pathology & Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Mai Tsukikawa
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sanford L Boye
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Vince Chiodo
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Jenina E Capasso
- Ocular Genetics, Wills Eye Hospital (WEH), Philadelphia, Pennsylvania, USA
| | - Elvir Becirovic
- Center for Integrated Protein Science Munich (CIPSM), Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Schön
- Center for Integrated Protein Science Munich (CIPSM), Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mathias W Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Alex V Levin
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Ocular Genetics, Wills Eye Hospital (WEH), Philadelphia, Pennsylvania, USA
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich (CIPSM), Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - William W Hauswirth
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Stephen H Tsang
- Department of Ophthalmology Pathology & Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA.,Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center (CUMC), Edward S. Harkness Eye Institute, New York, New York, USA
| |
Collapse
|
24
|
Gupta S, Chatterjee S, Mukherjee A, Mutsuddi M. Whole exome sequencing: Uncovering causal genetic variants for ocular diseases. Exp Eye Res 2017; 164:139-150. [PMID: 28844620 DOI: 10.1016/j.exer.2017.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 01/23/2023]
Abstract
Identification of causal genetic defects for human diseases took a significant leap when the first generation DNA sequencing technologies enabled biologists extract sequence-based genetic information from living beings. However, these sequencing methods had unavoidable constraints of throughput, scalability, rapidity, and resolution. In this direction, next-generation sequencing (NGS) since the time of its advent has revolutionized the process of gene discovery for both monogenic and multifactorial genetic diseases. Among several variations of NGS, whole exome sequencing (WES) has emerged as a smart strategy that enables identification of disease causing variants present within the coding region of the human genome. The current review focuses primarily on the application of WES in identification of causal variants for ocular diseases. WES has successfully revealed pathogenic variants in a variety of ocular diseases such as retinal degenerations, refractive errors, lens diseases, corneal dystrophies, and developmental ocular defects. It has demonstrated immense potential for molecular diagnosis of genetic ocular diseases. WES has been extensively used in Mendelian and complex cases, familial and sporadic cases, simplex and multiplex cases, and syndromic and non-syndromic cases of ocular diseases. Although many such ocular diseases have been investigated using WES, reports indicate that it has been employed overwhelmingly for heterogeneous retinal degenerations. WES, within a short period of time, has proved to be a cost-effective and promising approach for understanding the genetic basis of ocular diseases.
Collapse
Affiliation(s)
- Shashank Gupta
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Souradip Chatterjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
25
|
Suratanee A, Plaimas K. Reverse Nearest Neighbor Search on a Protein-Protein Interaction Network to Infer Protein-Disease Associations. Bioinform Biol Insights 2017; 11:1177932217720405. [PMID: 28757797 PMCID: PMC5513527 DOI: 10.1177/1177932217720405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/18/2017] [Indexed: 12/17/2022] Open
Abstract
The associations between proteins and diseases are crucial information for investigating pathological mechanisms. However, the number of known and reliable protein-disease associations is quite small. In this study, an analysis framework to infer associations between proteins and diseases was developed based on a large data set of a human protein-protein interaction network integrating an effective network search, namely, the reverse k-nearest neighbor (RkNN) search. The RkNN search was used to identify an impact of a protein on other proteins. Then, associations between proteins and diseases were inferred statistically. The method using the RkNN search yielded a much higher precision than a random selection, standard nearest neighbor search, or when applying the method to a random protein-protein interaction network. All protein-disease pair candidates were verified by a literature search. Supporting evidence for 596 pairs was identified. In addition, cluster analysis of these candidates revealed 10 promising groups of diseases to be further investigated experimentally. This method can be used to identify novel associations to better understand complex relationships between proteins and diseases.
Collapse
Affiliation(s)
- Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Kitiporn Plaimas
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
26
|
Li L, Chen Y, Jiao X, Jin C, Jiang D, Tanwar M, Ma Z, Huang L, Ma X, Sun W, Chen J, Ma Y, M'hamdi O, Govindarajan G, Cabrera PE, Li J, Gupta N, Naeem MA, Khan SN, Riazuddin S, Akram J, Ayyagari R, Sieving PA, Riazuddin SA, Hejtmancik JF. Homozygosity Mapping and Genetic Analysis of Autosomal Recessive Retinal Dystrophies in 144 Consanguineous Pakistani Families. Invest Ophthalmol Vis Sci 2017; 58:2218-2238. [PMID: 28418496 PMCID: PMC5397137 DOI: 10.1167/iovs.17-21424] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose The Pakistan Punjab population has been a rich source for identifying genes causing or contributing to autosomal recessive retinal degenerations (arRD). This study was carried out to delineate the genetic architecture of arRD in the Pakistani population. Methods The genetic origin of arRD in a total of 144 families selected only for having consanguineous marriages and multiple members affected with arRD was examined. Of these, causative mutations had been identified in 62 families while only the locus had been identified for an additional 15. The remaining 67 families were subjected to homozygosity exclusion mapping by screening of closely flanking microsatellite markers at 180 known candidate genes/loci followed by sequencing of the candidate gene for pathogenic changes. Results Of these 67 families subjected to homozygosity mapping, 38 showed homozygosity for at least one of the 180 regions, and sequencing of the corresponding genes showed homozygous cosegregating mutations in 27 families. Overall, mutations were detected in approximately 61.8 % (89/144) of arRD families tested, with another 10.4% (15/144) being mapped to a locus but without a gene identified. Conclusions These results suggest the involvement of unmapped novel genes in the remaining 27.8% (40/144) of families. In addition, this study demonstrates that homozygosity mapping remains a powerful tool for identifying the genetic defect underlying genetically heterogeneous arRD disorders in consanguineous marriages for both research and clinical applications.
Collapse
Affiliation(s)
- Lin Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China 2Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Yabin Chen
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Chongfei Jin
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States 3Department of Medicine, Brookdale University Hospital and Medical Center, New York, New York, United States
| | - Dan Jiang
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Mukesh Tanwar
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States 4Department of Genetics, Maharshi Dayanand University Rohtak, Haryana, India
| | - Zhiwei Ma
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Li Huang
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States 5State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaoyin Ma
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States 6Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wenmin Sun
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States 5State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jianjun Chen
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States 7Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Yan Ma
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Oussama M'hamdi
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Gowthaman Govindarajan
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Patricia E Cabrera
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jiali Li
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States 5State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Nikhil Gupta
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Muhammad Asif Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shaheen N Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan 9Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan 10National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Javed Akram
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan 10National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Radha Ayyagari
- Shiley Eye Institute, University of California-San Diego, La Jolla, California, United States
| | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States 14McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
27
|
Biswas P, Duncan JL, Maranhao B, Kozak I, Branham K, Gabriel L, Lin JH, Barteselli G, Navani M, Suk J, Parke M, Schlechter C, Weleber RG, Heckenlively JR, Dagnelie G, Lee P, Riazuddin SA, Ayyagari R. Genetic analysis of 10 pedigrees with inherited retinal degeneration by exome sequencing and phenotype-genotype association. Physiol Genomics 2017; 49:216-229. [PMID: 28130426 PMCID: PMC5407181 DOI: 10.1152/physiolgenomics.00096.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/31/2022] Open
Abstract
Our purpose was to identify causative mutations and characterize the phenotype associated with the genotype in 10 unrelated families with autosomal recessive retinal degeneration. Ophthalmic evaluation and DNA isolation were carried out in 10 pedigrees with inherited retinal degenerations (IRD). Exomes of probands from eight pedigrees were captured using Nimblegen V2/V3 or Agilent V5+UTR kits, and sequencing was performed on Illumina HiSeq. The DHDDS gene was screened for mutations in the remaining two pedigrees with Ashkenazi Jewish ancestry. Exome variants were filtered to detect candidate causal variants using exomeSuite software. Segregation and ethnicity-matched control sample analysis were performed by dideoxy sequencing. Retinal histology of a patient with DHDDS mutation was studied by microscopy. Genetic analysis identified six known mutations in ABCA4 (p.Gly1961Glu, p.Ala1773Val, c.5461-10T>C), RPE65 (p.Tyr249Cys, p.Gly484Asp), PDE6B (p.Lys706Ter) and DHDDS (p.Lys42Glu) and ten novel potentially pathogenic variants in CERKL (p.Met323Val fsX20), RPE65 (p.Phe252Ser, Thr454Leu fsX31), ARL6 (p.Arg121His), USH2A (p.Gly3142Ter, p.Cys3294Trp), PDE6B (p.Gln652Ter), and DHDDS (p.Thr206Ala) genes. Among these, variants/mutations in two separate genes were observed to segregate with IRD in two pedigrees. Retinal histopathology of a patient with a DHDDS mutation showed severe degeneration of retinal layers with relative preservation of the retinal pigment epithelium. Analysis of exome variants in ten pedigrees revealed nine novel potential disease-causing variants and nine previously reported homozygous or compound heterozygous mutations in the CERKL, ABCA4, RPE65, ARL6, USH2A, PDE6B, and DHDDS genes. Mutations that could be sufficient to cause pathology were observed in more than one gene in one pedigree.
Collapse
Affiliation(s)
- Pooja Biswas
- Shiley Eye Institute, University of California San Diego, La Jolla, California
| | - Jacque L Duncan
- Ophthalmology, University of California San Francisco, San Francisco, California
| | - Bruno Maranhao
- Shiley Eye Institute, University of California San Diego, La Jolla, California
| | - Igor Kozak
- King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Kari Branham
- Ophthalmology & Visual Science, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan
| | - Luis Gabriel
- Genetics and Ophthalmology, Genelabor, Goiânia, Brazil
| | - Jonathan H Lin
- Shiley Eye Institute, University of California San Diego, La Jolla, California
| | - Giulio Barteselli
- Shiley Eye Institute, University of California San Diego, La Jolla, California
| | - Mili Navani
- Shiley Eye Institute, University of California San Diego, La Jolla, California
| | - John Suk
- Shiley Eye Institute, University of California San Diego, La Jolla, California
| | - Michelle Parke
- Shiley Eye Institute, University of California San Diego, La Jolla, California
| | | | - Richard G Weleber
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon; and
| | - John R Heckenlively
- Ophthalmology & Visual Science, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan
| | - Gislin Dagnelie
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pauline Lee
- Shiley Eye Institute, University of California San Diego, La Jolla, California
| | - S Amer Riazuddin
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Radha Ayyagari
- Shiley Eye Institute, University of California San Diego, La Jolla, California;
| |
Collapse
|
28
|
Branham K, Matsui H, Biswas P, Guru AA, Hicks M, Suk JJ, Li H, Jakubosky D, Long T, Telenti A, Nariai N, Heckenlively JR, Frazer KA, Sieving PA, Ayyagari R. Establishing the involvement of the novel gene AGBL5 in retinitis pigmentosa by whole genome sequencing. Physiol Genomics 2016; 48:922-927. [PMID: 27764769 DOI: 10.1152/physiolgenomics.00101.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023] Open
Abstract
While more than 250 genes are known to cause inherited retinal degenerations (IRD), nearly 40-50% of families have the genetic basis for their disease unknown. In this study we sought to identify the underlying cause of IRD in a family by whole genome sequence (WGS) analysis. Clinical characterization including standard ophthalmic examination, fundus photography, visual field testing, electroretinography, and review of medical and family history was performed. WGS was performed on affected and unaffected family members using Illumina HiSeq X10. Sequence reads were aligned to hg19 using BWA-MEM and variant calling was performed with Genome Analysis Toolkit. The called variants were annotated with SnpEff v4.11, PolyPhen v2.2.2, and CADD v1.3. Copy number variations were called using Genome STRiP (svtoolkit 2.00.1611) and SpeedSeq software. Variants were filtered to detect rare potentially deleterious variants segregating with disease. Candidate variants were validated by dideoxy sequencing. Clinical evaluation revealed typical adolescent-onset recessive retinitis pigmentosa (arRP) in affected members. WGS identified about 4 million variants in each individual. Two rare and potentially deleterious compound heterozygous variants p.Arg281Cys and p.Arg487* were identified in the gene ATP/GTP binding protein like 5 (AGBL5) as likely causal variants. No additional variants in IRD genes that segregated with disease were identified. Mutation analysis confirmed the segregation of these variants with the IRD in the pedigree. Homology models indicated destabilization of AGBL5 due to the p.Arg281Cys change. Our findings establish the involvement of mutations in AGBL5 in RP and validate the WGS variant filtering pipeline we designed.
Collapse
Affiliation(s)
- Kari Branham
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Hiroko Matsui
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - Pooja Biswas
- Shiley Eye Institute, University of California San Diego, La Jolla, California
| | - Aditya A Guru
- Shiley Eye Institute, University of California San Diego, La Jolla, California
| | | | - John J Suk
- Shiley Eye Institute, University of California San Diego, La Jolla, California
| | - He Li
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - David Jakubosky
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - Tao Long
- Human Longevity Incorporated, San Diego, California
| | | | - Naoki Nariai
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | | | - Kelly A Frazer
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California.,Department of Pediatrics and Rady Children's Hospital, Division of Genome Information Sciences, University of California, San Diego, La Jolla, California; and
| | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Radha Ayyagari
- Shiley Eye Institute, University of California San Diego, La Jolla, California;
| |
Collapse
|
29
|
Khateb S, Hanany M, Khalaileh A, Beryozkin A, Meyer S, Abu-Diab A, Abu Turky F, Mizrahi-Meissonnier L, Lieberman S, Ben-Yosef T, Banin E, Sharon D. Identification of genomic deletions causing inherited retinal degenerations by coverage analysis of whole exome sequencing data. J Med Genet 2016; 53:600-7. [PMID: 27208209 DOI: 10.1136/jmedgenet-2016-103825] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/01/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND Inherited retinal degenerations (IRDs) are a common cause of visual disturbance with a high clinical and genetic heterogeneity. Recent sequencing techniques such as whole exome sequencing (WES) contribute to the discovery of novel genes. The aim of the current study was to use WES data to identify large deletions that include at least one exon in known IRD genes. METHODS Patients diagnosed with IRDs underwent a comprehensive ophthalmic evaluation. WES was performed using the NimbleGen V2 paired-end kit and HiSeq 2000. An analysis of exon coverage data was performed on 60 WES samples. Exonic deletions were verified by 'PCR walking' analysis. RESULTS We analysed data obtained from 60 WES samples of index patients with IRDs. By calculating the average coverage for all exons in the human genome, we were able to identify homozygous and hemizygous deletions of at least one exon in six families (10%), including a single-exon deletion in EYS, deletions of three consecutive exons in MYO7A and NPHP4, deletions of four and eight consecutive exons in RPGR and a multigene deletion on the X-chromosome, including CHM. By using PCR-walking analysis, we were able to identify the borders of five of the deletions and to screen our set of patients for these deletions. CONCLUSIONS We performed here a comprehensive analysis of WES data as a tool for identifying large genomic deletions in patients with IRDs. Our analysis indicates that large deletions are relatively frequent (about 10% of our WES cohort) and should be screened when analysing WES data.
Collapse
Affiliation(s)
- Samer Khateb
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ayat Khalaileh
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Segev Meyer
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Alaa Abu-Diab
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Fathieh Abu Turky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Sari Lieberman
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Tamar Ben-Yosef
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
30
|
Biswas P, Chavali VRM, Agnello G, Stone E, Chakarova C, Duncan JL, Kannabiran C, Homsher M, Bhattacharya SS, Naeem MA, Kimchi A, Sharon D, Iwata T, Riazuddin S, Reddy GB, Hejtmancik JF, Georgiou G, Riazuddin SA, Ayyagari R. A missense mutation in ASRGL1 is involved in causing autosomal recessive retinal degeneration. Hum Mol Genet 2016; 25:2483-2497. [PMID: 27106100 DOI: 10.1093/hmg/ddw113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/22/2016] [Accepted: 04/11/2016] [Indexed: 12/31/2022] Open
Abstract
Inherited retinal dystrophies are a group of genetically heterogeneous conditions with broad phenotypic heterogeneity. We analyzed a large five-generation pedigree with early-onset recessive retinal degeneration to identify the causative mutation. Linkage analysis and homozygosity mapping combined with exome sequencing were carried out to map the disease locus and identify the p.G178R mutation in the asparaginase like-1 gene (ASRGL1), segregating with the retinal dystrophy phenotype in the study pedigree. ASRGL1 encodes an enzyme that catalyzes the hydrolysis of L-asparagine and isoaspartyl-peptides. Studies on the ASRGL1 expressed in Escherichia coli and transiently transfected mammalian cells indicated that the p.G178R mutation impairs the autocatalytic processing of this enzyme resulting in the loss of functional ASRGL1 and leaving the inactive precursor protein as a destabilized and aggregation-prone protein. A zebrafish model overexpressing the mutant hASRGL1 developed retinal abnormalities and loss of cone photoreceptors. Our studies suggest that the p.G178R mutation in ASRGL1 leads to photoreceptor degeneration resulting in progressive vision loss.
Collapse
Affiliation(s)
- Pooja Biswas
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Venkata Ramana Murthy Chavali
- Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA.,Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Giulia Agnello
- Departments of Biomedical and Chemical Engineering, Molecular Biosciences, Section of Molecular Genetics and Microbiology, and Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Everett Stone
- Departments of Biomedical and Chemical Engineering, Molecular Biosciences, Section of Molecular Genetics and Microbiology, and Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | | | - Jacque L Duncan
- Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Chitra Kannabiran
- Kallam Anji Reddy Molecular Genetics Laboratory, L V Prasad Eye Institute (LVPEI), Kallam Anji Reddy Campus, L V Prasad Marg, Hyderabad 500 034, India
| | - Melissa Homsher
- Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Muhammad Asif Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Adva Kimchi
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Shaikh Riazuddin
- Allama Iqbal Medical College, University of Health Sciences Lahore, Pakistan.,National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | | | | | - George Georgiou
- Departments of Biomedical and Chemical Engineering, Molecular Biosciences, Section of Molecular Genetics and Microbiology, and Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Radha Ayyagari
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|